
Vol.:(0123456789)

Wireless Personal Communications (2020) 114:3507–3539
https://doi.org/10.1007/s11277-020-07545-2

1 3

Fault Administration by Load Balancing in Distributed SDN
Controller: A Review

Gaurang Lakhani1 · Amit Kothari2

Published online: 10 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Tremendous amount of data generated due to increasing no of users every day in the tech-
nology world. It is difficult to manage huge amount of discrete data with the traditional net-
work. Even it is difficult to manage with technologies such as, big data, cloud computing in
traditional network. Software Defined Networking (SDN) brings all the functionalities to a
single location and making centralized decision. Controllers are the main entity of the SDN
design, which governs decisions while routing packets. Centralized decision increases per-
formance of the network. Distributed SDN controllers are physically distributed and logi-
cally centralized. Through this paper, we presented basics of distributed SDN controllers
with its properties, studied classification of SDN controllers vide their logical design (hier-
archical/flat model), programming language, adaptability, application domain etc. We cate-
gorize fault management issues in management plane, control plane and infrastructure plane
and their interface. Paper will be concentrated on the faults generated through overloading
of the controllers. As a solution switch migration technique will be derived. Provide detail
discussion on prior work done in switch migration techniques for fault management through
load balancing in distributed controllers. At last addition of fault management plane will be
proposed in the SDN stack for generating robust distributed SDN controller.

Keywords Software defined networking · Fault management · Resiliency · Fault detection ·
Fault prevention · Fault recovery · Failure · Survivability

1 Introduction

SDN separated control sense from its underlying hardware and its centralism is software
based controllers. In Multiple controller environment they are physically distributed, logi-
cally centralized. It generates issues like scalability, reliability, availability, consistency,
security etc.

 * Gaurang Lakhani
 gvlakhani1@gmail.com

 Amit Kothari
 amitdkothari@gmail.com

1 Gujarat Technological University, Ahmedabad, Gujarat, India
2 Accenture, Pune, India

http://orcid.org/0000-0002-0570-175X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-020-07545-2&domain=pdf

3508 G. Lakhani, A. Kothari

1 3

SDN structure shadows top-down coherently centralized network control, SDN control-
ler with SDN application installed can handled all the switches in the network. By this mid-
way control network handled proficiently and respond the dynamic incident spontaneously.

This logical centralization managed by single and distributed SDN controller. All the
switches are handled by one SDN controller in single SDN controller. But scalability and
robustness issues arise in single SDN controller.

1.1 Scalability Issue

In general, scalability refers to the ability of the network to scale and control high amount
of traffic, In SDN, the scalability reflects the capacity of SDN controller in handling multi-
ple path forwarding requests from switches. SDN controller has inadequate sources when
conduct high amount of requests. To resolve the problem many investigators bound the for-
warding path request sent to SDN controller [1–3]. It will intelligence to the switches and
violating the concept of SDN.

1.2 Robustness Issue

Single point failure in single SDN controller resulted failure of the network. All the
switches will be failed and cannot forward new packets. Eventually whole network will be
down. Investigator concentrate on openflow-hybrid [4] to convert openflow switch to tradi-
tional switch, when it fails to connect to the SDN controller.

Figure 1 exhibit example of several SDN controllers works individually in routing pack-
ets through several domains. The Packet-In message is sent to ask the forwarding path from
the SDN controller. The Flow-Mod message is forwarded to install the forwarding path to
the switches.

Distributed SDN controller helps to solve above issues. In general multiple controllers
are used to share the workload of the network. On crash of the controller, another controller
take possession. Few concepts from the distributed system are adopted for it.

Figure 1 shows two different SDN controllers. Each of them manages a network part
called network domain. c1 manages switches of domain1, similarly c2 manages switches
of domain2. Now suppose h1 wants to send few packets to h2. As packets reaches to s1,
s1 desires for a forwarding path from c1 via openflow packet-in message. Once forward-
ing path received, it will send the packet to s2. Similarly when packet reaches at s3, s3
wants the promoting path from c2 and eventually packet arrived at h2. Here two SDN

Fig. 1 Multiple SDN controller

3509Fault Administration by Load Balancing in Distributed SDN…

1 3

controllers are used but they work alone for each network domain and does not repre-
senting distributed SDN controller.

If c1 and c2 both sharing same logic, new packet arrived at s1, both c1 and c2
directly install forwarding path to all the corresponding switches. Then it is called dis-
tributed SDN controller.

Properties of distributed SDN controller such as network domain, local (static and
lively network state), global network state and connection between controller-controller
as East/Westbound API are mentioned in [5]. Researchers of the same paper explored
design choice of distributed SDN controller including (i) switch to controller connec-
tion strategy as IP alias connection or Master/Slave connection, (ii) network information
distribution strategy vide hierarchical or flat model, (iii) controller connection strategies
in distributed SDN controller as coordinator based and coordinator less, (iv) in-band vs.
out-of-band connection strategies.

