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Abstract

Vehicular ad-hoc networks (VANETS) present security vulnerabilities, which make them
prone to diverse cyberattacks. Denial of Service (DoS) is one of the most prevalent and
severe cyberattack that targets VANETS. To tackle this cyberattack and mitigate its effect,
intrusion detection systems need to be developed. To this end, a realistic and representative
dataset is essential to train and validate the systems. This paper proposes a new dataset,
VDoS-LRS, which includes legitimate and simulated vehicular network traffic, along
with different types of DoS cyberattack. We also present a realistic testbed environment
instead of simulators, taking into consideration different environments (urban, highway and
rural). In addition, we explore a wide range of traffic features for detecting and classifying
vehicular traffic. We evaluate the reliability of the VDoS-LRS dataset using different
machine learning algorithms for forensics purposes. The experimental results showed
that it is possible to detect effectively different types of DoS cyberattack within diverse
environments.

Keywords ITS - VANET - DoS - Intrusion detection - Network flow - Network forensics

1 Introduction

Intelligent transportation systems (ITS) designate the application of new information and
communication technologies in the transport and logistics fields. ITS integrate sensor,
control, information and communication technologies to improve road traffic efficiency
and safety. Vehicular Ad hoc Networks VANETs are a key part of the ITS framework.
Sometimes, VANETS are referred as Intelligent Transportation Networks. Communication
between vehicles can be ensured by three modes of communication. The first mode is the
Vehicle-to-Vehicle (V2V) communication, which consists on a direct exchange between
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communicating entities [1]. The second mode is the Vehicle-to-Infrastructure (V2I)
communication, which requires that each information exchanged between two nodes
must have passed through a previously installed infrastructure. The third mode combines
both previous modes V2V and V2I [2]. The main objective of this communication is to
provide a range of application that can be divided into two categories, Security-related
applications, such as cooperative collision warning [V-V], intersection collision warning,
approaching emergency vehicle, and work zone warning [R—V]) [3]. Moreover, comfort-
related applications, such as electronic toll collection, data transfer, parking lot payment,
and traffic information [4]. These applications help to increase transportation safety and
efficiency and to improve driving conditions for drivers and passengers to make our
roads safer [5]. However, these applications raise privacy and security concerns, which
significantly threaten the network operation and the user data.

Intrusion detection system based on machine learning (IDS-ML) is one of the known
approaches to be effective to protect network against cyberattacks [6]. Based on a
classification model, the IDS analyzes a network flow of data packets to check whether
there is a suspicious activity in the network, and eventually a cyberattack. Since the
effectiveness of the IDS depends on the classification model, it is worthwhile to train
the classifier on an realistic and representative network traffic traces dataset that covers a
variety of normal and attack samples. However, to the best of our knowledge, such dataset
has not been produced for vehicular networks so far. The existing datasets [6—10] contain
network traffic traces generated and captured by simulators, which may not be realistic and
representative of real environment traffic traces. Therefore, intrusion detection systems
trained based on these datasets may not perform effectively in real environment. In this
paper, we generate a new vehicular network traffic traces dataset, VDoS-LRS, which
contains real network traffic, and diverse types of denial of service cyberattack. We create
a realistic testbed environment which considers different types of environment (urban,
highway and rural). In addition, we explore a wide range of traffic features for detecting
and classifying vehicular traffic. We evaluate the reliability of the VDoS-LRS dataset using
different machine learning algorithms for forensics purposes. To be specific, the main
contributions of this paper are as follows:

e A new realistic DoS dataset for vehicular networks available upon request, with a
detailed description of testbed design and configuration.

e We evaluate the performance evaluation of network forensic methods, based on
machine learning algorithms using VDoS-LRS dataset.

The rest of the paper is structured as follows. The literature review of the paper is
discussed in Sect. 2. In Sect. 3, we present in details the testbed used to create VDoS-
LRS dataset. Section 4 presents the machine learning algorithms used for the classification
process. In Sect. 5, we present and discuss experimental results. Section 6 concludes the
paper and draws some line for future work.

