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Abstract
Cloud Computing Systems (CCSs) provides a computing capability through the Internet. 
It enables organizations or individuals to have a computing power without deploying and 
maintaining their own Information Technology infrastructure. As a cloud is realized on 
a vast scale cloud, it consumes an enormous amount of energy. Migration pattern, where 
several Virtual Machines (VMs) can be placed on a minimum number of active Physi-
cal Machines is called VMs Consolidation (VMC). Thus, this technique can be a practi-
cal approach for balancing electricity consumption and other QoS requirement in CCSs. 
Especially, VMC must meet the service quality requirements, minimization of both energy 
consumption and Service Level Agreement violation in CCSs. This paper presents a sys-
tematic survey of VMC in CCSs with particular attention to the VMC phases, metrics, 
objectives, migration patterns, optimization methods, and evaluation approaches of VMC. 
Our review study is presented based on the past literature with a focus on the type of hard-
ware metrics, software metrics, objectives, algorithms, and architectures of VMC in CCSs.

Keywords Cloud Computing Systems (CCSs) · Data center · VMs Consolidation (VMC) · 
Energy consumption · QoS · Systematic survey

1 Introduction

CCSs consume a massive amount of electricity resulting in high  CO2 emission [1]. For 
optimizing resource utilization in CCSs and reducing electricity consumption, VMC 
can be used by switching the idle PMs to silent or sleep mode [2–4]. VMC approaches 
consolidate several VMs onto a PM or fewer numbers of PMs to reduce electricity con-
sumption and optimize resource utilization. This occurs by supporting the PMs run opti-
mally on efficient electricity and more electricity proportional conditions [5]. The main 
feature that makes the VMC techniques more important is migration, especially live 
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VMs migration. Indeed, live VMs migration can transfer a running VM from a PM to 
another PM with no interruption in services [6].

VMC can be done in different ways, considering criteria, resources, objectives, and 
algorithmic methods [7, 8]. Due to the importance of VMC, some research has been 
conducted to address reducing energy consumption in CCSs.

To meet the growing needs of large databases and computational resources, data cent-
ers have to use high-performance PMs as well as vast and high-speed resources of PMs. 
These resources, along with cooling equipment and network alternatives, are among the 
largest power consumers in the cloud [9]. This power consumption in CCSs is propor-
tional to the number of resources, and also it is one of the highest power consumers in 
the world [10]. Further, according to the Gartner report in 2013, on average, the energy 
consumed by a data center is equivalent to the energy consumption of 25,000 families 
[11]. In another report in 2014, would be it was stated that the federal and cloud energy 
consumption in the US was about 100 billion kW/h and the cost of energy about 75% of 
the total operating costs [12]. In the USA is predicted to consume 140 billion kilowatts 
per year by 2020 and resulting in $13 billion per year in electricity bills for cloud [13]. 
Also, the statistics indicate a growth in energy consumption in CCSs, and overall energy 
consumption incurs enormous costs; it has to be reduced [14–16]. According to studies, 
the low utilization of resources in the data center and cloud also increases power con-
sumption. The average utilization of data centers is very low, and between 12 and 18% 
[17]. Cloud has a better status in comparison to the regular data centers, whose utiliza-
tion is claimed to be 40–70% [18]. So, energy consumption in CCSs is a challenge, and 
the VMC technique is its solution.

In addition to the energy in VMC, other metrics such as reliability, the hardware cost, 
and its longevity, performance, ON–OFF power cycles, cooling, load balancing, SLAv, 
VMs affinity, Network Band Width (NBW), resource utilization, etc. can also affect the 
VMC technique. So, these metrics, along with reducing energy consumption in VMC tech-
nique, have been considered in some studies as follows.

Meanwhile, less attention has been paid to reliability reduction and increased server 
fatigue due to the over-aggressive domination of CCSs. Therefore, the important thing is 
to use methods that emphasize short-term energy consumption, saving policies, and paying 
attention to the long-term costs such as the hardware cost incurred on CCSs due to dimin-
ished PMs reliability by increasing ON–OFF cycles and depreciation of PMs, the tempera-
ture rise and thermal [19].

It is claimed that repeatedly turning PMs ON–OFF can lead to hardware failures. Note 
that when PM fail because of hardware errors, they would be redundant as soon as they 
start to work again, which might cause massive damage to CCSs given the effort needed 
for repairing and replacing these PMs [20]. Hardware manufacturing companies have typi-
cally cited that they can only guarantee the performance and reliability in case of at most 
60,000 ON–OFFs throughout their whole life cycle [21].

Further, the temperature and thermal of the cloud are other factors that cause PMs to 
fail. Temperature and thermal are one of the most influential factors in the reliability of 
efficiency, which can affect the longevity and power consumption for cooling of PMs in 
CCSs and is considered to be very helpful in resource allocation [22]. Upon elevation of 
the PMs’ temperature of by 10 °C, the longevity of PMs’ components is reduced by 50%. 
These failures can result in a partial or total failure of one or more PMs in CCSs, which can 
incur a penalty of 5000$ per minute to cloud as SLAv cost [23].

As well, reducing power consumption along with load balancing in [24, 25], in [26] 
reducing power consumption along with performance, in [27] reducing power consumption 
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along with NBW, and in [28, 29] reducing power consumption along with VMs affinity to 
implement the VMC technique in CCSs considered.

In summary, due to high rates of energy consumption and low utilization rate in the 
cloud, the importance of VMC technique as its solution is clear. So far, various metrics 
and objectives have been proposed to implement the VMC technique in CCSs. The best 
way to placement VMs to PMs is not merely inserting the maximum number of VMs into 
the minimum number of PMs. Because in this case, in addition to the energy consump-
tion resulting in high costs and  CO2 emissions to the environment, important criteria must 
be considered in VMC approaches such as migration overhead [30–32], performance [7, 
33–35], SLAv [23, 36], cooling [5, 37, 38], thermal and temperature [21, 30, 39], ON–OFF 
cycles [22, 40], VMs affinity [7, 28, 29, 41], reliability [19, 20], the hardware cost and 
its longevity [22, 23], load balancing [24, 25], NBW [27, 42–44], resources utilization [8, 
45, 46]. In other words, to implement the VMC algorithms, reducing power consumption 
along with the mentioned criteria, must be considered for holistic efficiency in the cloud.

Finally, the implementation problem of VMC is generally NP-hard [28], and different 
methods have been proposed to its solution. Some of them are based on exact methods, 
such as; linear Programming [47, 48], dynamic programming [5, 15], and Constraint Satis-
faction Problems (CSP) [35, 49]. The problem of bin packing as greedy methods such as; 
First Fit Decreasing (FFD) [50], Best Fit Decreasing (BFD) [34], Modify Best Fit Decreas-
ing (MBFD) [51, 52]. Evolutionary methods such as the Genetic Algorithm (GA) [53], Ant 
Colony Optimization (ACO) [54], Particle Swarm Optimization (PSO) [55], etc. Which 
several studies with these algorithms to implement the VMC in CCSs presented in Sect. 2.

Our contributions to this work are as following:

1. Presenting a categorized overview of the criteria and objectives to VMC, which, high-
lighted these criteria used to evaluate existing literature.

2. Presenting a categorized overview of the algorithms to VMC and methods for VMC 
evaluation, which, highlighted their benefits and weaknesses.

3. Presenting challenges, open issues, and suggested future works.

In the following, in Sect. 2 of this paper, in several studies, the algorithms to implement 
the VMC in CCSs presented. The studied algorithms are of three types; exact methods, 
greedy methods, and evolutionary methods along with a variety of hardware and software 
criteria, in most of the studies, a tradeoff between energy consumption and QoS criteria in 
CCSs has been considered.