This paper presented Survey on distributed SDN controller with special focus on
fault tolerance in distributed SDN controller. Paper studied basics and properties of dis-
tributed SDN controller, Comparison of centralized and distributed control plane archi-
tecture studied from previous research.

Few previous surveys conducted by network administrators show that the normally
errors in network failures can be generated due to logical error of switch/router pro-
gramming, wrong configuration of protocol, hardware failures, and external factors.
Common indication of failures are reachability problems, tained congestion and latency/
throughput [5]. Different kinds of faults occurred at various layers and layers/inter-
face in distributed SDN controllers are studied in the paper. Finally fault management
through load balancing with switch migration techniques are surveyed.

Main contribution of this paper are as follows:

• Presenting the review of classification of SDN controllers.
• Providing a complete systematic review of different types of fault issues in distrib-

uted controller at application, data and control planes and into their interfaces.
• Studied existing techniques switch migration issue in load balancing among distrib-

uted controllers.
• Proposed deployment of fault tolerance plane in the SDN stack. Using such addi-

tional fault tolerance plane, derived a novel load balancing model, which provides
robust distributed SDN controller.

Rest of the paper contains Sect. 2 studies all the existing SDN controllers and tabu-
larized comparison between their documentation, programming language, adaptability,
application domain, their Northbound/Southbound API etc. Section 3 discussed about
different types of faults in the distributed SDN controller. Section 4 concentrated on the
faults occurred through overload and as a solution applied switch migration technique.

Different existing strategies studied for switch migration and the survey concluded
with the decision that for efficient fault management through load balancing a separate
fault management layer need to be derived from the application layer in the SDN stack.
The fault management layer includes different modules viz as switch migration module,
module maintaining state of the network, fault management, transaction management
for the transactional updates of the network. So for survey ends with the aim of develop-
ing a novel model for robust distributed SDN controller which provides, consistency,
reliability and scalability.

3510 G. Lakhani, A. Kothari

1 3

2 Classification of SDN Controllers

SDN controllers can be centralized controllers or distributed controller. Table 1 shows
comparison of distributed and centralized controllers with respect to documentation, adapt-
ability, OS, Northbound, southbound API and application domain. SDN controller archi-
tecture divided into logically or physically centralized and flat, distributed in hierarchical
or hybrid design. Table 1 listed few controllers among it.

Table 2 shows fault tolerance comparison of different distributed controllers. Controller
failure/link failure are major sources of fault. Their solutions like nearby backup controller,
backup paths,active replication, dynamic controller migration, forwarding policy reconfig-
uration, replicated shared database for recovery are discussed.

Table 3 demonstrate mechanism of fault tolerance such as controller replication, failure
recovery, protection switching, segment protection, fast failover, packet modification.

3 Fault Management Issues in Distributed Controllers

Fault management process include fault detection, fault localization and fault recovery.
Fault prevention can be done proactive or reactively. Distributed controllers in SDN con-
tains infrastructure (data) plane, control plane and application planes. Control plane con-
sists of number of controllers, all controllers are attached with east–west bound interfaces.
Similarly application plane/control plane are connected with northbound interface and con-
trol plane/application plane are connected with southbound interfaces. We discussed differ-
ent types of faults in distributed controllers based on their layers and interfaces. Figure 2
summarizes different types of faults. Different protocols such as OSPF [47], AMQP [50]
etc. are used for solving problems generated by different types of faults. Prior work listed
fault management in SDN network [51–55]. They have not concentrated specifically in
distributed controller. We concentrate on fault management at control plane in distributed
controller. Control plane consists its architecture, controller location methodologies, and
traffic fault tolerance. All this category encompasses multiple issues leads to faults such
as control channel disruption, controller disappointment. Kreutz et al. [52, 53] depicted
about fault tolerance and reliability issues. Silva et al. [53] described resilience discipline
while Sharma et al. [55] described efforts related with fault detection and fault recovery.

Fault recovery divided into protection (pro-active) and restoration (re-active) method. In
protection backup paths are preconfigured using fixing of flow rules in the switches. Res-
toration follows notification strategy. On failure, notification triggered to controller, con-
troller examines the notification and decide the type/level of fault. It calculates alternative
path and installing flow of switches in case of link failure. Restoration and protection both
method have its merit/demerits. Normally they are used to reduced recovery time, band-
width optimization, and minimum TCAM consumption.

Classification with respect to layers and layer/interface in distributed controller shown
in Fig. 2.