2 Background and Related Work

This section describes DoS attack scenarios in VANETS networks. Additionally, it outlines
the limits of the proposed testbeds and datasets in the literature.
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2.1 Denial of Service in Vehicular Networks

In the field of computer security, several descriptions of Denial of Service (DoS) attack can
be found. It has been defined by Hasrouny et al. [11] as the attack where “the attacker target
the communication medium to cause a channel jam”. DoS is easy to perform, it targets the
system’s availability to disable users from accessing to the network. Broadly speaking, DoS
attacks can be divided into three types: volume based attack (which saturate the bandwidth
of the attacked site like UDP-Flood), protocol based attack (which consumes actual server
resources like SYN-Flood) and application layer attack (comprised of seemingly legitimate
and innocent requests like Slowloris attack). Quyoom et al. [12] investigated different DoS
scenarios in the context of vehicular networks. DoS attack in vehicular networks can target
vehicle resources, roadside Units (RSU), and communication channels.
For example, if a normal vehicle attempts to start a TCP connection with an RSU:

e The vehicle ask the establishment of the connection by sending a SYN (synchronize)
message.
The RSU respond to the vehicle by sending back a SYN-ACK message.
The vehicle send him back an ACK, and the exchange operation can start.

In the case of SYN-Flood (Fig. 1), the malicious vehicle does not respond to the
RSU with an ACK, which will push the RSU to wait for the ACK some time to avoid
network congestion. Depending on the number of request sent by the attacker, the RSU
will be temporarily unavailable to communicate with legitimate vehicles. The attacker can
also jams the channel, in a way that vehicles would not be able to access the channel and
communicate.

2.2 Existing Network Datasets

There have been many researches in the literature [6—10, 13-20] to protect vehicular networks
against cyberattack. Most of them are based on machine learning techniques. Which need
datasets for analysing network flows, and modelling normal and malicious network traffic.
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Fig.1 SYN-Flood in VANET scenario
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There have been several datasets containing network traffic, e.g., KDD99 [21], CAIDA
datasets [22], NSL-KDD [23], ISCX [24], CICDS2017 [25], UNSW-NB15 [26], which have
been used by researchers on intrusion detection and forensic analytics. All the aforementioned
datasets lack the inclusion of vehicular traffic data, which make them unusable in the vehicular
context.

Although some recent researches [6, 7, 9, 10, 18] have produced synthetic vehicular
network datasets for intrusion detection purpose, the development of realistic vehicular
network traffic dataset that includes vehicular scenarios is still an unexplored topic. The most
recent testbeds and datasets are briefly explained below, with a comparison between them and
VDoS-LRS given in Table 1.

Singh et al. [9, 10] proposed a machine learning based approach to detect Wormhole
attack in VANETSs. For the production of the dataset, they used NS3 simulator [27], which
uses the mobility traces generated by the SUMO traffic simulator. They used forty vehicles
in the testbed with multi-hop communication using AODV routing protocol. However, in the
simulation scenario, it is supposed that all vehicles moved with the same speed during the
entire simulation time (15 m/s), which is unrealistic in the vehicular context. Moreover, the
duration of the simulation is too short (400 s) to reflect a real vehicular activity.

Alheeti et al. [7] proposed a ML-based IDS to detect grey hole and rushing attacks in a
vehicular networks. For the classification, they used SVM and Feed Forward Neural Networks
(FFNN). The dataset used to train the IDS was extracted from a trace file generated through
simulation. The authors did not provide details about testbed configuration, which makes their
simulation difficult to re-product. Grover et al. [8] proposed ML-based approach to classify
the node’s behaviour, i.e. whether the communicating nodes in the vehicular network is honest
or malicious. They tested different classification algorithms: Naive Bayes, IBK, J-48, Random
Forest and Ada Boost. However, the proposed IDS has been trained on a network traces dataset
collected from simulation using NCTUns-5.0 simulator [28]. In addition, the simulation
parameters do not reflect real environment, 6 km area and 2000s simulation duration. Lyamin
et al. [18] proposed a data-mining-based approach for real-time detection of radio jamming
denial-of-service attacks in the IEEE 802.11p vehicle-to-vehicle (V2V) communications.
However, the proposed system was trained statistically for short training sequences of 5 and
100 s, which seems not enough to train an IDS and cover multiple scenarios of radio jamming
attack.

