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Abstract
Epilepsy is a severe neurological disease which is diagnosed by analyzing Electroen-
cephalogram. The epileptic seizure detection technique based on multiscale entropies and 
complete ensemble empirical mode decomposition (CEEMD) is proposed in this paper. 
CEEMD is used for the estimation of sub-bands and two multiscale entropies; multiscale 
dispersion entropy (MDE) and refined composite MDE are extracted from the sub-bands. 
The feature selection method, configured by hybridizing the filter based and wrapper based 
method, is used to select relevant multiscale entropies. The hybrid method has not only 
reduced features but also improved classification performance. An artificial neural network 
is trained with relevant features and performance is measured using classification accuracy, 
sensitivity and specificity. Five clinically relevant classification problems are used to assess 
the proposed technique. The performance is also compared with the state of the art tech-
niques. The proposed technique has shown an improvement in detection of seizures and 
can be used to build the clinical system for epileptic seizure detection.
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1 Introduction

One of the most common neurological diseases is epilepsy, which affects nearly 50 mil-
lion people worldwide [1]. A person suffering from epilepsy experiences recurrent seizures 
due to the firing of the multiple neurons at a same time [2].This deeply affects the nor-
mal behavior and the cognitive process of a person [3]. Electroencephalogram (EEG) is 
one of the most effective techniques used for measuring the electrical activity of the brain 
for diagnosis of various neurological disorders like epilepsy, brain tumor, sleep disorders, 
encephalitis, and stroke [4]. EEG signals are recorded by placing electrodes either on the 
intracranial area or the scalp of the patients’ brain. Scalp-EEG measures the activities of 
the neurons which are nearer to the surface of the brain whereas intracranial EEG record 
activities of neurons which are deep inside of the brain [5]. In the case of epilepsy, long-
term EEG monitoring is done, which results in the generation of a huge volume of EEG 
data. Manual analysis of such data is tedious and is much prone to errors due to its subjec-
tive nature which may lead to high medical expenditure and delay in treatment [6]. Thus, 
a computer-based diagnosis system for epilepsy not only reduces neurologists’ burden but 
also result in early diagnosis and medication of the patient.

Various techniques have been proposed for the diagnosis of epilepsy. Discrete Wave-
let Transformation (DWT), which is widely used by researchers, decomposes a signal into 
sub-bands based on two parameters; mother wavelet function and level of decomposition. 
Seizure has been detected using spectral [7], statistics [8], entropy [9–13], line length [14] 
and spike [15] based features of wavelet coefficients. Recently, Subasi et al. [16] have used 
a combination of particle swarm optimization (PSO) and genetic algorithm (GA) to opti-
mize support vector machine (SVM) along with the wavelet coefficients. Multiwavelet 
[17], Tunable-Q Wavelet Transform (TQWT) [18, 19] and Dual-Tree Complex Wavelet 
Transformation (DTCWT) [22] have also been employed to separate seizure free and sei-
zure EEG signals. From the literature, it has been observed that the performance of wavelet 
based seizure detection techniques depends on the choice of mother wavelet function and 
the level of decomposition, and these are chosen through experimentations.

Empirical Mode Decomposition (EMD) is a data driven method that estimates sub-
bands of a signal in the form of Intrinsic Mode Functions (IMFs) and these are highly 
localized in the time–frequency domain [20]. Numerous techniques have been developed 
for detection of an epileptic EEG signal, where different types of parameters have been 
extracted from IMFs. These include analytical and area representation [21, 22], mean fre-
quency [23], amplitude and frequency based parameters [24, 25], higher order statics [26], 
second order difference plot [27], statistical parameters [28]. The major disadvantage of 
EMD is that it suffers from a mode mixing problem where oscillations belonging to the 
same mode get dispersed, and oscillations belonging to different modes get merged [29]. 
Ensemble Empirical Mode Decomposition (EEMD) overcomes the disadvantages of EMD 
by averaging the results of multiple EMD [29]. It has been employed for epilepsy detec-
tion where an average of marginal spectrums of IMFs is used for the classification of sei-
zure free and seizure EEG signals [30]. The presence of residual noise in estimated IMFs 
and requirement of many iterations affects EEMD based epileptic seizure detection tech-
nique. To overcome this limitation, Complete Ensemble Empirical Mode Decomposition 
(CEEMD) is proposed by Colominas et al. [31].

Seizure detection techniques have also been developed without the usage of any decom-
position techniques on EEG signals where entropy measures [32, 33], recurrence quanti-
fication analysis parameters [34], random sampling techniques [35], Discrete Probability 
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Distribution Function (DPDF) [36], fractional linear prediction [37], Difference of Gauss-
ian (DoG) [38] also have been used for separation of normal and abnormal EEG signals.