3.1 Data Plane (Infrastructure Layer)

Fault tolerance issues such as link failure and node failure, normally available in tradi-
tional network are part of this layer. However in SDN due to centralized management and

3511Fault Administration by Load Balancing in Distributed SDN…

1 3

Ta
bl

e
1

 C
la

ss
ifi

ca
tio

n
of

 S
D

N
 c

on
tro

lle
rs

 [2
4]

Sr
 n

o.
SD

N
 c

on
tro

lle
r

Pr
og

ra
m

m
in

g
la

ng
ua

ge
D

oc
um

en
ta

tio
n

A
da

pt
ab

ili
ty

D
ist

rib
ut

ed
/

ce
nt

ra
liz

ed
O

S
So

ut
hb

ou
nd

 A
PI

s
N

or
th

B
ou

nd
 A

PI
s

A
pp

lic
at

io
n

do
m

ai
n

1
O

N
O

S
[6

]
Ja

va
G

oo
d

H
ig

h
D

Li
nu

x,
 M

A
C

,
w

in
do

w
s

O
F1

.0
,1

.3
,N

ET
CO

N
F

R
ES

T
A

PI
D

at
a

ce
nt

er
,

W
A

N
, T

ra
ns

po
rt

2
O

N
IX

 [7
]

C
+

+
, P

yt
ho

n,
 Ja

va
G

oo
d

H
ig

h
D

Li
nu

x
O

F
1.

0,
1.

3,
1.

4
–-

D
at

a
ce

nt
er

3
H

yp
er

flo
w

 [8
]

C
+

+
G

oo
d

H
ig

h
D

Li
nu

x
O

F
1.

3,
1.

4
D

at
a

ce
nt

er
/W

A
N

4
O

pe
nD

ay
Li

gh
t

[9
, 1

0]
Ja

va
Ve

ry
 G

oo
d

H
ig

h
D

Li
nu

x,
 M

A
C

,
w

in
do

w
s

O
V

SD
BO

F1
.0

,1
.3

, N
ET

-
CO

N
F,

 Y
an

g,
 L

IS
P

B
G

P/
LS

,S
N

M
P,

 P
C

EP

R
ES

T
A

PI
D

at
a

ce
nt

er

5
Ru

no
s [

11
]

C
+

+
Fa

ir
Fa

ir
D

Li
nu

x
O

F
1.

3
R

ES
T

A
PI

W
A

N
, T

el
ec

om
,

D
at

ac
en

te
r

6
B

ig
 C

lo
ud

 F
ab

ric

[1
3]

Ja
va

G
oo

d
Fa

ir
D

Li
nu

x
O

F
1.

3,
1.

4
vS

ph
er

e,
 N

SX
,

SA
N

D
at

a
ce

nt
er

7
BO

RO
N

 [1
2,

 1
4]

Ja
va

G
oo

d
H

ig
h

D
W

in
do

w
s,

Li
nu

x,

M
A

C
N

ET
CO

N
F,

 Y
an

g,

O
V

SD
B

, O
F1

.0
,1

.3
,

PC
EP

, B
G

P/
LS

,
SN

M
P,

LI
SP

,

R
ES

T
A

PI
D

at
a

ce
nt

er

8
O

SC
 [1

5]
Ja

va
G

oo
d

H
ig

h
D

Li
nu

x,
 M

A
C

,
w

in
do

w
s

O
F1

.0
,1

.3
,N

ET
CO

N
F,

R
ES

T
A

PI
D

at
a

ce
nt

er

9
D

IS
CO

 [1
6]

Ja
va

G
oo

d
H

ig
h

D
Li

nu
x

O
F

1.
3.

,1
.4

A
M

Q
P

[1
09

]
D

at
a

ce
nt

er
/W

A
N

10
K

an
do

o
[1

7]
C

, C
+

+
, P

yt
ho

n
G

oo
d

Fa
ir

D
Li

nu
x

O
F

1.
0,

1.
2

R
PC

D
at

a
ce

nt
er

11
Fl

ee
t [

18
]

Ja
va

G
oo

d
H

ig
h

D
Li

nu
x

O
F

1.
3,

1.
4

A
dh

oc
 A

PI
D

at
a

ce
nt

er
12

PA
N

E
[1

9]
Ja

va
G

oo
d

Fa
ir

D
Li

nu
x

O
F

1.
3,

 1
.4

R
ES

T
A

PI
D

at
a

ce
nt

er
13

R
av

an
a

[2
0]

Py
th

on
G

oo
d

H
ig

h
D

Li
nu

x
O

F
1.

3,
1.

4
R

SM
W

A
N

/D
at

a
ce

nt
er

14
M

er
id

ia
n

[2
1]

Ja
va

G
oo

d
H

ig
h

D
Li

nu
x

O
F

1.
3,

 1
.4

R
ES

T
A

PI
D

at
a

ce
nt

er
15

N
O

X
 [2

2]
C

+
+

Po
or

Lo
w

C
Li

nu
x

O
F

1.
0

R
ES

T
A

PI
C

am
pu

s
16

PO
X

 [2
3]

Py
th

on
Po

or
Lo

w
C

M
A

C
, w

in
do

w
s,

Li
nu

x
O

F
1.