2  Related Works

In this section, the authors have presented comparative analysis and description of energy-
aware resource allocation algorithms and techniques for VMC in CCSs, which are used for 
making more energy-efficient VMs. Cloud computing has gained a wide range of atten-
tion in both industry and academics as cloud services offer a pay-per-use model, due to 
the increase in need of factors like reliability and computing results with immense growth 
in cloud-based companies along with a continuous expansion of their scale. However, the 
rise in cloud computing users can cause a negative impact on energy consumption in the 
CCSs as they consume a massive amount of overall energy. In order to minimize energy 
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consumption in the CCSs, researchers proposed various energy-efficient resources manage-
ment strategies. Dynamic VMC is one of the prominent techniques and an active research 
area in recent times, used to improve resource utilization and minimize the energy con-
sumption of CCSs. This technique monitors the CCSs utilization, identify overloaded, and 
underloaded PMs then migrate few/all VMs to other suitable PMs using VMs selection and 
VMs placement, and switch underloaded PMs to sleep mode.

This section discusses some papers that refer to the VMC; different methods and algo-
rithms have been proposed to solve it. In this section, a survey in several studies that pro-
vided the algorithms based on considered QoS metrics for the VMC is presented. These 
algorithms for implementation of VMC are divided into static and dynamic; however, 
dynamic VMC is more used. The studied algorithms are categorized into three types: exact 
methods, greedy methods, and evolutionary methods, along with a variety of hardware 
and software metrics. VMC algorithms have been considered in several studies as follows, 
which, in this studies reducing energy consumption is the main objective, but other metrics 
along with it must be considered. In other words, for overall efficiency in CCSs, it must 
be considered a tradeoff between metrics/objectives in VMC algorithms. In most of the 
studies, a tradeoff between energy consumption and other QoS metrics in CCSs has been 
considered.

The authors [5] presented an exact method as an Integer Linear Programming (ILP)—
based VMs placement method to find the best location of each PM in the CCSs based on 
its power consumption. The authors provided a way to reduce power consumption in the 
CCSs. Via this method, they tried to reduce the rotational airflow in cloud corridors con-
sidering the number of active PMs, the number of active shelves, and effect active PMs 
have on each other. The authors [7] presented the efficiency limitation of any given PM 
with VMs on it. If this limitation is met, it can lead to elevated resource efficiency, as PMs 
may not use enough resources to ensure that there is no kind of performance degrada-
tion. Thus, at first, this method obtains the extent of the negative impacts of VMs on each 
other, after which VMs are mounted on a PM. Accordingly, affinitive VMs and VMs that 
made each other’s performance least efficient were placed on a PM. Therefore, in addi-
tion to reducing energy consumption by VMC, the service could also be enhanced. In this 
research, to considering of VMs affinity to implement the VMC technique in CCSs empha-
sized. In [20], an exact algorithm called the “Markov model” was introduced, which estab-
lished a tradeoff between three parameters, including performance, cost, and reliability. 
Initially, this algorithm predicted the number of resources for the future and then turned on 
servers to boost performance even before they needed it. This algorithm also maximized 
power saving while minimizing the need for unresponsive sources. Also, to increase the 
reliability, the impact of PM’ ON–OFF was considered in the algorithm. In [28], a greedy 
algorithm based on the problem of constraint satisfaction for VMC was proposed. This 
article aimed to reduce the number of active PMs required and the number of migrations; 
But in this method, authors did not consider SLAv and the number of migrations metrics. 
A distributed Dynamic Virtual Machine Consolidation (DVMC) was introduced in [42], 
which, DVMC method, is the process of reducing the number of active PMs through live 
VMs migration to diminish energy consumption and improve resource utilization of PMs 
in CCSs. As well, this method cause diminishes energy consumption along with minimiz-
ing the number of VMs migrations and SLAv in CCSs. In [43], the location of VMs was 
chosen to reduce the amount of intra-cloud data center traffic as well as inter-cloud data 
center traffic along with reducing energy consumption in VMC. Clearly, with- increasing 
the distance inter VMs, the available bandwidth among them will decrease while the delay 
time of the applications will increase; thus, this might lead to service efficiency reduction.
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A distributed evolutionary method, Ant Colony Optimization System (ACOS) was 
introduced in [33]. In this research, a new algorithm based on ACOS to solve the VMC 
problem aims to save the energy consumption of CCSs. It significantly reduces the number 
of migrations and the active PMs that result in the reduction of total energy consumption 
of CCSs. In [56], the authors, an exact method as Energy and Thermal-Aware Schedul-
ing (ETAS) algorithm that dynamically consolidates VMs to minimize the overall energy 
consumption while proactively preventing hotspots. ETAS is designed to address the trade-
off between energy, hotspots, and SLAv. In [48], an exact method was proposed based 
on linear programming, which, the authors compared their method with different greedy 
methods and claimed that if they do not displace VMs whose necessary resources have not 
been changed, the number of migrations will be reduced. However, the number of required 
PMs will not change considerably. This algorithm was executed with and without control-
ling migration, and the results indicated that the number of migrations was reduced by 
this method, but the number of PMs did not show much increase. In [52], a centralized 
method was proposed based on greedy methods to solve the problem of VMC. They used 
the MBFD algorithm to determine the PM of VMs. This algorithm improvement in energy 
consumption and reduction in SLAv, the number of active PMs, and the amount of VMs 
migration. In [57], the main idea was to optimize the network and the relationship between 
VMs. The cost of the relationship between VMs was modeled as the product of the delay 
in the relation rate between the two VMs. In this method, only the network was consid-
ered, and SLA might have been violated because of not taking other resources such as the 
processor into account. Decreasing migration overhead leads to QoS. In [53], a dynamic 
evolutionary method was introduced based on the GA has been proposed for the VMC 
problem is used to reduce the search space of the VMC problem. The size of the search 
space of the VMC problem is determined by the number of PMs and VMs that need to 
be considered. This method, reducing the number of PMs and the number of VMs con-
tributes to the reduction of the number of VM migration. Also, an effective method for 
reducing power consumption. In [54] an evolutionary distributed algorithm based on the 
ACO algorithm called “ACO cloud” was introduced. In the method of the ACO cloud, 
there are lower and upper thresholds for the utilization of the resources. Every PM views 
the processor and memory utilization. When utilization of a resource becomes less than 
the lower threshold or exceeds the upper threshold, they should decide for migration. This 
decision-making is done by a Bernoulli trial. In case of having a successful Bernoulli trial, 
one of the VMs is selected for migration, and the request for migration is sent to the other 
PMs. PMs also perform a Bernoulli trial for accepting the VM. The probability of the suc-
cess of Bernoulli trials is dependent on the utilization of the resources, and changes due to 
its fluctuation. In the simulation, utilization of resources, energy consumption, and SLAv 
are considered as a metric. In [58], the authors an algorithm based on the greedy method 
provided. They used the FF and MBFD greedy algorithms to optimized VM to PM map-
ping. The authors propose a novel and effective greedy approach for VM allocation that 
can maximize the energy efficiency of the cloud. This approach can consolidate more 
VMs with fewer PMs to achieve better energy efficiency than popular methods. In [59], 
the authors introduced an evolutionary method, named VMs Placement Biogeography-
Based Optimization (VMPBBO). Their method constituted a sampling of migration and 
habitat of living creatures in the islands of the ocean. Each island can be the habitat for liv-
ing creatures. Habitat suitability index is measured by some parameters called Suitability 
Index Variables (SIV). These parameters reflect some variables, such as temperature, along 
with the weather condition on each island. Over time, these parameters changed and made 
living creatures migrate among the islands. These islands are within some archipelagoes. 
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Migration within the archipelago has low costs, while migrating between archipelagoes 
is costlier. In the algorithm of VMPBBO, each archipelago corresponds to a cluster, and 
each island corresponds to a PM. In the presented algorithm, VMs are positioned on the 
PMs with a greater habitation capability. In [60], a distributed method named V-MAN was 
introduced, in which each VM sends its utilization of resources to other PMs. All the PMs 
that receive the information have three options regarding their utilization of resources. The 
first option is to receive all the VMs positioned on the PM so that the machine will turn off. 
The second option is that it sends all of its VMs to the PM so that it turns off. The third 
option is not to participate in migration. In this method, the only resource considered is 
the CPU, while other resources, SLAv, and the number of migrations are not considered. 
In [29], the authors tried to determine VMs to PMs by considering the migration over-
head, so that migrations would have the minimum negative effect on its QoS. For example, 
because of the similarity in memory pages of VMs, all VMs with similar pages would be 
placed on the same PM. In [61], a greedy method was offered for placing VMs with com-
mon memory pages on a PM. The similarity between these programs can also lead to an 
algorithm trying to place VMs with similar practical programs in a PM. In [62], linear 
regression was used for predicting the utilization of the resources of VMs. The authors 
indicated in their experiments that VMs could be positioned on PMs via prediction. The 
results revealed that by using prediction, both energy consumption and SLAv would dimin-
ish. In [63], the authors proposed an evolutionary algorithm named Grey Wolf Optimiza-
tion (GWO) for VMs Placement (VMP) phase of VMC. This method reduces the number 
of active PMs, energy consumption, SLAv, the number of migration, and the more effi-
cient use of CPU and RAM resources. In [50], the authors introduced the thresholds policy 
for the utilization of resources, where the algorithms utilized the resources to lie between 
these two threshold ranges. The upper thresholds prevent the SLAv, while the lower ones 
prevent PMs from becoming idle. In [64], an algorithm based on threshold policy and an 
evolutionary algorithm as ACOS was introduced. Which, leverages (lower/upper) thresh-
olds of CPU utilization to identify the PM load status, VMC is triggered when the PM is 
overloaded or under-loaded. During VMC, the approach selects migration VMs and desti-
nation PMs simultaneously based on ACOS, utilizing various selection policies according 
to the PM load status. This method causes more optimization energy consumption, SLAv, 
performance, the number of migration, and the more efficient use of processor and memory 
resources. In [65], an evolutionary algorithm based on a GA named Improved Grouping 
Genetic Algorithm for VMC (IG2CA) in CCSs proposed. That it considers the metrics 
comprising hardware longevity, reliability, and power reduction in CCSs. This algorithm 
uses these parameters to find the best way to map from VMs on PMs. Finally, the mapping 
will be selected to have an optimal sum of these three parameters.