Entropy has been widely extracted from the estimated sub-bands of EEG signals for the 
diagnosis of epilepsy. Sample entropy (SaEn), permutation entropy (PEn), Rényi entropy 
(REn) and Shanon entropy (ShEn) have been widely used for the analysis of an epileptic 
EEG signal, where an epileptic EEG signal has shown more regular behavior than a nor-
mal EEG signal [9–13, 32, 36, 39]. These entropy measures quantify an EEG signal on 
the single scale [40], which are not able to represent dynamics of EEG signals completely. 
Multiscale entropy (MSE) overcomes the shortcomings of single scale entropies by meas-
uring the dynamics of signals in different temporal scales [41]. In [42], multiscale PrEn 
(MPE) was proposed for the analysis of the pathological signal. Later, it was found that 
MSE and MPE do not fulfill the complexity criteria and they proposed a refined composite 
multiscale entropy (RCMSE) [43]. The RCMSE also overcomes the disadvantage of MSE 
where it was less sensitive to short pathological signals [44]. In [45], authors have analyzed 
that MSE and RSMSE were still resulting in undefined entropy values, high complexity 
and unstable nature for a short time series which was overcome with the development of 
multiscale dispersion entropy (MDE) and Refined Composite MDE (RCMDE).

An epileptic seizure detection technique is proposed and tested on widely used open 
access EEG dataset (Sect. 2). An EEG signal is analyzed after decomposing it into sub-
bands because information derived from EEG signal does not magnify its relevant proper-
ties [46]. CEEMD is employed on EEG signals to decompose them into a set of sub-bands, 
namely IMFs, because it is a data driven technique and does not suffer from a mode mix-
ing problem (Sect. 3). Moreover, the resultant IMFs from CEEMD does not have residual 
noise. The effects on the dynamics of an EEG signal, due to the presence of seizures, are 
measured by extracting MDE and RCDME from IMFs (Sect. 4). In MDE and RCMDE, 
dispersion entropy is measured on a multiple scale, and it requires less computational cost 
than other entropy measures. Dispersion entropy is a fast entropy measure because it nei-
ther calculate distance between two composite delay vector and embedding dimension, nor 
it sorts the values of amplitude of each embedding vector [47]. The hybrid feature selec-
tion procedure is used to discard irrelevant entropy measures because it uses the advantage 
of both filter and wrapper method (Sect. 5). The artificial neural network is trained with 
selected relevant entropy measures for epileptic seizure detection (Sect.  6). The exper-
imentation and results is discussed in Sects.  7, and 8 concludes results of the proposed 
technique.

2  Dataset

The well-known EEG dataset by Bonn University, Germany is used in study [48]. It com-
prised of five sets, namely A, B, C, D and E where each set contains 100 EEG signals 
of 23.6 s duration. The set A and set B were recorded, according to 10–20 international 
system, by placing the electrodes on the scalp of patients during relaxed state of healthy 
volunteers with eyes opened and closed. EEG recordings of other three sets belong to five 
patients for whom seizures were under control. Recordings of set C belong to the hip-
pocampal formation of an opposite hemisphere, the set D belong to an epileptogenic zone 
during a normal stage of epileptic patients and set E belong to seizure activity. These EEG 
samples were segmented out from a continuous multichannel recordings after removal of 
artifacts due to eye and muscle movement (A and B) and electrodes containing pathological 



848 G. Singh et al.

1 3

activity (C, D and E). The 128-channel system was used to record EEG signals, and each 
signal was digitized at a sampling frequency of 173.61 Hz by 12-bit analog to digital con-
verter. The performance of the proposed technique has been evaluated using five classifica-
tion problems (CPs) of the dataset. The brief descriptions and clinical relevance of the CPs 
are given below:

(a) CP1 (AB vs. E): The EEG signals belonging to healthy volunteers (A and B) are sepa-
rated from seizure EEG signals (E). This helps to discriminate normal and epileptic 
patients.

(b) CP2 (CD vs. E): The seizure free EEG signals (C and D) belonging to patients are 
separated from seizure EEG signals (E). This CP helps to separate seizure free EEG 
signals and seizure EEG signals of epileptic patients.

(c) CP3 (AB vs. CD): The EEG signals belonging to healthy volunteers (A and B) are sepa-
rated from seizure free EEG signals of patients (C and D). This CP helps to separate 
an EEG signal of healthy people from seizure free EEG signals of epileptic patients.

(d) CP4 (ABCD vs. E): The EEG signals belonging to healthy volunteers (A and B) and 
seizure EEG signals belonging to patients (C and D) are separated from seizure EEG 
signals of patients (E). In clinical practice, this CP helps to identify seizure EEG signals 
of epileptic patients.