0
R

ES
T

A
PI

C
am

pu
s

3512 G. Lakhani, A. Kothari

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

Sr
 n

o.
SD

N
 c

on
tro

lle
r

Pr
og

ra
m

m
in

g
la

ng
ua

ge
D

oc
um

en
ta

tio
n

A
da

pt
ab

ili
ty

D
ist

rib
ut

ed
/

ce
nt

ra
liz

ed
O

S
So

ut
hb

ou
nd

 A
PI

s
N

or
th

B
ou

nd
 A

PI
s

A
pp

lic
at

io
n

do
m

ai
n

17
Ry

U
 [2

4]
Py

th
on

Fa
ir

Fa
ir

C
Li

nu
x

O
F1

.0
,1

.2
,1

.3
,1

.4
,N

ET

CO
N

F,
 O

F
CO

N
FI

G
R

ES
T

fo
r S

ou
th

-
bo

un
d

C
am

pu
s

18
B

ea
co

n
[2

5]
Ja

va
Fa

ir
Fa

ir
C

Li
nu

x
O

F
1.

0
R

ES
T

A
PI

Re
se

ar
ch

19
M

ae
str

o
[2

6]
Ja

va
Po

or
Fa

ir
C

Li
nu

x
O

F
1.

0
R

IS
E,

N
SF

Re
se

ar
ch

20
Fl

oo
dl

ig
ht

 [2
7]

Ja
va

G
oo

d
Fa

ir
C

Li
nu

x,
 M

A
C

,
W

in
do

w
s

O
F

1.
0,

O
F

1.
3

R
ES

T
A

PI
C

am
pu

s

21
IR

IS
 [2

8]
Ja

va
G

oo
d

Fa
ir

C
Li

nu
x,

 M
A

C
,

W
in

do
w

s
O

F
1.

0,
 O

F
1.

3,
O

V
SD

B
R

ES
T

A
PI

C
ar

rie
r-g

ra
de

22
M

U
L

[2
9]

C
Fa

ir
Fa

ir
C

Li
nu

x
O

F1
.3

,1
.4

,O
V

SD
B

, O
F

CO
N

FI
G

R
ES

T
A

PI
D

at
ac

en
te

r

23
N

O
X

-M
T

[3
0]

C
+

+
Po

or
Lo

w
C

Li
nu

x
O

F
1.

0
R

ES
T

A
PI

C
am

pu
s

24
H

P
VA

N
 [3

1]
H

P-
Pr

op
rie

ta
ry

Fa
ir

Fa
ir

C
Li

nu
x

O
F

1.
0

R
ES

T
A

PI
C

am
pu

s
25

V
M

-w
ar

e
N

SX

[3
2]

C
+

+
G

oo
d

Fa
ir

C
Li

nu
x

O
F

1.
0

R
ES

T
A

PI
C

am
pu

s

26
Pr

og
ra

m
m

ab
le

Fl

ow
 C

on
tro

lle
r

(N
EC

) [
33

]

N
EC

-P
ro

pr
ie

ta
ry

G
oo

d
Fa

ir
C

Li
nu

x
O

F
1.

0,
1.

3,
1.

4
R

ES
T

A
PI

C
am

pu
s

27
vn

ei
o/

sd
nc

 [3
4]

Ja
va

, P
yt

ho
n-

Ru

by
G

oo
d

Fa
ir

C
M

A
C

, L
in

ux
O

V
SD

B
In

te
l D

PD
K

 T
ec

h-
no

lo
gy

D
at

a
ce

nt
er

28
C

he
rr

y
[3

5]
G

o
la

ng
ua

ge
Fa

ir
Fa

ir
C

Li
nu

x
O

F
1.

0,
1.

3
Pr

ox
y

A
R

P,
L2

Sw

itc
h,

 F
lo

at
-

in
g

IP

D
at

a
ce

nt
er

29
O

pe
nC

on
tra

il
[3

6]
Py

th
on

G
oo

d
Fa

ir
C

Li
nu

x
O

F
1.

3
R

ES
T

A
PI

C
lo

ud
/W

A
N

30
Fa

uc
et

 [3
7]

Py
th

on
G

oo
d

Fa
ir

C
Li

nu
x

O
F

1.
3

Zo
di

ac
 F

X
D

at
a

ce
nt

er

3513Fault Administration by Load Balancing in Distributed SDN…

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

Sr
 n

o.
SD

N
 c

on
tro

lle
r

Pr
og

ra
m

m
in

g
la

ng
ua

ge
D

oc
um

en
ta

tio
n

A
da

pt
ab

ili
ty

D
ist

rib
ut

ed
/

ce
nt

ra
liz

ed
O

S
So

ut
hb

ou
nd

 A
PI

s
N

or
th

B
ou

nd
 A

PI
s

A
pp

lic
at

io
n

do
m

ai
n

31
V

SC
 [3

8]
C

yb
il

by
 N

ok
ia

G
oo

d
Fa

ir
C

Li
nu

x
ba

se
d

SR
-O

S
O

F
1.

3,
O

V
SD

B
R

ES
T

A
PI

D
at

a
ce

nt
er

32
Vo

rti
Q

a
[3

9]
C

G
oo

d
Fa

ir
C

Li
nu

x
O

F
1.