As well, in several studies on VMC in CCSs, reducing energy consumption along with 
other essential metrics in VMC considered. Such as; in [66] a fast evolutionary algorithm 
as Simulated Annealing based Resource Consolidation algorithm (SARC) for reducing 
energy consumption along with optimizes resource utilization in cloud comprising a mem-
ory, processor, and NBW was presented. In [56], a greedy method, using constraint-based 
multi-objective optimization, for reducing energy consumption along with optimizes SLAv, 
performance, and the more efficient use of CPU and RAM resources provided. In [39], 
a dynamic method, namely Energy and Thermal-Aware Scheduling (ETAS), for reducing 
energy consumption along with reducing SLAv and thermal, boost reliability and perfor-
mance provided. In [67], the authors presented an exact method as Mixed-Integer Linear 
Programming (MILP) for reducing energy consumption along with optimizing perfor-
mance. In [36], reducing energy consumption along with optimizes SLAv and performance 
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presented. In [55], an evolutionary method as the Modified Particle Swarm Optimization 
(MPSO) method for reducing energy consumption along with optimizes performance met-
rics presented. As well, the resource utilization of PMs comprising processor and storage 
was considered. In [68], the authors presented an algorithm as the ILP algorithm for reduc-
ing energy consumption along with optimizes SLAv and performance. In [69], an exact 
algorithm as the MILP algorithm for reducing energy consumption along with reducing 
SLAv, the number of migration, and the more efficient use of CPU resources provided.

In this research, contrary to the surveyed studies, a systematic review is presented with a 
category of different algorithms include: (exact method, heuristic methods, meta-heuristic 
methods), metrics and objective functions include: (energy consumption, efficiency, SLA 
violation, the operational and hardware cost, thermal, ON–OFF power cycles, hardware 
and resource utilization, NBW, cooling systems, migration execution time, VMs affinity, 
load balancing, the performance of services, the reliability of CCSs devices, and migra-
tion overhead) are considered on VMs consolidation methods. Also, contrary to the studied 
papers, an association of utilization rate of hardware resources (CPU, RAM, NBW, DISK) 
as hardware metrics and other important VMs consolidation metrics include: (migration 
overhead, SLA violation, VMs affinity, load balancing) as software metrics are considered 
in VMs consolidation methods.

The rest of this research is organized as follows: Basic concepts are presented in Sect. 3. 
Section 4 presents the selection process based on a systematic survey. A VMs consolida-
tion taxonomy is discussed in Sect. 5. Challenges and technical issues in VMC are pre-
sented in Sect. 6. Finally, the conclusion and future work are presented in Sect. 7.

3  Basic Concepts

In this section, some essential items, such as virtualization, VMC, SLA, and VMs migra-
tion, which is necessary for this study, are briefly presented.

3.1  Virtualization

Virtualization has turned out to be a key asset in many areas of information technology. 
Cloud computing is generally based on the concept called virtualization. In computing, 
virtualization refers to the creation of a virtual version to any device or resource, such as a 
server, operating system, storage device, or network, which means the framework divides 
a resource into multiple execution environments. Virtualization plays an essential role 
in organizing and managing access to the pool of resources employing a software layer 
termed as a Virtual Machine Monitor (VMM) or hypervisor. For higher-level applications, 
it hides the details of the physical resources and only provides virtualized resources.

Furthermore, it virtualizes the entire resources of a given PMs, allowing several VMs in 
it to share its resources. Microsoft hyper-v, Xen, ESX, oracle virtual box, and kernel-based 
KVM, are some of the popular virtualization software. One main advantage of virtualiza-
tion is that it allows the opportunity of assigning multiple VMs into a single PM using a 
technique referred to VMC. It also provides a capability called VM live migration, i.e., the 
ability to relocate a VM from one PM to the other PM, nearly with a zero downtime. The 
hypervisor is a software layer between the PM and Operating System. It avoids applica-
tion privacy violations by running a few VMs on PM in an isolated secure environment 
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to achieve the SLA in the cloud. In simulations, XEN and KVM are used more frequently 
[16].

Virtualization provides many benefits, as follows:

1. The feasibility of running multiple PMs and providing multiple services simultaneously 
by a PM.

2. Optimizing the efficiency of PM resources and reducing the number of active PMs in 
CCSs.

3. The possibility of live migration of VMs to PMs with minimum service downtime mak-
ing it feasible to respond quickly to the load changes of CCSs.

4. The ability to change the number of resources assigned to VMs dynamically and without 
interrupting services.

3.2  VMC

The VMC section comprising two subsection background and system architecture of VMC 
described in detail.

3.2.1  Background of VMC

A practical VMC framework constitutes algorithms that resolve three subproblems/steps as 
following.

1. PMs Detection: a decision when to start a VM migration;
2. VMs Selection: a selection of which VMs to migrate;
3. VMs Placement: a selection of PMs for placement;

that is explained in the following. The VMC steps Shown in Fig. 1.

1. PMs Detection

In this step as when to migrate VMs, the amount load of PM is detected by applying 
the over-loaded/under-loaded detection algorithms. Generally, all algorithms in this step 
are exact methods. These algorithms are comprising; Static/Dynamic Threshold (ST/DT), 
Median Absolute Deviation (MAD), Inter Quartile Range (IQR), Local Regression (LR), 
Robust Local Regression (LRR) and Markov [70]. This step is provided to reduce the 
power consumption, minimizing performance degradation due to migration, load balanc-
ing, minimizing SLA violation, and simultaneously fulfilling the required QoS by over-
loaded/under-loaded PM detection techniques. Also, machine learning approaches such as 
KNN, ANN, SVM, and RF can be used for load prediction in PMs, in cases where it is 
necessary to predict a load of PMs in the CCSs [1].