(e) CP5 (AB vs. CD vs. E): The EEG signals belonging to healthy volunteers (A and B), 
seizure free EEG signals from patients (C and D) and seizure EEG signals from patients 
(E) are separated from each other. This CP helps to discriminate healthy EEG signals, 
seizure free EEG signals of epileptic patients and seizure EEG signals of epileptic 
patients.

3  Complete Ensemble Empirical Mode Decomposition (CEEMD)

Empirical mode decomposition (EMD) is a data driven method which decomposes a sig-
nal into numbers of amplitude and frequency modulated patterns known as intrinsic mode 
functions (IMFs) and residual [20]. Each IMF satisfies two essential conditions where first 
the condition states that number of extreme points and number of zero crossing can be 
same or differ by one at most. The second condition states that the average value of local 
maxima and local minima define by envelope must be zero [20]. EMD suffers from mode 
mixing problem due to intermittency signals and noises, which makes it unstable. To over-
come the problem of EMD, the EEMD was proposed by Wu and Huangin [29], where 
each IMF consists of the additional noise of finite amplitude. The addition of white noise 
to original signal largely eliminates mode mixing problem caused in EMD, but it results in 
different realizations of signal and noise which produces a different number of modes. In 
CEEMD, the final white noise residue is decreased by adding positive and negative noise 
in the original signal, and final IMF s are the accumulation of IMFs with positive and nega-
tive noise [49]. Let x(n) and vi(n) denotes the signal ( x ) with n number of samples and 
white Gaussian noise with unit variance and zero mean. The i ranges from 1 to I represents 
different realization of white noise. The computation of IMFs with CEEMD comprises of 
following steps:

(a) Calculate x(n) + �0v
i(n) , where �0 denotes the standard deviation of the white Gaussian 

noise.
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(b) The I signals are decomposed using EMD method and first IMF is obtained [Eq. (1)]

(c) The first residual ( r ) is calculated by using Eq. (2)

(d) Decompose r1(n) + �1E1

(

vi(n)
)

 for i = 1,… , I up to its first EMD mode, where Ek(.) 
represent the extraction of kth EMD mode and �k is standard deviation of kth stage 
white gaussian noise. The IMF2(n) is calculated as shown in Eq. (3).

(e) The Eq. (4) shows the kth residue.

(f) The (k + 1)th EMD mode is shown in Eq. (5), which is obtained after decomposition 
of r1(n) + �1E1

(

vi(n)
)

 for i = 1,… , I is shown in Eq. (5)

(g) Go to step e for next k . The steps e to g are repeated until r become monotonic in nature 
and original can be written as shown in Eq. (6), where T  is the total number of EMD 
modes and rk(n) is final residue.

4  Feature Extraction

Entropies are used to measure the uncertain and irregular nature of a signal. Its higher values 
depict the higher uncertainty and irregularity whereas lower values depict lower uncertainty 
and irregularity of a signal [47, 50, 51]. Most of the entropies measure an uncertainty on a sin-
gle scale and fail to represent the signal. Azmi et al. [45] have proposed MDE which measures 
the Dispersion Entropy (DisEn) of a univariate signal on multiple scales by dividing it into a 
non-overlapping segment of size τ, where τ is known as a scale factor. Initially, coarse grain of 
a signal ( s ) is obtained by calculating the average of each segment [52] [Eq. (7), where si is ith 
sample of s and L is its sample size].

(1)IMF1 =
1

I

I
∑

j=1

imf
j

1
(n)

(2)r1(n) = x(n) − IMF1(n)

(3)IMF2(n) =
1

I

I
∑

j=1

E1(r1(n) + �1E1

(

vi(n)
)

(4)rk(n) = rk−1(n) − IMFk(n)

(5)IMFk+1(n) =
1

I

I
∑

j=1

E1(rk(n) + �kEk

(

vi(n)
)

(6)x(n) =

T
∑

k=1

IMFk(n) + rk(n)

(7)s�
i
=

1

�

i�
∑

a=(i−1)�+1

sa, 1 ≤ i ≤
L

�
= N
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The DisEn of each coarse grain is calculated, where each sample of s is mapped to 
the range of 1 and c (number of classes) using Normal Cumulative Distribution Function 
(NCDF) and linear algorithm. After that times series are made with embedding dimension 
( m ) and time delay ( d ). Each time series is assigned a dispersion pattern where possible 
number of dispersion patterns are equal to cm [47]. Finally, DisEn of s are obtained using 
the concept of ShEn, as shown in (8). The p

(

�v0…vm−1

)

 denotes the number of dispersion 
patterns of �v0…vm−1

 . The detail mathematical explanation of MDE can be found in [45].