Belenko et al. [6] tried to develop a method and a tool to generate close-to-reality datasets
for intrusion detection in vehicular networks. The network traces dataset was generated using
NS-3 simulator, and includes different types of attacks.

It is worthwhile to see that none of the aforementioned: Belenko et al. [6], Singh et al.
[9, 10], Grover et al. [8], and Alheeti et al. [7] researches in the literature used real network
traces for the training of the ML-IDS. Knowing that training an IDS with data extracted from
a simulator may not be reliable, realistic and representative of vehicular network properties
related to real environment. In light of foregoing, this research aims to design a real vehicular
network traffic dataset to give a dimension of reliability to our research for detecting DoS
attack in the vehicular networks.
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Fig.2 Workflow of DoS detec-
tion process
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Fig.3 Testbed environment of the new VDoS-LRS dataset

3 Dataset Generation
In this section, we present in details the followed steps to generate our dataset: testbed

configuration, features extraction, data pre-processing and features selection as shown in
Fig. 2.

3.1 The Proposed Testbed

The testbed was made in Annaba, Algeria, we have used: two vehicles, 3 physical
machines, 4 virtual machines, 2 access points, 4G modem and 2 Cisco antennas were used
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as shown in Fig. 3. Due to resources constraint, we have used two vehicles with multiple
virtual machines. The two vehicles (Fig. 4a) were connected in V2V mode using IEEE
802.11G network provided by two AIR-AP1231G-E-K9 access points (Fig. 4b). The
access points were connected with two antennas for coverage extension (Sharkee GPSB—
Fig. 4d—and Cisco AIR-ANT1949 Antennas—Fig. 4c). This network configuration
provides the connection between the two physical machines (Dell computer with an Intel®
Pentium® 3558U @ 1.70 GHz 1.70 GHz processor in the first vehicle and Dell computer
with Intel® Core i5-4200 U CPU @ 1.60 GHz 2.30 GHz in the second vehicle).

The first machine runs Windows 8 operating system with two network interfaces
(Ethernet interface with 192.168.0.3 IP address and Wi-Fi interface with 192.168.8.101
IP address). The second machine runs Windows 7 operating system with IP address
192.168.0.5. Using the Oracle VM virtual Box tool, the first machine executes another
Linux system with IP address 192.168.0.4, and the second physical machine (in the second
vehicle) executes 3 others virtual machines with following three IP addresses 192.168.0.6,
192.168.0.7, 192.168.0.8, which run the Kali-Linux distrubtion as the operating system.
The three Kali machines represent attackers whose machines execute a different type of
DoS attack. The other three machines including two victims.

As shown in Fig. 3, for malicious traffic, the three Kali-Linux machines (in the second
vehicle) run a DoS attack taking as a targets the two victim machines (in the first vehicle)
with UDP Flood, SYN Flood and Slowloris packets alternately. For benign traffic, we
tried to simulate different VANETS services. For example, for the exchange of security
information and collaborations between nodes in VANETS, we used packet sender [29],
a traffic generator software, which sends UDP, TCP and SSL packets to multiple clients
simultaneously. For file sharing between benign nodes, we made a file share using Server
Message Block (SMB) protocol that operates as an application layer or presentation-layer
network protocol. We also considered common user activities such as access to Google
Maps, YouTube, social networks, and real-time applications such as video and audio calls.
For data collection, we used another Windows 7 physical machine, which runs a network

Fig.4 Equipments used in the
testbed
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traffic analyse called the Wireshark [30]. The experimentation has been conducted within
three different environments: urban, rural, and highway. The generated traffic has been
stored as pcap files.