2. VMs Selection

VMs Selection as which VM(s) to migrate is once it has been decided that a PM is over-
loaded, the next step is to select particular VMs to migrate from this PM. The policies for 
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VM selection can be various. These policies are applied iteratively, after a selection of a 
VM to migrate. The PM is rechecked for being overloaded; if it is still considered as being 
overloaded, the VM selection policy is applied again to select another VM to migrate from 
the PM. This is repeated until the PM is considered as being not overloaded. So, VM selec-
tion is used to select a particular VM to migrate from PM to another PM. There are some 
policies for VMs selection as following [1, 61, 71]:

1. The Random Choice (RC) Policy: randomly selects the VMs to migrate.
2. The Minimum Utilization (MU) Policy: selects those VMs that have the lowest usage 

of CPU.

PMs 
Detection

The VMC 
steps

ST/DT

VMs
Placement

Statistical and exact
method

Grerdy method

Evolutionary

VMs 
Selection

MAD

IQR

LR & LRR

Random

MU

MMT

MM

Markov

Fig. 1  The VMC steps
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3. The Minimum Migration Time (MMT) Policy: This policy migrates a VM that requires 
the minimum time to complete a migration compared to other VMs.

4. The Highest Potential Growth (HPG) Policy: When the upper threshold is violated, 
policy migrates VMs that have the lowest usage of the CPU relative to the CPU capacity 
defined by the VM parameters in order to minimize the potential increase of the PMs’ 
utilization and prevent a SLAv.

5. The Minimization of Migration(MM) Policy: The MM policy selects the minimum 
number of VMs needed to migrate from a PM with lower CPU utilization below the 
upper utilization threshold if the upper utilization threshold is violated. In this policy, 
only CPU utilization is considered.

3. VMs Placement

VMs placement as to where to migrate selects the target PMs at which VM has to place 
after migration. We choose the most power-efficient PM for VM placement with the condi-
tion that it becomes not overloaded after migration. In many previous articles, the exact 
method [20–23], greedy [28, 42, 43], and evolutionary [44, 51, 66] for this section of VMC 
have been used.

3.2.2  Architecture of VMC

The architecture of VMC is portrayed in Fig. 2 that comprises three phases as follows.

PMs 
Detection 
(Phase1)

VM1  VM2   VM3    VM4 VM5 VM6 VM7 VM8            VM9

PM1 …                                                PM2 … PM3 PM4

Over -loaded PMs Moderate-loaded PMs                           Under- loaded PMs

VMs
Selection
(Phase2)

Source PMs
PM1
PM3
PM4

Target PMs

PM 2
PM 2

Target VMs

VM 3
VM 8

VMs
Placement
(Phase3)

VM1 VM2    VM4 VM5 VM3 VM6 VM7 VM8                                            VM9

PM1                                   PM2 PM3    PM4

Balance-loaded      Balance-loaded Shut down Under- loaded 

Fig. 2  The VMC architecture
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1. Before VMC.
2. During VMC.
3. After VMC.
1. Before VMC.

In phase 1, as PMs Detection, based on the resources utilization level, such as CPU 
of PMs, the PMs Detection algorithm detects three types; over-loaded PM such as PM1, 
moderate-loaded PM such as PM2, and under-loaded PM such as PM3. On one side, PMs 
at over-loaded status can easily cause high SLA violations. On the other side, under-loaded 
PMs, which still need to remain alive, increase unnecessary energy costs. Therefore, if no 
VMC strategy is interposed to the inefficient usage of computing resources, then much 
extra energy will be wasted, as well as lower QoS.

2. During VMC.

In phase 2, as VMs Selection, the procedure of VMC can be comprised of three steps: 
step (1) Source PMs Selection such as PM1and PM3; step (2) Target VMs selection such 
as VM3 and VM8; step (3) Target PMs selection such as PM2. In step (1), a set of PMs is 
selected for VMs to migrate out. This step takes all the PMs and VMs as input and selects 
one or more PM(s) as the source PM named PM1, PM3. In step(2), one or more VM(s) 
such as VM3 and VM8 are selected from a source PMs for migration. Over-loaded VMs 
of Over-loaded PMs such as VM3 along with VMs of Under-loaded PMs such as VM8 
migrate to Moderate-loaded PMs such as PM2.

Migration of the VMs from under-loaded PMs does not require a policy because all 
VMs must be migrated If the destination PM has the necessary capacity, but, for selecting 
a VMs from over-loaded PMs, an appropriate policy must be adopted. In step(3), a PM is 
selected to hold the selected VMs from step 2.

3. After VMC.

In phase C, as VMs Placement, after adding VMC strategy, there are only three PMs 
that are alive in the system, most of them are at balance-loaded status, which causes further 
decreases in SLA violation and causes high QoS. In addition, the under-loaded PMs such 
as PM 3 is shut down, which cause further decreases in energy consumption. As well as, 
utilization of resources of PMs close to optimum utilization point for most active PMs and 
other PMs are shut down, which are portrayed in Fig. 1. In Fig. 1, it is assumed, the desti-
nation PM hasn,t the necessary capacity for VM9, or there is no suitable PM for it, there-
fore not migrate out. While, if VM9 was migrated, it causes more improvement in balance 
degree, utilization resources, energy consumption.

Finally, most PMs are Balanced, and unloaded PMs have been turned off. Therefore, 
this architecture causes a tradeoff between energy consumption and other QoS requirement 
in CCSs.

3.2.3  Description of the Methodology of VMC

When a low workload is imposed on modern computers, their electric power is equal to a 
large percentage of their maximum electricity consumption. For this reason, the low utili-
zation of data centers leads to energy waste. The maximum capacity of resources should be 
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used to reduce power consumption. VMs with a lower load can be dislocated to other PMs, 
while source PMs are turned off to reduce power consumption in CCSs. This method is 
called VMC methodology [16, 72]. The migration, from overload PM for the obligation of 
providing high QoS to customers and the migration from under load PM for the less energy 
consumption in CCSs.

VMC methodology deals with four categories [61] as following.

1. Identifying when a PM can be considered as overloaded, then migrate one or more 
available VMs present in this PM to other active or reactivated hosts to avoid SLAv.

2. Identifying when a PM can be considered as underloaded, then migrate all the available 
VMs present in this PM and switch it to sleep mode.

3. Selecting the VMs that need to be migrated from an overloaded PM.
4. Placing the VMs which are selected for migration from both overloaded and underloaded 

PMs on other active or reactivated PMs.

So, VMC methodology is divided into four subproblems, i.e., four categories of algo-
rithms (each category represents a class of algorithm) as following:

1. PMs overload detection.
2. PMs underload detection.
3. VMs selection.
4. VMs placement. Algorithm for this subproblem can be designed separately to obtain 

close to an optimal solution which ensures a reduced energy consumption of the active 
hosts and minimum SLAv.

Finally, VMC methodology comprising two basic approaches: (1) migrating VMs from 
overloaded PMs to avoid performance reduction and SLAs violation, and (2) migrating 
VMs from underloaded PMs to optimize utilization of resources and energy consump-
tion with minimizing active PMs. Therefore, inappropriate VMC may lead to performance 
reduction when an application encounters an increasing demand resulting in an unexpected 
rise in resource usage. Therefore, the cloud provider has to tradeoff between energy con-
sumption and QoS criteria [36]. So far, various techniques and methods have been pro-
posed for VMC implementation. Many metrics are considered in the presentation of these 
algorithms and are effective in making decisions; all or many of these metrics can be con-
sidered in VMC. So, each method has its objectives. Some of these metrics have direct 
or indirect effects on each other, but consideration of each of the metrics as the primary 
purpose can lead to different results [73]. The problem of VMC should be regarded as an 
optimization problem. There are various resources in PMs, and their utilization should be 
maximized to reduce electricity consumption. In VMC algorithms, the positioning of VMs 
on the hosts and the necessary resources for each VM is considered as input, while the new 
positioning of VMs on the hosts is computed as output [28]. The primary resources in this 
regard include CPUs, main memories, as well as network and storage devices. If only the 
processor is considered, for the problem of VMs consolidation, the problem of bin packing 
can be used. Consideration of several resources converts this problem to a problem of bin 
packing and adds to the complexity of the problem [59].