RCMDE is the value of ShEn of the mean of a sequence of dispersion patterns. For each 
scale factor (τ), a different time series corresponds to the different initial point of a coarse 
grain process is created where ith coarse grained series ( s(�)

i
=

{

s
(�)

i,1
, s

(�)

i,2
, s

(�)

i,3
…

}

 ) of s is (9) 
and RCMDE for each scale factor is calculated as (10). The relative frequency of a disper-
sion patterns is π in a series s(�)

i
(1 ≤ i ≤ �) and p̄

�

𝜋v0…vm−1

�

=
1

𝜏

∑𝜏

1
p
(𝜏)

i

5  Feature Selection

The presence of relevant and non-redundant features in data helps in the correct classifica-
tion of test samples, the reduction of training time, data understanding and storage require-
ment [53, 54]. The redundant features append more noise to data than relevant informa-
tion and irrelevant features increase classification time [55]. The feature selection methods 
mainly fall into three categories; filter, wrapper, and hybrid method. If a feature selection 
method works independently of a classifier, then it is known as filter based methods; oth-
erwise wrapper method. The combination of filter and wrapper method, known as a hybrid 
method, is also used by exploiting their respective strengths [56]. The ReliefF and Sequen-
tial Backward Search (SBS) are combined to form the hybrid feature selection method. 
ReliefF algorithm is an extended version of Relief algorithm, where only one nearest hit/
miss is chosen and limited to two class problems [57, 58]. The ReliefF algorithm selects an 
instance in a random fashion and then select k number of a neighbor from the same class 
(nearest hits) and k number of a neighbors from different classes (nearest misses) [59]. If 
the value of an attribute of nearest hits and a randomly selected sample is making fine dis-
crimination among them, the weight of the respective attribute is decreased. On the other 
hand, if the value of an attribute of nearest misses and the randomly selected sample is 
making fine discrimination among them, the weight of the respective attribute is increased. 
The selection of nearest neighbor value is a crucial step in ReliefF, as it is deeply affected 
by the presence of irrelevant features and the noise [59]. The SBS is a wrapper method 
which selects the relevant and non-redundant features by considering the correlation 

(8)DisEn(s,m, c, d) = −

cm
∑

�=1

p
(

�v0…vm−1

)

⋅ ln
(

p
(

�v0…vm−1

))

(9)s
(�)

i,k
=

1

�

i+�k−1
∑

a=i+�(k−1)

sb, 1 ≤ k ≤ L, 1 ≤ i ≤ �

(10)RCMDE(s,m, c, d, 𝜏) = −

cm
∑

𝜋=1

p̄
(

𝜋v0…vm−1

)

⋅ ln
(

p̄
(

𝜋v0…vm−1

))
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dependencies of features, where two highly correlated features are considered redundant 
[60]. The pseudo code of proposed procedure used for feature selection is shown below:

ReliefF is applied to Data ( D ) by a set of nearest neighbor values, i.e. from one to k′ 
(line 1), to sort the features in descending order of their relevance (line 2 and 3). The ANN 
is used to measure the performance of sorted features (discussed in Sect. 6) and stored in 
M (line 4–6), wherein each iteration next relevant feature is added to the feature set. The 
best value of nearest neighbor ( kb ) and its corresponding optimum feature set ( fb ), which 
has provided the best performance, are chosen by extracting the index of a maximum of M 
( maxindex(M) =

{

(p, q) ∶ xp,q = max(M)
}

 ). The p and q represent nearest neighbor value 
and feature set (line 8). In line 9, the best feature set ( f ′

b
 ) is chosen by applying SBS on D 

with fb feature set (obtained using Relief with kb nearest neighbors). If there are more than 
one value of kb which show maximum performance, then the one with minimum fb is cho-
sen and if fb will be the same then the minimum kb is chosen.

6  Artificial Neural Network (ANN)

ANN is inspired by the biological neural network which deals with nonlinear data [61]. 
It consists of interconnected layers of neurons, which is used to perform computation in 
pattern recognition. It is one of the widely used classifiers for the classification of sei-
zure in EEG signals [25, 26, 62]. The feedforward ANN is used in the proposed technique 
which comprises of three layers; input, hidden and an output layer. The size of an input 
layer depends on the number of input features and size of output layer depends on number 
classes present in CPs. The number of hidden neurons are fixed to 10 through experimenta-
tion. The scale conjugate gradient function is used to train ANN. The hyperbolic tangent 
sigmoid and soft max functions are used as the transfer function of a hidden and an output 
layer.