3
O

N
 d

ire
ct

or
V

PN
/W

A
N

33
B

4N
 [4

0]
Ja

va
G

oo
d

Fa
ir

C
Li

nu
x

O
F

1.
3,

1.
4

R
ES

T
A

PI
, N

ET
-

CO
N

F
C

ar
rie

r G
ra

de

SD
N

34
O

rio
n

[4
1]

C
, C

+
+

, P
yt

ho
n

G
oo

d
Fa

ir
C

Li
nu

x
O

F
1.

0,
1.

2
R

PC
D

at
a

ce
nt

er
35

B
4

[4
2]

Py
th

on
G

oo
d

H
ig

h
C

Li
nu

x
O

F
1.

0,
1.

3
B

G
P

W
A

N
36

Es
pr

es
ss

o
[4

3]
Ja

va
G

oo
d

H
ig

h
C

Li
nu

x
O

F
1.

0,
1.

3
B

G
P

W
A

N
37

Sm
ar

tL
ig

ht
 [4

7]
Ja

va
G

oo
d

Fa
ir

C
Li

nu
x,

 M
A

C
,

W
in

do
w

s
O

F
1.

0,
O

F
1.

3
R

ES
T

A
PI

C
am

pu
s

38
SW

A
N

 [4
3]

Py
th

on
G

oo
d

Fa
ir

C
Li

nu
x

O
F1

.0
,1

.3
B

G
P

D
at

a
ce

nt
er

39
Ro

se
m

ar
y

[4
4]

C
, P

yt
ho

n
Po

or
G

oo
d

C
Li

nu
x

O
F1

.0
,1

.3
R

ES
T

A
PI

D
at

a
ce

nt
er

3514 G. Lakhani, A. Kothari

1 3

programmability leads to new challenges. Failure detected at link or node level. Sharma
et al. [56] proposed solution of Loss of Signal (LoS) as BFD (Bidirectional Forwarding
Detection) Loss of signal recognizes interface failure by checking whether a particular port
of a switch is down.

3.1.1 Network Failure Discovery and Position

In legacy networks, in fault discovery and finding place, number of challenges raises: a
single disappointment may leads to many source of errors, long time needed to stabilize
the state of network devices. Even partition of network may be difficult to detect. Due to
logical centralization, SDN keep all the devices of network updated about information of
any fault related with link or node. Only failure affected switches will be informed by con-
trollers. Rest part of the network may work in normal fashion. Extra care need to take to
reduce the communication recovery time in distributed controller.

3.1.2 Network Failure Recovery

Protection and restoration are two approaches for network failure recovery. Preconfig-
ured backup path followed in protection. On demand reinforcement path are generated in
rebuilding or restoration. Improper design of backup path in protection, not genuinely cir-
culated among the connections, may lead to blockage situation. If large forwarding rules in
the switch it will be exhaust. Any other way disappointment renovation increases retrieval
period, overburden network controllers etc. distributed controllers in SDN cares hybrid
approach by numerous protocols and mechanisms for improving failure recovery.

3.2 Control/Infrastructure Interface

South bound protocols such as OpenFlow [4, 57], Forces [57], OpFlex [46] etc. are the
major protocols used between control plane and information plane interface. SDN sepa-
rates control logic from network devices and put it in centralized fashion in control plane
of distributed controller. Data traffic and control traffic links connecting different planes
of SDN. We discuss control network disappointment and controller-switch dependable

Table 2 Fault tolerance comparison of distributed controller platform

Sr no. Controller platform Failure type Solution

1 Hyperflow [8] Controller failure Nearby controller serve as a standby controller
2 Onix [7] Link/switch failure, Onix

instance failure
Backup paths, active replication

3 ONOS [6] ONOS instance failure Redundant instances
4 Hydra [45] Controller disappointment Replication of controller failure
5 Elasticon [46] Controller disappointment Migration with dynamic controller
6 Fleet [16] Link disappointment Switching to work around path for the futile

link
7 IRIS [28] controller disappointment Controller switching
8 PANE [17] Link/switch disappointment Forwarding policy regeneration
9 Smartlight [47] Controller disappointment Pretend collective database for retrieval

3515Fault Administration by Load Balancing in Distributed SDN…

1 3

Ta
bl

e
3

 D
iff

er
en

t t
yp

es
 o

f f
au

lts
 a

nd
 m

ec
ha

ni
sm

 o
f f

au
lt

to
le

ra
nc

e
[4

8,
 4

9]