The infrastructure of a cloud is composed of different hardware components. The energy 
consumption of these components of hardware follows different patterns. Nevertheless, in 
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general, their energy consumption is divided into static and proportional parts. Energy con-
sumption of the machine in idle times is called static energy consumption. As utilization 
grows, the energy consumed by the machine also increases. This part of the energy con-
sumption, which is proportional to the energy consumption of the machine is called pro-
portional energy consumption. Generally, VMC methods for static energy consumption are 
considered [49]. The total electric energy consumption of PMs’ resources in the CCSs is 
dependent on CPU, RAM, BW, and DISK. However, there are plenty of surveys indicating 
that the CPU of PMs consumes more electric energy than the other resources of PMs, and 
the power consumption and processor utilization have linear relation. A power model for 
energy consumption defined in formula (1) as follows:

where Pmax is the maximum power consumed when the PM is fully utilized; k is the frac-
tion of power consumed by the idle server (i.e. 70%), and U is the CPU utilization [61]. 
Minimizing of energy consumption of cloud is one of the objectives is in the VMC. How-
ever, a tradeoff between energy consumption and other QoS metrics(software and hard-
ware metrics) in CCSs has been considered. Hardware metrics means the quality of the 
utilization of resources comprising CPU, RAM, BW, and DISK. Software metrics means 
the quality of performance, SLAv, load balancing, thermal and heating, cooling, migration 
overhead, reliability, and the ON–OFF cycle of PMs in CCSs.

3.3  VMs Migration

VMs migration means the migration of VM(s) from a PM as source PM to other PM as tar-
get PM along with the best new configuration from the point of view energy consumption, 
resource utilization, and other QoS in CCSs [16]. Taxonomy of the VMs migration Shown 
in Fig. 3.

VMs migration methods are used in cloud applications and constitute the basis of VMC. 
Load balancing, SLAv, VMs affinity, and migration overhead, resource utilization, migra-
tion time, numbers of migration are amongst the essential metrics to be considered in VMs 
migration [74]. Which must be a tradeoff between these criteria, for example, minimizing; 
migration time, numbers of migration, energy consumption, and SLAv vice versa maxi-
mizing, load balancing, and resource utilization. Although, with the migration of a large 
number of VMs, consequently active PMs and energy consumption decreases, vice versa, 
the SLAv may be increased. Also, if the migration time of VMs is long, it will cause an 
interruption in customer service and SLAv. As a result, the cloud provider must pay the 
penalty for SLAv [26].

3.3.1  VMs Migration Metrics

The essential metrics in VMs migration are comprising load balancing, SLAv, migration 
overhead, VMs affinity, and migration time defined as following [16, 75].

1. Load balancing Services are balanced onto PMs by algorithms, and all resource of PMs 
utilization comprising CPU, RAM, BW, and DISK, are balanced.

2. SLAv Providing services in case of conflict against the agreement between the cloud 
provider and their customers of the cloud.

(1)P(u) = k ⋅ Pmax + (1 − k) ⋅ Pmax ⋅ U
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3. Migration overhead Some of the criteria harm QoS, such as disproportionate time of 
migration execution time or the number of migration.

4. VMs affinity It refers to the correlation between VMs, as well as the VMs, which depend 
on each other for executing service.

5. Migration time that migration time is the time necessary for transferring a VM from a 
PM source to a PM destination.

3.3.2  VMs Migration Pattern

VMs migration is comprising: (1) live VMs migration and (2) non-live VMs migration, 
defined as follows.

1. Live VMs migration patterns do not suspend application services during VMs migration 
and support the running applications during VMs migration time without interruption 
or minimal interruption. In contrast, in non-live VMs migration methods, application 
services during VMs migration time suspend [16, 76]. Live VMs migration patterns 
comprising; pre-copy [49, 77, 78], post-copy [79, 80], and hybrid [31, 81–83]. In the 
pre-copy method, VM memory pages are iteratively copied until some suitable termina-
tion criterion is deduced. In the post-copy method, the captured minimum state (CPU 
and I/O state) is transferred to the destination PM, where the application serves at the 
destination PM; then, the rest of the memory pages and resources are transferred. The 
hybrid method combines the features and benefits of both (pre and post) copy methods to 
optimize VMs migration mechanism. In comparison to the post-copy method, a hybrid 
method exploits bounded pre-copy rounds to identify and transfer VM working-set to 
mitigate the magnitude of the network I/O pages’ faults. After completing bounded 

live VMs 
migration pattern

VMs 
migration 
pattern

Pre-copy

Hybrid

Post-copy

non-live VMs  
migration pattern

Process domain

Internet suspend 
resume

Fig. 3  Taxonomy of the VMs migration
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pre-copy rounds, the post-copy method transfers VM minimum state to the destination 
PM to resume VM [81–84].

2. Non-live VMs migration patterns do not resume the VM until the VMs are not entirely 
transferred to the destination PM. In this method, during VM migration, the migrant 
application services are stopped. Further, non-live VMs migration patterns comprising 
the Process Domain and Internet Suspend Resume. This method predicates execution 
migration time and guarantees transfer VM memory pages exactly once during the VMs 
migration phase [25, 75, 85].

3.4  SLAv

The SLA is the contract between the cloud provider and its customers of the cloud. SLAv 
in resources level, as the ratio of unallocated resources demanded by applications and the 
total requested resources. The unallocated resource can be calculated as the difference 
between the requested resource of all VMs and the actual allocated resources. Further, 
SLA is agreed upon based on several metrics such as service uptime, delay, response time, 
throughput, and the service fail rate. Uncontrolled migrations, long time migration, and 
lack of resources are the main reasons for the SLAv. Cloud providers must be pay penalties 
to the customer for the SLAv [16].

In addition, to reduce the SLAv; the resources of PMs for users sufficient, Uncontrolled 
migrations, and migration time must be at least. Live migration has a negative impact on 
the performance of applications running in a VM during a migration. Therefore uncon-
trolled migrations must be at least. The average performance degradation, including the 
downtime, can be estimated as approximately 10% of the CPU utilization [1]. This means 
that each migration may cause some SLAv; therefore, it is crucial to minimize the number 
of VM migrations and the length time of live migration. The length time of a live migra-
tion depends on the total amount of RAM used by the VM and available NBW. Therefore, 
migration time is the time necessary for transferring a VM from a PM source to a PM 
destination. Migration time is calculated as the amount of available RAM divided by avail-
able spare network bandwidth (NBW) for PM. Migration time (mt) of a VMi defined in 
formula(2) as fallowing [70].

where RAMi is the amount of RAM currently utilized by VMi and NETj is the spare NBW 
of PMj . Which, to the prevention of performance degradation, must be migration time at 
least. Therefore, migration time and the numbers of migration both are the cost of VMs 
live migration, there may cause some SLAv and should be least. The essential metrics in 
SLAv are comprising (1) SLATAP and (2) PDM defined as following [1].

1. SLA violation Time per Active PM (SLATAP) The percentage of the time, during which 
active PMs have experienced the CPU utilization of PM 100%.

2. Performance Degradation due to Migrations (PDM) The overall performance degrada-
tion by VMs due to migrations.

In addition, migration time and the numbers of migration are two main parameters 
for calculating to PDM. The reasoning behind the SLATAP is the observation that if 
a PM serving applications are experiencing 100% utilization, the performance of the 
applications is bounded by the PM capacity. Therefore, VMs are not being provided 

(2)mt
VMi

= RAMi∕NETj
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with the required performance level. Finally, the overall SLAv of cloud infrastructure 
can be captured by combining both of these SLATAP and PDM, defined in formula (3) 
as follows:

4  Papers’ Selection Process

This section is the process of selecting the papers for the systematic survey in two steps: 
(1) Search based on keywords, and (2) selection papers based on the title, abstract, qual-
ity of the publisher, and detailed review of papers.