7  Results and Discussion

To test the proposed technique, five clinically significant CPs are formulated using well-
known Bonn University EEG dataset. One EEG sample from each set is shown in Fig. 1. 
The CEEMD is used to estimate sub-bands of EEG signals in the form of IMFs and 
the first ten IMFs are used in this study. The estimated IMFs of one sample EEG from the 
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Fig. 1  An EEG sample from each set

Fig. 2  IMFs of an EEG signal from set A
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set A and set E are shown in Figs. 2 and 3. The MDE and RCDME are extracted from each 
of the ten IMFs signals. While extracting entropies (MDE and RCDME), four parameters 
namely time delay d , scale factor � , embedding dimensions m and a number of classes c are 
required. The value of c can be a number between 3 and 9, because the number of disper-
sion patterns ( cm ) should be less than the length of the signal [45]. It is chosen empirically 
for the proposed methodology. The value of d is recommended to be 1, because a greater 
value leads to aliasing, where some frequency information are discarded [47]. The larger 
value of m makes entropies algorithm unable to measure small changes whereas too small 
m leads entropies algorithm to a stage where they fail to measure dynamic changes of a 
signal [47]. The τ is fixed to 30 as suggested by Azami et al. in [45] for short signals. The 
significant entropies are chosen by using the feature selection method explained in Sect. 5. 
The chosen relevant features are fed to ANN, and performance is measure using classifica-
tion accuracy (CA), sensitivity (SEN), and Specificity (SPEC) [25]. The Hold-out method 
is used to protect the ANN model from over-fitting where 60% dataset is used for training 
and 40% dataset is used for testing. The Hold-out method is repeated 20 times for better 
estimation of results. In each run, 60% and 40% of the dataset is randomly chosen for train-
ing and testing of the proposed technique. The results are compiled by averaging the results 
of 20 independent runs (mean ± standard deviation). Initially, the performance of MDE and 
RCMDE are analyzed individually for each  CP5, therefore from each EEG sample, 300 val-
ues of the respective entropy measure are extracted which comprise of 30 entropies from 
each of the ten IMFs because the value of τ is set to 30.  

The significance of features is assessed by one-way-analysis of variance (ANOVA) 
where features with p < 0.01 are considered relevant. Further, the feature selection method 
presented in the section is used to discard irrelevant and redundant features. The value of 
k′ is set to 50 because the value  the nearest neighbor in ReliefF cannot set too high and 
near to a number of samples present in class, as it reduces the effect of the ReliefF algo-
rithm [59]. Table 1 presents the performance of the proposed technique on  CP5 when both 
entropy measures are extracted with the permissible values of c . The reason for choosing 
 CP5 is because it is the most crucial clinical problem as it separates EEG signals of all three 

Fig. 3  IMFs of an EEG signal from set E
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classes namely; normal, seizure free and seizure. In Table 1, the entropy ( c ) represents the 
name of entropy measure, and the corresponding value of c used for calculation, ANOVA 
(dim) represents the number of features after applying one-way-ANOVA test, kb (CA, fb ) 
depicts the performance in the term of CA when the first fb ranked features (obtained using 
kb nearest neighbor with ReliefF) are fed to ANN. The SBS ( f ′

b
 ) and CA shows the number 

of features obtained with SBS and its corresponding performance in the classification of 
EEG signals present in  CP5. The bold values indicate the best accuracy which is obtained 
with RCDME entropy measure using parametric value c  =  6.  

Therefore, RCDME with c = 6 is considered for the  evaluation of  CP1 to  CP4. More 
importantly, it has been observed that the feature selection method reduces the features 
by 83.67% as compared to the extracted features. The performance of the ReliefF used for 
the feature selection method on  CP5 is shown in Fig. 4 where the best result (98% CA) is 
shown by first the 185 ranked features when 43 nearest neighbors (kb) are chosen. These 
185 ranked features ( fb ) are fed to SBS and 49 features ( f ′

b
 ) are chosen. The 49 selected 

Table 1  Performance of the proposed technique on  CP5 against entropy measures with permissible values 
of c

S. no. Entropy (c) ANOVA (dim) kb (CA, f
b
) SBS ( f ′

b
 ) (dim) CA (%)

1 MDE (3) 291 2 (98.55 ± 1.14, 137) 32 98.34 ± 1.02
RCMDE (3) 294 3 (97.00 ± 0.47, 35) 14 98.05 ± 0.69

2 MDE (4) 287 9 (96.50 ± 0.78, 83) 26 97.07 ± 1.35
RCMDE (4) 289 37 (96.45 ± 0.76, 190) 49 97.57 ± 0.75

3 MDE (5) 286 31 (97.50 ± 1.00, 258) 53 98.26 ± 0.73
RCMDE (5) 289 7 (98.00 ± 0.97, 139) 43 97.84 ± 0.93

4 MDE (6) 278 44 (98.50 ± 0.91, 184) 40 98.10 ± 1.20
RCMDE (6) 284 43 (98.05 ± 1.42, 185) 49 98.97 ± 0.74

5 MDE (7) 297 27 (97.05 ± 0.96, 138) 33 97.16 ± 0.56
RCMDE (7) 297 3 (97.50 ± 1.18, 71) 25 97.57 ± 0.75

6 MDE (8) 288 8 (96.50 ± 0.71, 94) 27 96.36 ± 0.81
RCMDE (8) 291 11 (98 ± 1.00, 144) 44 98.26 ± 0.73

7 MDE (9) 292 1 (97.00 ± 0.47, 46) 17 96.81 ± 0.75
RCMDE (9) 297 28 (97.50 ± 1.20, 110) 30 96.84 ± 0.90

43(98±1.42,185)