We named the produced dataset “VDoS-LRS”, which stands for Vehicular Denial
of Service-Networks and Systems Laboratory. The dataset contains normal and DoS
malicious traffic. VDoS-LRS took into account three types of DoS attack. SYN Flood
exploits vulnerabilities in TCP protocol; it consists on a massive sending of SYN requests
to the vehicle. The goal of this attack is to make the vehicle unavailable for legitimate
vehicles by exhausting its resources. UDP Flood, which represent the volume-based
category, in which the attacker overwhelms random ports on the targeted host with IP
packets containing UDP datagrams. The receiving sends back a “Destination Unreachable”
packet. As more and more UDP packets are received and answered, the system becomes
overwhelmed and unresponsive to other clients. Slowloris, which represent the DoS attacks
on the application layers. It can take down another machine with minimal bandwidth and
side effects on unrelated services and ports, by keeping many connections to the target
opened and hold them open as long as possible (Using uncompleted HTTP request).

In our testbed, we take in consideration the VANETS intrinsic characteristics. Three
diverse environments have been considered: urban, highway, and rural. Each environment
has its own characteristics. For example, the availability of network coverage in rural
environment is not as good as the urban environment. Regarding the vehicle speed,
we consider the recommended speeds in each environments (average speed in urban
environment 40 km/h, 90 km/h in highway and 30 km/h in rural environment).

3.2 Features Extraction

After collecting the network traffic (as PCAP files) corresponding to the three environments
(urban, rural, highway), we extract a set of 79 network features (see Table 2). To extract
features we use CICFlowMeter [31], a network traffic flow generator distributed by the
Canadien Institut for Cybersecurity (CIC). It generates bidirectional flows, where the first
packet determines the forward (source to destination) and backward (destination to source)
directions. Note that TCP flows are usually terminated upon connection teardown (by FIN
packet) while UDP flows are terminated by a flow timeout. The flow timeout value can be
assigned arbitrarily by the individual scheme e.g., 600 s for both TCP and UDP.

We consider the same five categories of network features as Lashkari et al. [32], which
are based on behaviour, bytes, packets, time, and flow. The behaviour-based features
(Table 2. [1]) are used to evaluate an object based on its intended actions before it can
execute that behaviour. For example, if a connection lasts for a long time, this behaviour
may be a behaviour of a DoS attack. The bytes and packets based features (Table 2 [2-13])
are used to count the number of bytes/packets exchanged. The bytes/packets based features
allow the detection of large and abnormal traffic increase, which is symptomatic of DoS
attacks. In addition, the time taken between the transmission of the packets in a DoS attack
is too short (especially TCP Flood and UDP Flood), for this reason, the time-based features
can be revealing of DoS attacks (Table 2 [14-17]). Moreover, the flow data features
(Table 2 [18-24]) are like packet-based features but with reduced storage space. Instead
of on working on packets, we work on a flow of packets. We do not consider source and
destination IP addresses and ports, because attackers can change them easily. Furthermore,
it may mislead the classification model and prevent it from accurately analyse the rest of
the features.
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3.3 Data Pre-processing and Features Selection

For the data pre-processing step, we did the cleaning and the normalization of data.
To check missing values and deal with them, we used one of the python programming
language function named Dropna(). Dropna removes a row or a column from a
dataframe, which has a NaN or no values in it. Moreover, to deal with the huge
differences between magnitude, units, and range in the generated dataset, we used the
feature scaling. The feature scaling aims to put all the values in the dataset between 0
and 1, in order to make the features more consistent with each other and to makes the
training step less sensitive to this problem. To apply this technique on our dataset, we
used from the sklearn library in python the StandardScaler function.

We have used in this research two types of feature selection algorithms. The first one
is Forward selection [33], which belongs to the wrappers class. Forward selection is
an iterative algorithm that starts with an empty set of feature. In each iteration, it adds
the best feature that improves the model until the addition of a new feature does not
improve the performance of the model. Forward feature selection algorithm has reduced
the number of features from 79 to 10 features as shown in Table 3.