4.1  Search Based on Keywords

The searching context involves VMC and VMs migration, in data centers and CCSs 
papers. The search process is based on electronic searching methods by considering syn-
onyms of the keywords, the following search string was designed: [(“virtual machines 
migration”) OR (“VMs migration”) OR (“virtual machines consolidation”) OR (“server 
consolidation”) OR (“VMs consolidation”)] AND [(“cloud”) OR (“data-center”)], based 
on online databases, like following famous scientific databases. Table  1 reports these 
scientific databases used for the automatic search.

This systematic research attempts to respond to the following Technical Questions 
(TQ) according to the proposed systematic research:

• TQ1: What is the trend of studies published in VMC?
• TQ2: What are the software metrics, hardware metrics, and objectives of VMC?
• TQ3: How (exact, greedy, evolutionary) VMC algorithms are analyzed?
• TQ4: What are the evaluation methods and workload data for VMC?
• TQ5: What are the open issues and challenges in VMC?

101 papers were found using the systematic survey. Figure 4 depicts the distribution 
of these papers published from 2011 to 2019. The number of published papers in 2019 
was the highest. Note that the trend of studies published in VMC has a growing trend.

(3)SLAv = SLATAP × PDM

Table 1  Scientific databases used 
for the automatic search

Num. Electronic databases and 
search engine

Electronic address

1 Google Scholar schol ar.googl e.com
2 Wiley onlin elibr ary.wiley .com
3 Science Direct www.scien cedir ect.com
4 ACM digital library dl.acm.org
5 Springer link.sprin ger.com
6 MDPI www.mdpi.com
7 IEEE ieeex plore .ieee.org

http://scholar.google.com
http://onlinelibrary.wiley.com
http://www.sciencedirect.com
http://dl.acm.org
http://springerlink.bibliotecabuap.elogim.com
http://www.mdpi.com
http://ieeexplore.ieee.org
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4.2  Selection Papers Based on the Title, Abstract, Quality of the Publisher, 
and Detailed Review of Papers

In selection papers, we removed all book reviews, white papers, and non-related sub-
ject matters; we excluded 14 conference articles that were not indexed in the scientific 
organization, 21 not-peer-reviewed papers, and 17 papers not in the Institute of Electri-
cal and Electronics Engineers (IEEE), Springer, Association for Computing Machinery 
(ACM), Multidisciplinary Digital Publishing Institute (MDPI), Wiley and well- known 
conferences. Then, we chose only 14 conference articles that were indexed in the IEEE 
proceedings, Springer, ACM, and articles belonging to well-known conferences, plus 35 
peer-reviewed articles indexed in the ISI or Scopus, which were considered for further 
analysis. Overall, 49 research papers were provided. Figure 5 indicates the percentage 
of journal and conference papers. Figure 6 illustrates the percentage of the distribution 
of the journal papers(the distribution of the journal papers according to some famous 
publishers such as Elsevier, IEEE, Springer, MDPI, ACM, Wiley). In this figure, more 
articles have been published by Elsevier. Finally, Fig. 7 indicates the selection process 
of articles.
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5  A Taxonomy of VMC

Answer to TQ1: This section exhibits the taxonomy and a review of state-of-the-art arti-
cles of VMC. A comparison is also made on the existing taxonomy based on the criteria 
from the technical and relevant literature. This taxonomy comprising; basic concepts of 
VMC, resource assignment policy, VMC architecture, VMC phases, metric types, main 
objectives, optimization algorithms, evaluation method in VMC, as portrayed in Fig. 8. 
This research includes a survey of different VMs migration models, which includes two 
categories comprising; live VMs migration and non-live VMs migration. Further, VMC 
methods include two categories of static and dynamic methods based on the policy for 
dividing the resource assignment. Some several metrics are considered in the taxonomy. 
Metrics considered to achieve the objectives effectively as decreasing power consump-
tion are presented in Tables 2. Optimization approaches used for solving the VMC in 
CCSs, comprising; statistical and exact, greedy, and evolutionary methods presented in 
Tables 3, 4, and 5.

Another essential aspect that should be classified is the data set and the evaluation 
methods. Data set include synthesis and real data sets. The evaluation methods com-
prise simulation, implementation, hybrid (simulation and implementation), and formal 
methods.

Springer
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IEEE
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32%
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25%
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4% Springer

ACM

IEEE
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Fig. 6  Percentage of articles by publishers
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Finally, the VMC architecture, involving centralized and distributed architecture. Also, 
the hybrid architecture (the combination of centralized and distributed architecture) can be 
used in VMC.

5.1  Resource Assignment Policy in VMC

VMC based on resource assignment policy can be done by two methods comprising; (1) 
static method and (2) dynamic method, which defined as following.

1. Static VMC method VMC method is an efficient approach, which is used by CCSs to 
improve resource utilization and minimize the energy consumption of the cloud. The 
VMC process is especially essential when there are unpredictable customer workloads 
that need to be revisited often. Whenever a change occurs in customer demand, the 
required VMs can be resized and relocated to other PMs according to the demand. This 
consolidation process can either be performed in one step by making use of the peak 
load demands of each customer workload then configure VM capacities accordingly. 
By using the peak load demand utilization, it guarantees that it avoids overloading of 
VMs. However, since the workloads have a chance of presenting any variable demand 
patterns, it may lead to the idleness of VMs. This approach is known as static VMC. In 
this type of consolidation, VMs are placed in a PMs, and no VM migration takes place, 
so the VMs remain in the same PM during their entire lifetime [36].

2. Dynamic VMC method In dynamic VMC is periodically re-evaluating the workload 
demand of each VM and performing the appropriate configuration changes. Since it 
dynamically changes VM capacities depending on the current workload demands, this 
approach results with better consolidation. This is known as dynamic VMC; in this type 
of consolidation, VMs are placed into PMs, and if the necessity occurs, the VMs can 
be migrated to other PMs. In other words, this method continuously re-configures the 
VMs based on the workload demanded. So, this algorithm has greater flexibility and 
efficiency versus a static algorithm [27].

The VMC metrics in some papers are listed in Tables  2. The mentioned metrics are 
included performance, cooling systems, reliability, ON–OFF power cycles, and thermal/
heating. Studies’ goal is to achieve the decreasing energy consumption, but in these stud-
ies, several mentioned metrics have been covered, and some are not covered (those that are 
left blank). The covered metrics in these tables as advantages and while not covered met-
rics (those that are left blank) are as disadvantages of these studies. In other words, because 
these metrics are effective and essential in VMC, consider them are as the advantages vice 
versa the lack of consideration (those that are left blank) as the disadvantages of these stud-
ies. Metrics definition with detail in Sect. 5.2 presented.

5.2  Metrics and Objectives in VMC

Answer to TQ2: VMC metrics and objectives have overlap in many cases. It is assumed 
that the metrics are independent variables while the objectives are dependent variables; 
therefore, the objectives can be a result of a combination of two or more metrics. So, 
optimization of the metrics can also cause the optimization of the objectives. In other 
words, to implement the VMC algorithms for reducing power consumption as the main 
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objective, other software metrics and hardware metrics with it must be considered for a 
holistic approach. Taxonomy of the VMs metrics Shown in Fig. 9.

Software metrics of VMC comprising performance, thermal, cooling systems, reli-
ability, ON–OFF power cycles, SLAv, VMs affinity, load balancing, and migration over-
head. Hardware metrics of VMC comprising as resource utilization of PMs in terms of 
CPU, RAM, NBW, and HDD. On the other hand, minimizing: migration execution time, 
active host,  CO2 emission, Thermal, ON–OFF cycles, and maximizing: load balancing, 
performance, resource utilization of PMs in terms of CPU, RAM, NBW, and HDD are 
amongst metrics to VMC algorithms. Figure 8 shows a taxonomy of the VMC metrics. 
Figure 10 and 11 respectively illustrate the percentage related to each software metrics 
and hardware metrics for VMC algorithm in the studied papers.