95

95.5
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Fig. 4  The performance of ReliefF in hybrid feature selection method on  CP5
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features are used to train ANN and CA of 98.97% is observed. The performance of the pro-
posed technique on  CP1-CP4 is shown in Table 2, where for every CP, the proposed tech-
nique achieved very good results. It has also been noted that there is a reduction in features 
by more than 90% in  CP1–CP4. 

The presence of noise and dependent features in data demands a  higher value of 
the nearest neighbor in the ReliefF algorithm [59]. For  CP3, the feature selection method 
has found the value of kb equal to 1 (Table 2), whereas in other CPs its value is larger than 
1. The  CP3 is the only classification problem which does not classify ictal EEG signals. 
This shows that entropy measures of ictal EEG signals contain more noise and dependency 
in features.

The performance of the proposed technique has also been measured with EEG samples 
of different lengths which helps to identify the minimum length of EEG signal for accept-
able performance [38]. First L numbers of samples are chosen from EEG signals for this 
experimentation. The robustness of proposed technique against the length of EEG sam-
ple is presented in Table 3. The 1500 samples (8.64 s) are considered as minimum sam-
ple length because an EEG signal is confirmed as abnormal if the abnormality persists for 
6–10 s [63]. It has been observed from Table 3 that the proposed technique is able to detect 
seizure even with small segments of the EEG signals.

The proposed technique is also compared with the state of the art techniques for epi-
leptic seizure detection (Table 4). Only those techniques are considered for comparisons 
that have used the same EEG dataset. From Table 4, it is evident that the proposed sei-
zure detection technique performs better than all other techniques in terms of CA. In 
[12], authors have employed DWT for the estimation of sub-bands, and ApEn of sub-
band were used to train ANN and SVM. A CA of 94% was reported in the separation 
of EEG signals in  CP4, and 95% was reported for the separation of the interictal (set D) 
and the ictal (set E) stage. A CA of 100% was reported in [27] when a combination of 
EMD and SODP with ANN was used for the separation of EEG signals in  CP3. Samiee 
et al. [64] proposed a Fourier based technique for the seizure detection which was evalu-
ated on five two class CPs where CA of 99.80%, 99.30%, 98.50%, 94.90% and 98.10% 
was reported. Extreme machine learning (ELM) was trained with SaEn of wavelet coef-
ficients in [65], where CA of 100% was reported for the separation of normal EEG (set 
A) and seizure EEG (set E). A CA of 99.25% was also reported for the  separation of 
EEG signals in  CP4. In [66], wavelet coefficients obtained using DTCWT was reduced 
by extracting their respective SP and ANN was trained for the classification of epilep-
tic EEG signals. A CA of 99.33% was observed while classifying EEG signals in  CP4, 
whereas CA of 98.28% was noted for  CP5. The ANN trained with SP of IMFs have 
reported CA of 100% and 97.70% for the classification of normal (set A) and abnor-
mal (set E) epileptic EEG samples, and interictal (set D) and ictal (set E) EEG signals, 
respectively [28]. In other work [35], LS–SVM was trained with SP of EEG signals 
and classified the EEG samples into normal (set A) and abnormal (set E) with 100% 
CA. In [38], authors performed a classification with a combination of DoG and SVM in 
four CPs where CA of 100%, 99.45%, 99.31% and 98.80% was reported for  CP1,  CP2, 
 CP4, and  CP5, respectively. Goa et  al. [33] presented a technique for epileptic seizure 
detection based on visibility graphs with CA of 100% and 98% for  CP1 and  CP2. The 
combination DWT and Fourier transformation with k-NN classifier reported 100% CA 
in  CP1,  CP2 and  CP4 [67] but the results were presented without cross-validation. A CA 
of 96.75% for  CP3 was reported by Redelico et al. [36] with PEn based seizure detection 
technique. The k-NN entropy from wavelet coefficients was obtained to train SVM, and 
CA of 99% and 98.60% was reported for  CP4 and  CP5. The normal (set A and B) and 
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interictal (set C and D) EEG signals were separated from ictal EEG signals with 100%, 
99.5% and 98% CA [18]. In [16], a combination of PSO and GA was used to optimize 
SVM when it was fed with wavelet coefficients, and CA of 99.38% was reported while 
separating normal (set A) and ictal (set E) EEG signals. The sum of time variance and 
frequency variance and Wavelet Filter Bank (WFB) is used for separation non-seizure 
and seizure EEG signals in  CP3 [68]. In [69], an epileptic seizure detection algorithm 
based on log-normal distribution (LND) model and maximal overlap discrete wavelet 
transform (MODWT) was proposed, and CAs of 99.10% and 98.10% were reported 
for  CP4 and  CP5. Sharma et  al. [70] have presented a seizure detection method based 
on MMSFL-OWFB (minimally mean squared frequency localized-optimal orthogonal 
wavelet filter banks) where CA of 99.00% and 99.20% in  CP2 and  CP4 were reported, 
respectively. In [71], the combination of Wavelet Packet Decomposition (WPD) and 