Sr
. n

o
M

ec
ha

ni
sm

 o
f f

au
lt

to
le

ra
nc

e
D

ef
ec

t t
yp

es
Fe

at
ur

es

1
C

on
tro

lle
r r

ep
et

iti
on

C
on

tro
lle

r d
ef

ec
t

U
ni

nt
er

ru
pt

ed
 c

om
m

un
ic

at
io

n
be

tw
ee

n
sw

itc
he

s a
nd

 c
on

tro
lle

r
2

D
is

ap
po

in
tm

en
t r

ec
ov

er
y

N
od

e
or

 li
nk

 d
ef

ec
t

Sw
itc

he
s r

et
rie

va
l w

ith
ou

t c
on

tro
lle

rs
 re

tri
ev

al
 ti

m
e

w
ith

in
 5

0
m

s
3

Pr
ot

ec
tio

n
sw

itc
hi

ng
N

od
e

or
 li

nk
 d

ef
ec

t
fa

ul
t r

et
rie

va
l t

im
e

w
ith

in
 5

0
m

s
4

Se
gm

en
t d

ef
en

se
N

od
e

or
 li

nk
 d

ef
ec

t
A

vo
id

 c
on

tro
lle

r r
ol

e
in

 re
tri

ev
al

 p
ro

ce
ss

 b
y

64
 m

s
5

Fa
st

fa
ils

af
e

N
od

e
or

 li
nk

 d
ef

ec
t

Ex
pl

or
e

ne
tw

or
k

fle
xi

bi
lit

y
6

Pa
ck

et
 a

lte
ra

tio
n

N
od

e
or

 li
nk

 d
ef

ec
t

C
ar

ry
 b

ac
ku

p
ro

ut
e

to
 a

lte
r t

he
 fo

rw
ar

di
ng

 p
ol

ic
ie

s

3516 G. Lakhani, A. Kothari

1 3

communication issues which can be proportionate to link or node disappointment and data
distribution in traditional network. Along with this in distributed controller, controller loca-
tion and controller failover also discussed.

3.2.1 Control Network Failure

Distributed controller consists massive number of links, used for connecting all the con-
trollers, and rest of the devices in the SDN. All these links manages network. Faulty link of
the switch can be interrupted normal operation of devices associated with it and switches.
If standby paths calculated using restoration or protection technique, control channel might
prevent data traffic reclamation. Aim of the control traffic recovery is to reconstruct switch
connectivity with any available controller. In case of data traffic retrieval specific destina-
tion path must be rebuild. Experiment of [58, 59] proves that well organized, effective con-
trol channel failure identification is a significant issue to decrease retrieval time.

3.2.2 Controller‑Switch Dependable Communication

Separation logic of control plane and data plane in SDN leads to check the reliability of
event execution. If event is not delivered to its endpoint, network management spoiled. For
example control plane don’t get information of link failure, routing services generates inva-
lid paths as it does not know about failure of link. In data plane new device needed to
be installed in the network, and not validated by authentication service, device cannot be

Fig. 2 Fault management issues in distributed controller [82]

3517Fault Administration by Load Balancing in Distributed SDN…

1 3

connected. Reliable message delivery is crucial problem, wide previous work and many
protocols discussing this problem, In SDN also this problem is thoughtful since the mes-
saging between centralized control and underlying architecture devices is very important
and present itself in new forms e.g. network actions can be vanished during controller
failover.

3.2.3 Controller Position

Distributed controller consists multiple controllers. Multiple controllers environment
generates two questions in the designing of network (1) what number of controllers are
expected to fulfill the network desires? (2) What is the position of the controller in the
topology? Fewer number of controllers tends to overload on existing controllers and cause
stoppage of service due to resource overburden, while access number of controllers may
lead to underutilization, wasting of money and resources. Author in [60] shows position of
the controller in the system configuration affect network execution and its output. As avail-
ability amongst controllers and rest of the devices of information plane is significant to
arrange administration, a non-ideal controller position permitted in the event of just smaller
of connection fails, the vast mainstream of the devices still drop control channel move-
ment. Retrieval time and dormancy between inter controller influenced because of wrong
position of controller.

3.2.4 Controller Failover

Leveled or nonhierarchical design followed by distributed controllers. In leveled mode
switch guides all its demand to a primary controller and on its failure switch connect with
a preconfigured reserved controller. On the other hand nonhierarchical mode where switch
joined with numerous controllers simultaneously and sends each demand to every one of
them, controllers are managing order of the requests and reactions. OpenFlow care this role
of the demand from its version 1.2. All switch can cosign roles to the controllers connected
to it: master have all reading/writing access to the switch, one controller can be master role
only for a given point of time. Slave role only reading state enabled, cannot control the
switch, writing in the flow table; and other role is equal, similar to master controller can
manage the switch without any confinements and any number of controller can be built
as equal. Controllers may have different in migration cost, flows/second, response time,
latency etc. it leads to the question, which controller will be picked as first prime? How to
manage sequence of backup controller? How regularly they are refreshed? How to detect
failures among primary and secondary controllers? In nonhierarchical mode, failover pro-
cess is modest. As all controllers are as of now associated, demands must be requested in
such way that any of the controllers can react to any demand amid the failover.

3.3 Control Layer

Distributed controllers consists multiple controllers, control layer is intermediate transla-
tion layer among application and data plane. Inter-controller communication exclusively
refers control layer own operations, rest of the operations are affected by the other layers.

3518 G. Lakhani, A. Kothari

1 3

3.3.1 Inter‑Controller Consistency

Centralized or distributed controllers gives network services while increasing resiliency.
Numerous controller used to maintain strategic distance from SPOF (single point fail-
ure) [6, 20]. For logical centralization all the controllers must rake-off worldwide net-
work view.