The second features selection algorithm is the Linear Support Vector Classifier
LinearSVC [34], which belongs to the embedded features selection algorithms.
LinearSVC is an algorithm that gives to each feature a coef\_ or feature\_importances\_
attribute. All the features are considered unimportant at the beginning and it gives them
values under a threshold parameter. After that, it uses built-in heuristics for finding the
threshold of every feature using a string argument. LinearSVC has reduced the number
of features from 79 to 25 as shown in Table 3.

The best results were achieved when using the subset of features giving by the
LinearSVC (as shown in the results section).

Table 3 The selected features

Forward selection features set

LinearSVC features set

Common features set

Protocol; Flow Duration

Flow IAT Mean; IAT Max Flow
Flow IAT Min; Len Bwd Header
Len Fwd Header; Syn Flag Cnt

Down/Up Ratio; Init Bwd Win Byts

Protocol; Tot Fwd Pkts

Tot Bdw Pkts; TotLen Fwd Pkts
TotLen Bwd Pkts; Fwd IAT Std
Bwd IAT tot; Bwd IAT Max
Bwd IAT Min; Fwd Header Len
Bwd Header Len; Fwd Pkts/s
Bwd Pkts/s; Pkt Len Max

Pkt Len Var; Syn Flag Cnt

Ack Flag Cnt; Down/Up Ratio
Pkt Size Avg; Subflow Fwd Pkts

Subflow Fwd Byts; Subflow Bwd

Pkts
Subflow Bwd Byts

Init Fwd Win Byts; Init Bwd win

Byts

Protocol; Bwd Header Len

Fwd Header Len; Syn Flag Cnt

Down/Up Ratio; Init Bwd Win
Byts
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4 Classification Algorithms

In this section, we briefly present the machine learning algorithms used in our experimentation.
We have used the following algorithms for their known efficiency and classification
performances: naive Bayes, support vector machine, k-nearest neighbour (KNN), Random
Forest and decision trees.

e Naive Bayes Algorithm

An algorithm based on probabilities. A sample probabilistic classifier t, it assumes that
given the contest of a class. The attributes of an example are independent of each other.
Usually also found under the name of “Naive Bayes assumption”. It is based on the theory
of Bayes; where the classifier calculates a posteriori probabilities of a class using estimates
obtained from a training set if labelled data. In addition, when a new data point is presented
for classification the a posteriori probability is calculated for each class, then the example is
assigned to the class with the largest posteriori probability [35].

P(x|c) * P(c)
P(x)
P(c|x) = P(x1]|c) = P(x2|c) * .. * P(xn|c) * P(c)

P(clx) =

P(clx) is the posterior probability of class (target) given predictor (attribute).
P(c) is the prior probability of class.

P(xlc) is the likelihood, which is the probability of predictor given class.
P(x) is the prior probability of predictor.

e Support Vector Machine(SVM)

Algorithms widely used for supervised classification problems, the overall idea and
essential key for this classification technique is to find a hyperplane that allows to distinctly
classifying data points [36]. Algorithmically, we try to build boundaries between instances of
the data set, to transform the original feature space, and separate it by a linear function. This
requires a nonlinear separation. To achieve this, SVM algorithms benefits from the concept of
distance to find the best margins and the new separation in the new feature space.

e K-Nearest Neighbour

The k-nearest neighbours algorithm (k-NN) is a non-parametric method used for
classification and regression [37]. The decision rule in KNN classification is very simple.
It works based on minimum distance from the query instance to the training samples to
determine the K-nearest neighbours. After gathering the K nearest neighbours, it take simple
majority of these K-nearest neighbours to be the prediction of the query instance. Formally:

score(D, Ci) = Z Dj € KNN(d)Sim(D, Dj)y(Dj, Ci)