The essential software metrics and hardware metrics, which, along with energy 
reduction as the main objective of VMC, must be considered. It defined as following:

Hardware metrics

VMC metrics

CPU

NBW

RAM

Software metrics

Thermal /Tempreture

Load balance

DISK

Cooling

ON-OFF cycle

Performance

Relability

SLA violation

VMs affinity

Migration 
overhead

Fig. 9  Taxonomy of the VMC metrics
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1. Thermal/Heating and ON–OFF power cycles High temperatures can lead to several 
problems such as diminished system reliability and availability, shortened hardware 
lifespan, a continuous increase in operational and hardware costs, as well as SLAv and 
their penalty. To keep the system components within their safe operating temperature 
and prevent failures and crashes, the emitted heat must be dissipated. These PM’ ON–
OFF power cycles are known as the essential factor of the average residual time of a 
storage failure [21, 39, 40].

2. Cooling The cooling system is one of the most widely used devices in CCSs. Minimiz-
ing their usage can optimally reduce energy consumption. Recent research suggests 
that about 50% of the energy consumption of CCSs is related to its cooling equipment. 
Hence, by optimizing the cloud data center’s performance, the energy consumption of 
the cooling system can be reduced, ultimately resulting in diminished CCSs energy 
consumption [5, 38].

3. Performance One of the metrics contributing to the diminished efficiency of a PM is 
inter-VM performance degradation of VMs located on a PM. Virtualization does not 
provide a guarantee for separating the efficiency among different VMs that work on a 

Cooling
6% Thermal& ON-

OFF
7%Migra	on  

overhead
9%

SLAv  
13%

VMs affinity
5%

Load balancing
24%

Performance
36%

Cooling

Thermal& ON-OFF

Migra	on  overhead

SLAv

VMs affinity

Load balancing

Performance

Fig. 10  Percentage of each software metrics of VMs consolidation considered in the studied papers

CPU
42%

CPU&BW
21%

CPU&RAM
16%

CPU&BW&RAM
12%

All resources
9%

CPU

CPU&BW

CPU&RAM

CPU&BW&RAM

All resources

Fig. 11  Percentage of each hardware metrics of VMs consolidation considered in the studied papers
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server. Therefore, while VMs store a series of resources, their simultaneous execution 
on PMs might cause competition and performance interference [34].

4. Reliability VMC can harm the longevity of the cloud PMs. VMC methods try to mount 
the data centers’ VMs on a fewer number of PMs and turn off the idle PMs, which is 
mainly because the capacity of these inactive PMs may be required again in the future. 
Therefore, more PMs are needed for restarting and placing some VMs on them. This turn 
ON–OFF cycles can harm hardware lifetime [40]. Meanwhile, VMC dramatically raises 
resource efficiency, which will increase the PM temperature. This, in turn, can reduce 
the reliability and longevity of PMs. Reduction of the lifespan will result in hardware 
errors, which will reduce the reliability of services [21].

5. Hardware utilization Resources utilization of PM are comprising CPU, RAM, NBW, 
and HDD as hardware metrics of VMC method [32]. The authors [36], only considered 
the CPU for the VMC algorithm. In [49], the authors considered both CPU and RAM as 
metrics. Finally, the authors [65], considered all CPU, RAM, NBW, and HDD resources. 
In [23, 43, 66], the authors considered the NBW for the VMC algorithm. The amount 
of traffic flow on the network and the extent of inter-VMs communication are the most 
influential factors for the QoS and services performance. Also, in batch processing, the 
prolongation of the communication time between two elements can increase the runtime 
of tasks, thereby augmenting the energy consumption.

5.3  Architectures in VMC

VMC architecture is consists of centralized and distributed. Centralized VMC Architecture 
is prone to Single Failure Point (SFP). It is unreliable, while the distributed architecture 
approach makes the cloud more scalable and extensible as there is no risk of an SFP [74]. 
A combination of centralized and distributed architectures as hybrid architecture is also 
practical. These architectures are used to Optimization methods in VMC, but distributed 
architecture more used.

5.4  Optimization Methods in VMC

Answer to TQ3: Optimization methods for VMC comprising three categories comprising 
(1) statistical/exact methods, (2) greedy methods, and 3)evolutionary methods [9, 56]. Fig-
ure 12 illustrates the percentage of each optimization method of VMC considered in the 
studied papers. As well, the taxonomy of the Optimization methods in VMC Shown in 
Fig. 13.

Exact methods guarantee an optimal solution for problem-solving. This approach is 
suitable for solving the problem that belongs to the class P or the NP-hard problems 
with (n) size [28]. Generally, greedy methods and evolutionary methods are used for 
problem-solving. Considered metrics of optimization methods in VMC, which, men-
tioned in the Tables  3, 4 and 5 include; the resources utilization of PMs comprising 
RAM, CPU, NBW, and HDD as hardware metrics, and metrics are comprising; migra-
tion overhead (time of migration and the number of migration), SLAv, VMs affinity, and 
load balancing as software metrics presented. Main objectives, in all of the studies, this 
section is the reducing power consumption with VMC algorithms, but in these studies, 
several mentioned metrics have been covered as an advantage, and some are not covered 
(those that are left blank) as the disadvantage of the research approach. In other words, 
because these metrics are effective and essential in VMC, considering them are as the 
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advantages vice versa, the lack of consideration (those that are left blank) as the disad-
vantages of these studies. These three category algorithms defined as following.

1. Statistical and exact method At that, mathematical modeling and then optimal algo-
rithms are designed for the solution. These algorithms can solve and obtain the exact 
answer for small-sized. Linear programming [48], dynamic programming [15], and 
Constraint Satisfaction Problems (CSP) [49] are among the most widely used methods 
for problem-solving in optimal VMC of CCSs in mathematical or statistical methods. 
Table 3 presents several studies that have used exact methods, which covered metrics 
as an advantage and not covered metrics (those that are left blank) as a disadvantage of 
the research approach.

2. The greedy method is an NP-hard optimization and multi-dimensional bin packing prob-
lem and has demonstrated high performance for solving NP-hard problems [52]. Greedy 
methods are problem-dependent methods which do guarantee to find the optimal solu-
tion; instead of finding a global optimum, they might find optimal local results. Also, 
these methods try to find a near-optimal solution within optimal time. In this method, 
greedy algorithms such as FFD [50], BFD [34], and MBFD [52] have been utilized. 
Table 4 presents several studies that have used greedy methods, which covered metrics 
as an advantage and not covered metrics (those that are left blank) as a disadvantage of 
the research approach.

3. The evolutionary method is an approximate optimization approach used for solving 
optimization problems in VMC. Unlike greedy methods, these methods guarantee to 
find a global optimal point. Indeed, evolutionary methods are practical approaches for 
finding optimal or near-optimal solutions for problem-solving and generally need more 
time for problem-solving in comparison with greedy methods [53]. Amongst the evo-
lutionary methods, the GA [41, 53], ACO [54], and PSO [55] can be observed. Table 5 
presents several studies that have used evolutionary methods, which covered metrics 
as an advantage and not covered metrics (those that are left blank) as a disadvantage of 
the research approach.

Sta�s�cal and 
Exact 
20%

Greedy
45%

Evolu�onary
35% Sta�s�cal and Exact

Greedy

 Evolu�onary

Fig. 12  Percentage of each optimization method of VMC considered in the studied papers
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5.5  Evaluation Methods and Data Set of VMC

Answer to TQ4: a dataset for VMC is comprising; synthetic data set, real data set, and 
hybrid data set. Indeed, a hybrid data set is a combination of synthetic and real data sets. 
These are instant data for evaluating the proposed algorithms.VMC evaluation is one of the 
main challenges in the cloud. The VMC evaluation has been classified comprising: imple-
mentation, simulation, hybrid (both implementation and simulation), and formal methods. 
Figure 14 illustrates the percentage of evaluating methods used in studied papers.