Levin et al. [58] depicted state distribution trade-offs and perform tests particularly on
consistency levels. Controller irregularity prompts to issue of state consistency among pri-
mary and reinforcement controller. False assumption made by controller and controller and
network device should not be managed properly. Event delivery ordering must be imposed
according to the order of controller consistency for dynamic replication.

3.3.2 Control Plane State Redundancy

Primary-backup relationship in multiple controllers followed by centralized controller. In
centralized controller primary controller is managing whole domain, backup managing
consistency of its state with primary. In distributed controllers, different controllers are
interchange information among each other with synchronization. They can take control of
the network simultaneously.

Control state redundancy achieved by three different ways vide state replication, event
propagation and activity (traffic) duplication. State replication accomplished by replicating
application state into replicas of controller, event propagation managing order of the events
sent to all replicas for consistency. Activity duplication, duplicates all movement at switch
level into copy controllers.

3.3.3 Distributed Data Store

Multiple controllers sharing network view for consistent network operation via distributed
data store. In hierarchical or nonhierarchical mode network divided into partition. Each
partition have its own master and more than one backup controller. View to the partition
shared to other partition via distributed data store.

Onix [7] holds Network Information Base (NIB), where network view is represented in
a graph. Onix is distributed controller. Network operations done by using NIB and distrib-
uting state of the network among controllers. Onix coordinates different storage strategies:
DHT (Distributed hash table) for weak consistency and transactional storage for strong
consistency. Onix supports Zookeeper [59] for leader election and failover.

ONOS [6] supports high scalability and high availability. Similar to Onix, it uses graph
and store for each service state. ONOS uses cluster with multiple instance for distributed
mode. Where each node is taking care for subset of network devices. Publish-subscribe
mechanism used by ONOS for achieving different level of consistency. ONOS upgrading
with different versions. It uses different distribution mechanism such as Cassandra [61] data
store for ultimate consistency, Hazelcast [62] and zookeeper [59] for strong consistency.

HP Virtual Application Network (VAN) [29] is implemented through OSGi [63] speci-
fication, it provide application independence and reuse. AMQP [50] used by HP-VAN con-
troller for message delivery at application layer. Similar to Onix, HP-VAN did coordination
and synchronization with Zookeeper [59]. It offers clustering mode.

3519Fault Administration by Load Balancing in Distributed SDN…

1 3

Spalla et al. [64] proposes concept which provides basic clustering capabilities. Mas-
ter–slave relationship followed among multiple controllers in each partition of the cluster.
State sharing of controllers done by OpenReplica [65]. It is coordinating service for con-
sistency and synchronization. It also used Paxos consensus protocol [66].

3.3.4 Control Plane State‑Update Messages

Passive repetition approach in integrated architecture is another approach for consistency.
In this approach application state and state update messages are encapsulated together
into state-update message and send it to backup controllers for updating their own state.
Fonseca et al. [67] proposed CPRecovery, it is inert repetition mechanism. Inert repeti-
tion divided into replication and retrieval phase. In replication phase the primary controller
generating backup replicas on the change of state. While replicas orchestrating their state
with the primary. On detection of failure status from primary controller (link failure, heart-
beat message) the retrieval phase started. Switch joins to the constituted standby controller,
which apprises its role to primary, network did its works normally.

High availability controller (HAC) architecture, a crossbreed method that substitutes
between both strategies, rendering to service precedence proposed by Pashkov et al. [68].
Network updates shared by controllers. Each application data updates also shared with all
controllers. State of the controller stored in shared data store. Serialization helps to coordi-
nate and ordering of message services.

3.3.5 Event Replication

Event oriented paradigm followed by openflow. All network changes transfer to the SDN
controller for appropriate processing. Hence, it is conceivable to accomplish state repeti-
tion rerunning occasions in standby copy. Because of high activity of system occasions
controller might be over-burden.

Hyperflow [8] provides scalability by spreading designated events. Events using pub-
lish-subscribe system for propagation. Hyperflow [8] will configure orphan switches to its
nearest neighbor on failure of controller. It does not guarantee event ordering. DISCO [16]
using AMQP [50] protocol for event propagation, guaranteeing message delivery. It offers
bandwidth use and latency also.

Viewstamped replication [69] utilized by centralized controller Ravana [20] to imi-
tate events and offer fault tolerance in information plane and control plane. repetition of
controller state and switch consistency accomplished by two stage protocols which holds
properties like aggregate event ordering, precisely onetime event processing and preciously
onetime command execution. In total event ordering all controller replica follows the same
order of events. Precisely onetime event processing the controller continuously process all
the events issued together. Events lost due to any reason must be retransmitted in the same
order. Exactly once command execution means switch executes commands once and only
once.

Ravana architecture followed system like: a master controller receives request
from the network, stored in shared replicated log and process it. The replica works on
request only after processing completion of master. The replica controller keeps log
record of the events by its IDs to avoid repeated events. Switch keeps log of the com-
mands in local buffer.it filter/avoid repeated commands and followed exactly-once com-
mand property. Ravana provides transactional semantics by following event delivery,

3520 G. Lakhani, A. Kothari

1 3

processing and command execution and guaranteeing safety (execution of all events in
errorless system and liveness (all command processed by switch and event will be pro-
cessed by controllers).