Above, KNN(d) indicates the set of K-nearest neighbours of the query instance
D s y(Dj, Ci) with respect to class Ci, which is:
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. .. _ [l DjecCi

For test document d, it should be assigned the class that has the highest resulting
weighted sum.

e Decision Trees

The concept of this algorithm is to split the data set given a criterion that maximizes the
separation of data. The results in a tree like structure [38]. A more simplified idea of the
decision tree algorithm is that it breaks down the data set into smaller subsets, at the same
time an associated decision tree is incrementally developed, each decision node has two
or more branches and the leaf node represents a decision (label of class). There are couple
of algorithms to build a decision tree, CART (Classification and Regression Trees) that
uses Gini Index (Classification) as metric. Moreover, the one used in this paper, which is
ID3 (Iterative Dichotomiser 3) that uses Entropy function and Information gain as metrics.
To create a tree, we need to have a root node, which will be the node with the highest
information gain in ID3. In order to define information gain precisely, we begin by defining
a measure commonly used in information theory, called entropy that characterizes the (im)
purity of an arbitrary collection of examples. Entropy function H(S) can be represented
formally as follow:

H(s) = ) —P(c) * log2P(c)

ceC

S—The current data set for which entropy is being calculated.

C—Set of classes in S.

P(c)—the proportion of the number of elements in class c to the number of elements in
set S.

e Random Forest

Random forest, like its name implies, consists of a large number of individual decision
trees that operate as an ensemble. Each individual tree in the random forest spits out a class
prediction and the class with the most votes becomes our model’s prediction.

In this paper, we used the mentioned algorithms above with the defaults parameters,
except with the SVM. For it, we used a nonlinear kernel named the Radial Basis Function
(rbf), because it is well in practice and relatively ease for calibrate, as opposed to other
kernels.

5 Results and Discussion

In this section, we present and discuss the results of DoS attack detection through two
experiments. In the first experiment, we perform binary classification (attack/normal).
The second experiment aims to identify the type of the DoS attack (SYN-flood,
Slowloris, and UDP-flood). Tables 4 and 5 present samples distribution corresponding
respectively to binary and multiclass classification. For both experiences, we have tested
several configurations with different sets of network features: (1) the initial features set;
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Table 4 Dataset samples
distribution for binary
classification Nb % Nb % Nb %

Samples Highway Rural Urban

Benign 26,480 6.51 9807 3.66 9679 6.30
Malicious 380,002 93.49 257,943 96.34 143,895 93.70

Total 406,482 100 267,750 100 153,574 100

Table 5 Dataset samples .

distribution for multiclass Samples Highway Rural Urban

classification Nb % Nb % Nb %
Benign 26,480 6.51 9807 3.66 9679 6.30
SYN-Flood 157,802 38.82 114,943 4292 81,188 52.86
Slowloris 1057 0.26 2187 0.81 274 0.17
UDP-Flood 221,143 5440 140,813 52.59 62,433  40.65
Total 406,482 100 267,750 100 153,574 100

(2) forward selection features set; (3) linearSVC features set; and (4) the common set of
features between forward selection and linearSVC. We have used 60% of the dataset for
training and 40% for testing.

To evaluate the performances of the proposed DoS detection appraoch, we used the fol-
lowing performance metrics:

e Accuracy: the ratio of number of correct predictions to the total number of input
samples:

TP + TN
TP + FP+ TN + FN

Accuracy =

TP: true positive; TN: True negative; FP: false positive; FN: false negative.
e Precision: represents the proportion of the relevant items among all the items proposed:

TP

Precision = ————
TP + FP

e Recall: is the fraction of relevant instances that have been retrieved over the total
amount of relevant instances:

TP

Recall = ————
TP + FN

e F1 score: is defined as the harmonic mean between precision and recall. It is used as a
statistical measure to rate performance:

2(precision * recall)

1 — score =
f precision + recall

e False positive rate (FPR) is the proportion of all negatives that still yield positive test
outcomes:
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FP

FPR = ——
TN + FP

e False negative rate (FNR): is the proportion of positives that yield negative test
outcomes with the test:

FN

FNR = ———
TP + FN

5.1 Experiment 1: Binary Classification

In this experiment, we evaluate the performance of the classifier on classifying a network
connection as legitimate or a DoS attack. The classification performances corresponding
to the three types of environment (highway, rural, and urban) are presented respectively
in Tables 6, 7 and 8. For each environment, we present the classification performances
corresponding to the initial features set, and the best set of selected features.