Table 3  The robustness of the 
proposed technique with EEG 
samples of different sample 
lengths

S. no. Sample 
length 
(L)

CP SPEC (%) SEN (%) CA (%)

1 1500 CP1 99.62 ± 0.80 99.12 ± 1.43 99.46 ± 0.71
CP2 97.93 ± 0.99 96.50 ± 1.83 97.45 ± 1.00
CP3 98.62 ± 1.67 97.25 ± 2.72 97.94 ± 1.49
CP4 98.12 ± 1.01 97.88 ± 1.47 98.08 ± 0.86
CP5 – – 97.89 ± 1.09

2 2000 CP1 99.87 ± 0.37 99.37 ± 1.08 99.70 ± 0.39
CP2 98 ± 0.92 97.12 ± 1.64 97.70 ± 0.91
CP3 98.62 ± 1.67 97.25 ± 2.72 97.94 ± 1.49
CP4 98.50 ± 0.65 97.88 ± 1.47 98.38 ± 0.62
CP5 – – 97.92 ± 1.10

3 2500 CP1 100.00 ± 0.00 99.62 ± 0.89 99.88 ± 0.30
CP2 98 ± 0.92 98.37 ± 1.43 98.12 ± 0.69
CP3 99.12 ± 1.43 98.50 ± 1.66 98.81 ± 1.08
CP4 98.93 ± 0.70 98.12 ± 1.60 98.76 ± 0.69
CP5 – – 97.92 ± 1.10

4 3000 CP1 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
CP2 98.00 ± 0.92 98.36 ± 1.43 98.12 ± 0.69
CP3 99.50 ± 1.00 99.12 ± 1.19 99.25 ± 0.82
CP4 99.50 ± 0.52 98.87 ± 1.51 99.37 ± 0.32
CP5 – – 98.63 ± 0.97

5 3500 CP1 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
CP2 98.56 ± 1.32 98.88 ± 1.24 98.67 ± 0.80
CP3 99.50 ± 1.00 99.50 ± 1.00 99.50 ± 0.82
CP4 99.62 ± 0.47 99.12 ± 1.49 99.52 ± 0.32
CP5 – – 98.92 ± 0.74

6 4000 CP1 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
CP2 99.62 ± 0.70 99.75 ± 0.75 99.67 ± 0.49
CP3 99.50 ± 1.00 99.50 ± 1.00 99.50 ± 0.82
CP4 99.62 ± 0.47 99.12 ± 1.46 99.52 ± 0.34
CP5 – – 98.92 ± 0.74
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Table 4  Comparison of proposed technique with state of the art seizure detection techniques

S. no. Researcher Technique CP CA (%)

1 Kumar et al. [12] DWT + ApEn + ANN + SVM A vs. E 100.00
B vs. E 92.50
C vs. E 100.00
D vs. E 95.00
ABCD vs. E 94.00

2 Pachori and Patidar [27] EMD + SODP + ANN CD vs. E 100.00
3 Samiee et al. [64] Fourier transformation + ANN A vs. E 99.80

B vs. E 99.30
C vs. E 98.50
D vs. E 94.90
ABCD vs. E 98.10

4 Zhang et al. [65] DWT + SaEn + ELM A vs. E 100.00
AB vs. CD vs. E 99.25

5 Peker et al. [66] DTCWT + SP + ANN ABCD vs. E 99.33
AB vs. CD vs. E 98.28

6 Djemili et al. [28] EMD + SP + ANN A vs. E 100.00
D vs. E 97.70

7 Ghayab et al. [35] Random sampling + SP + LS-SVM A vs. E 100.00
8 Tiwari et al. [38] DoG + SVM AB vs. E 100.00

CD vs. E 99.45
ABCD vs. E 99.31
AB vs. CD vs. E 98.80

9 Gao et al. [33] Visibility graphs + SP + SVM AB vs. E 100.00
CD vs. E 98.00

10 Chen et al. [67] DWT + Fourier coefficients + k-NN AB vs. E 100.00
CD vs. E 100.00
ABCD vs. E 100.00

11 Redelico et al. [36] DPDF + PerEn + ROC AB vs. CD 96.75
12 Bhattacharyya et al. [18] TQWT + k-NN entropy + SVM A vs. E 100.00