The complexity of cloud processes and user interactions in cloud environments is 
progressively increasing with the advancement of technology. Therefore, simulation and 
implementation methods have not been suitable and effective approaches for evaluating 
complex CCSs. Accordingly, because of the high complexity of the VMC problem, as the 
operations in a cloud system are real-time, the formal method is very suitable for evalu-
ation in the cloud, such as VMC in the cloud. Thus, the formal methods can be used to 
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Optimizaton methods
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Evolutionary

GA
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ACO

MPSO

Greedy

Dynamic Programming

Regrision

Constraint Satisfaction 
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FFD

BFD
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Fig. 13  Taxonomy of the Optimization methods in VMC
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precisely evaluate the cloud, and particularly evaluating the functional properties of CCSs. 
Formal methods have been categorized into three disciplines; process algebra [93, 94], 
model checking [95], and theorem proving [96, 97], which have been used in the assess-
ment of many specific systems cloud.

Several studies in cloud comprising security [98–100], big data [101, 102], task sched-
uling [103], migration overhead [104], mobile computing [105], service composition [106] 
have been conducted for evaluation of open research issues and challenges via formal 
methods. Table 6 reports the data set and simulation tools used in the reviewed papers. In 
most studied papers, the planet lab was used as the data set platform [107]. As well, the 
taxonomy of the formal methods in VMC Shown in Fig. 15.

6  Challenges and Technical Issues in VMC

Answer to TQ5: the VMC comprising; Problem definition and optimal algorithms for 
problem-solving.

Implementa�on
21%

Simula�on
72%

Hybrid
7%

Implementa�on
Simula�on
Hybrid

Fig. 14  Percentage of evaluating methods used in papers

Table 6  Workload dataset and 
evaluating tools used in studied 
researches

Data set(Synthesis data, Real data) Simulation tools

Amazon Open stack
Amazon EC2 Cloud SIM
Spree-commerce Peer SIM
TB-berlin Green cloud
Bit brains EMU SIM
Specjbb-TPC MDS SIM
Specjms-TPC Cloud analyst
Lamp benchmark Open nebula
Net-prof-UDP Snoose
Post mask Cloud SIM toolkits
Google cluster Network cloud SIM
Spectweb2005bank
Planet lab/Co Mon project
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Problem definition in VMC Most of the research in VMC has focused mainly on a 
few constraints, such as the utilization of CPU infrastructure resources in CCSs, which 
are not comprehensive approaches to capture all infrastructure resources of PMs and 
types of equipment in the cloud. Implementation of VMs consolidation while consider-
ing all resources of PMs in CCSs needs more efficient and optimal solutions.

Storages must be considered in the VMC of CCSs. In some CCSs, centralized storage 
devices have been used, such as storage area network (SAN), while in some CCSs, dis-
tributed storage devices have been employed, including storage on PMs. Two methods 
reflect different behaviors in the context of power consumption for running the VMC. 
As well, BW and distance between the PMs, the homogeneity/non-homogeneity of the 
VMs and PMs, the Inter-correlation between the VMs and the correlation between the 
VMs and PMs in VMC are considerable. As well, the coefficient between the VMs and 
resources of PM in VMC is considerable.

Process algebra

Formal  methods

Theorem proving

Temporal  
behavior

Pi-calcules

Functional 
behavior

Model checking

Homomorphic
proof

Property
proof

Polynomial  time
proof

State -based

Action -based

Fig. 15  Taxonomy of the formal methods in VMC
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Although all VMC metrics and objectives are essential, some of them are in contrast 
to each other. For example, maximizing resource utilization is in contrast to minimizing 
thermal rise through cooling devices. Thermal and ON–OFF power cycles are in contrast 
to reliability, service availability, hardware cost, and hardware longevity. A load balanc-
ing degree is in contrast to the resource utilization rate and power consumption. There-
fore, VMC approaches should combine multiple objectives for satisfying the objective 
final. Combine multiple objectives, it is possible to cause the increasing complexity of 
problem-solving.

In addition, big data, mobile computing, application performance, storage type, BW, 
resource utilization rate, SLAv evaluation, migration time, the number of migration, task 
scheduling, service composition, and security are open research issues and challenges of 
VMC in CCSs.

Problem-solving in VMC With the growth of online services, the expansion and com-
plexity of CCSs inevitably exert more pressure on VMC algorithms to provide scalability 
in CCSs. Therefore, there is an increasing need for techniques that are distributed, dynamic, 
hierarchical, exact, and quick in VMC. Some significant research challenges about VMC 
are: How to effectively combine different optimal algorithms? Can hierarchal techniques, 
greedy algorithms, evolutionary algorithms, and hybrid algorithms help in this regard? 
What are the functional criteria and non-functional criteria in VMC? How the functional 
criteria and non-functional criteria in VMC can be evaluated? What is the optimal time for 
running the algorithms? How can parallel algorithms be used for speeding up the runtime 
of algorithms? How can distribute, dynamic and scalable algorithms be utilized for the 
complexity of problem-solving in VMC? How can the formal method be used to evaluate 
VMC?

7  Conclusion and Future work

This research is presented with a systematic review of the VMC methods in the cloud. 
A systematic technique was used for optimal searches, and 49 relevant papers in VMC 
were selected. Also, the taxonomy for VMC, including; VMC phases, VMC methods in 
terms of decision time, migration patterns, criteria and objectives, optimization algorithms, 
architectures, data set, and evaluation methods for VMC, were presented. Besides, the soft-
ware metrics in VMC include thermal and ON-OFF power cycles, cooling systems, perfor-
mance, reliability, resource utilization, listed according to Tables 2 in some of the previous 
works by two methods of static VMC and dynamic VMC were stated.

VMC phases comprising: (1) PMs detection, (2) VMs selection, and (3) VMs placement 
and the necessary algorithms for all three phases are explained with detail. The necessary 
algorithms and policies are comprising three disciplines exact method, greedy method, and 
evolutionary method.

VMC is considered an essential technique for resolving the tradeoff between energy 
consumption and QoS metrics in the cloud. VMC has various metrics, objectives, and dif-
ferent algorithms. The variability of the metrics and algorithms can result in a variety of 
objectives. VMC is one of the open issues in CCSs, such as its evaluation. Evaluation of 
proposed VMC techniques in CCSs has been mainly done with simulation and implemen-
tation or hybrid (simulation and implementation together). Rarely, the formal method has 
been used in the cloud, while, because of the high complexity and real-time operations in 
the cloud system, the formal method is very suitable for the evaluation of cloud, such as 
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VMC in the cloud system. Therefore, research on formal methods for modeling, evaluat-
ing, and verifying the approaches of VMC and other cloud terms, especially functional 
properties of algorithms in VMC.

Note that cloud providers may need to manage trade-off of energy consumption, QoS, 
and SLAv through the penalty of SLAv and to develop a comprehensive solution by com-
bining several allocation techniques with different objectives for VMC algorithm in the 
cloud. In addition, the determination of the threshold for resource utilization of the PMs is 
an essential solution for the VMC algorithm, then greedy and evolutionary algorithms used 
for VMs placement. Therefore, research for approaches of determining upper/lower thresh-
old points for utilization of the PMs for VMC, greedy, and evolutionary algorithms used 
for VMs placement in CCSs was suggested. They would mainly involve the dynamic deter-
mination of the upper/lower threshold for all resources of PMs comprising CPU, RAM, 
NBW, HDD, etc. Finally, the lack of resources in PMs and uncontrolled migration of VMs 
cause a SLAv in the cloud, which is an essential issue to consider. Therefore, cloud provid-
ers have to tradeoff between energy consumption and QoS criteria, especially SLAv.
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