Broadly speaking, the experimental results show that the tree-based algorithms yield the
best classification performances within the three types of environment. Decision tree and
random forest are known for their high accuracy and stability. On the other hand, the Naive
Bayes algorithm performs worse than the other considered algorithms, showing the highest
false positive rates. We can see that features selection has slightly affected the performance
of decision tree and SVM, by increasing their false positive and negative rates in the case
of highway environment. Which is not the case in rural and urban environment, and not the
case of the other classification algorithms.

The decision tree classifier yields the best accuracy with the lowest false positive and
negative rates in the highway environment.

Whereas, the random forest algorithm outperforms all the other classifiers in the rural
and urban environment. The random forest algorithm with the best set of features performs
better than with the initial features set. This is mainly due to the fact that in some cases
some features might be noisy, redundant and irrelevant, which may mislead the algorithm.

From the obtained results, we can see that the detection precision of malicious traffic
was slightly better than the normal traffic. This can be explained by the huge volume
of superfluous requests sent by the attacker; the size and the time between packets are
completely different from a normal connection. The classification accuracy has been
slightly dropped in the highway environment; this may be due to the high speed of vehicles.

From these experiments, we notice that the environment slightly affect the feasibility of
denial of service attack in the vehicular context and its detection performances.

5.2 Experiment 2: Multiclass Classification

As in binary classification, the tree-based algorithms show the best classification
performances, with similar accuracy scores. However, the decision tree outperforms
the random forest in terms of false positive and negatives rates in highway and urban
environment. Random forest achieved its best performances with the the LinearSVC
selected features set. The Naive Bayes gives the worst results with the lowest accuracy
score and the highest false positive and negative rates within the three environment and
with both features sets. As we can notice, the environment slightly influences the feasibility
of denial of service attack and its detection performances (Tables 9, 10, 11).
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Regarding the detection precision of each attack type, we can notice that SYN-Flood
and UDP-Flood attacks are relatively easier to detect than the Slowloris attack by all the
classifiers. This can be explained by the fact that the Slowloris modus operandi is quite
different from the others DoS attacks. Slowloris requires minimal bandwidth and does
not flood the server. Periodically, the attacker sends subsequent headers for each request,
but never completes it. In contrast to SYN-Flood and UDP-Flood attacks, which requires
maximum bandwidth. Those differences make the Slowloris DoS harder to detect
compared to SYN-Flood and UDP-Flood.

6 Conclusion

In this paper, we proposed a new dataset, VDoS-LRS, which includes normal vehicular
ad hoc network traffic, and various types of denial of service attacks traffic. This dataset
was generated and labelled based on a realistic testbed, which takes into consideration
three types of environments (urban, rural and highway). To characterize network flows,
we extracted from the raw network traffic traces a set of eighty features related to
session behaviour, exchanged bytes/packets, and time intervals. Then we carried out
feature selection to obtain the best set of features, before the training and testing phase.
Afterwards, we evaluate the performances of the initial and selected feature sets with five
common machine-learning algorithms. The experimental results showed that the decision
tree classifier yields the highest accuracy with the lowest false positive and negative rates
within the three environments. The detection system based on this classifier would be able
to detect DoS attack in VANET as well as its types with an accuracy of 99%. We observed
that the environment slightly affects the feasibility and detection performances of DoS
attack. In the highway environment, the classifier needs all the features to give the same
performances as in the other environments. In future work, we will consider more denial of
service scenarios along with other attacks in VANETs. In addition, we plan to extend our
testbed to include more vehicles.
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