B vs. E 100.00
C vs. E 99.50
D vs. E 98.00
ABCD vs. E 99.00
AB vs. CD vs. E 98.60

13 Subasi et al. [16] DWT + PSO-GA + SVM A vs. E 99.38
14 Bhati et al. [68] WFB + NN CD vs. E 99.66
15 Li et al. [69] MODWT + LND + RF A vs. E 100

ABCD vs. E 99.10
AB vs. CD vs. E 98.10

16 Sharma et al. [70] MMSFL-OWFB feature-based model CD vs. E 99.00
ABCD vs. E 99.20



859Detection of Epileptic Seizure EEG Signal Using Multiscale…

1 3

fuzzy distribution entropy (fDistEn) was used for seizure classification, and proposed 
method performed better in most of the cases except  CP4, where it is marginally less.

Most of these methods are based on EMD and wavelet based transformation, used for 
the estimation of sub-bands which suffers from a mode mixing problem, dependence on 
mother wavelet function and level of decomposition. Single scale entropies are also widely 
used with the combination EMD and wavelet transformation which does not measure the 
dynamics of EEG signal completely. The following are highlights of the proposed seizure 
detection technique:

• The proposed seizure detection technique performs better than all state of the art sei-
zure detection technique for all clinically relevant classification problems. The final 
performance is compiled by averaging results of the twenty independent runs.

• In proposed technique, CEEMD is used for signal decomposition and multiscale entro-
pies are extracted from decomposed signals. CEEMD overcomes the disadvantages of 
EMD and wavelet transformation, where these techniques suffer from mode mixing 
problem, dependence on mother wavelet and decomposition level. The usage of multi-
scale entropy measures also overcomes the signal scale entropies as these are unable to 
measure the dynamics of EEG signal completely.

• The robustness of the proposed technique is also measured using an EEG signal of 
different length where it shows good performance with small EEG signals. The com-
parison with the state of the art seizure detection technique also validates the results of 
proposed techniques.

• A hybrid feature selection method is presented, which not only decreases features but 
also improve the classification performance. In the future, this technique could be used 
for the other classification problems in the future.

8  Conclusion

The epileptic seizure detection technique based on multiscale entropy and CEEMD is pre-
sented in this paper. The performance is measured on the five clinically relevant cases: sep-
arating of normal and seizure prone EEG signals; separating seizure free and seizure EEG 
signals of epileptic patients; separating EEG signals of normal people and seizure free 

Table 4  (continued)

S. no. Researcher Technique CP CA (%)

17 Zhang et al. [71] WPD + fDistEn + k-NN AB vs. E 99.97

CD vs. E 99.58

ABCD vs. E 99.71

AB vs. CD vs. E 98.76
18 Present reporting (2019) CEEMD + RCDME + feature selec-

tion + ANN
AB vs. E 100.00
CD vs. E 99.67
AB vs. CD 99.50
ABCD vs. E 99.52
AB vs. CD vs. E 98.97
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EEG signals of epileptic patients; separating normal and seizure free EEG signals from 
epileptic EEG signals; and separating normal seizure free and epileptic EEG signals. EEG 
signals are decomposed into set of IMFs using CEEMD to overcome the disadvantages of 
EMD, EEMD and DWT. Multiscale entropies, namely MDE and RCDME, are extracted 
from IMFs to measure dispersion entropy of a signal on multiple scale, and moreover, it is 
also faster than other multiscale entropies. Multiscale entropies also measure the complex-
ity and dynamics of signals where single scale entropy measures fail. The hybrid feature 
selection method, used in proposed technique, reduced the features by more than 90% in 
four clinical cases and by 83.67% in the fifth case. The feature selection method not only 
helped to remove redundant, irrelevant features and improve classification performance, 
but also helped to reduce the classification time eventually. The robustness of proposed 
technique is also tested on the EEG signals of different sample lengths. The results are 
also compared with the state of the art seizure detection techniques, where the proposed 
technique has outperformed. The better performance of proposed technique concludes that 
multiscale entropies measure the dynamic behavior of epileptic EEG signals better than 
single scale entropies. The less sensitive nature of the proposed technique to EEG sample 
length and high accuracy makes the proposed technique more desirable for clinical appli-
cations for seizure detection. In the  future, the proposed technique can also be tested on 
other physiological signals for diagnosis of other diseases, and it can be tested on long term 
epileptic dataset.
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