3.3.6 Traffic Replication

Copying network traffic at the information plane level into all the controllers, is one
approach of controller state replication. All switches will be joined with every one of the
controllers all the while as per the approach followed in [67]. Fonseca request send to each
one of the controllers, as controller gets a request from network device, it sends message
arrival timestamp to all controllers. If each one of the controllers answer that none of them
has a more settled timestamp, it send the response to the switch else the controller just
updates its internal state.

Traffic replication rapidly get well from failures in a adversity scenario proposed by
Gramoli et al. [70]. Two key matrices recovery time objective (RTO) and the recovery
point objective (RPO) used by investigator. In case of disaster how much data lost, recov-
ery time objective used for estimation of time of detection and mitigation of failure. While
recovery point objective gives data of how many updates are lost.

Fast controller failover for multi domain SDN (FCF-M) proposed by Chan et al. [69]
strong consistency achieved by each controller by replicating controller to its backup con-
troller. Circular heartbeat mechanism used for detection of failure. Probe packet sending by
each controller to its predecessor in heartbeat message mechanism, controller failover done
locally if the backup of the controller available. Devices are distributed among controller
based on its distance minimization and its capacity.

Centralized control [25] and distributed control [75] strategies considered in the design
of control plane for providing fault tolerance. Control plane redundancy may require some
sort of correspondence overhead, which affects scalability and performance. Distributed
file system, distributed data structure and consensus protocol can be utilized to accomplish
state replication.

3.4 Application/Control Interface

Network controller and applications share same execution space. So failure issues such as
application failure isolation and control plane state fault tolerance discussed here.

3.4.1 Application Failure Separation

Almost existing available controllers [7, 20, 25] sharing same execution space, tightly cou-
pled applications and network os with which leads to crash of controller on crash of appli-
cations. Additionally these controller don’t display application resource consumption. So
defective application may victimize shared resources. Fault tolerance and reliability must
be taken care in the design of network operating system. As taken care in traditional oper-
ating system kernel design and architecture. In monolithic architecture, failure in one ser-
vice leads to failure of the network controller. Mirco kernel architecture used independent
service on the top of a kernel and connect internally using IPC communication interface.

3521Fault Administration by Load Balancing in Distributed SDN…

1 3

3.4.2 Control Plane State Fault Tolerance

Logical centralized and physical SDN required harmonization of control planes with
each other. Fault management done by backup replica in both centralized and distributed
approach. In fault stage controller loses its state. Data plane and control plane failure both
leads to failure of state of the controller, so both should be managed separately.

3.5 Application Layer

Testing and logical design of the application programs should be checked thoroughly
before its implementation on application plane.

3.5.1 Application Design

Network requirement should be analyzed in the design phase first, Logical error in analysis
never generate correct output. In the design phase fault management issues also considered,
else bug, faults inserted in the since SDN application should be considered with specific
knowledge domain, specific features should be used to provide fault tolerance constructs
and abstractions. Few such deliberations are deadlocks, race condition etc. It requires high
level fault management policies.

3.5.2 Application Correctness

For achieving desired output through application, comprehensive testing done on it. Cor-
rectness indicates desired output on valid input data. Application correctness can be
checked by software verification and validation, former verification specialized tools used
for providing domain specific knowledge.

3.6 Application/Control/Infrastructure Interface

Network accuracy infringements may generate errors at any plane or interface and network
damage assessment consists all layers in order to successfully perform fault findings.

3.6.1 Network Precision Destruction

Network policies are translated into device configuration. Actual network behavior may
violate security policies due to some experimental, faulty applications, routing, network
controller mistranslation, Misinterpreted protocols. So network correctness monitored con-
tently to notice possible destructions.

3.6.2 Network Investigating

When a disappointment happens, arrange heads must distinguish which applications are
included and which succession of activities prompted the disappointment. This is certainly
not a minor issue, considering that in vast systems an enormous number of reliant and free

3522 G. Lakhani, A. Kothari

1 3

events may happen amid a disappointment. Procedures to help arrange investigating incor-
porate chronicle and replaying system occasions [71], deciding least easygoing grouping
[72] and breaking down system conduct by watching packet back-follows [73].

Distributed controllers layers are divided into application layers, application/control
interface, control layers, control/infrastructure interface, data plane, app/control/infrastruc-
ture interface. Application layer described with the issue like application design, accuracy/
correctness due to logical errors in API or in the adaptability. Distributed controllers con-
tains combination of different application layers, modules. Link failures leads separate
erroneous module from the whole system, that part will be down and not working but rest
of the system should be fully functional. Control layers have collection of controllers. All
are communicating with each other with east–west bound interfaces. Inter controller com-
munication faces issues of load balancing, managing of distributed data store and on fail-
ure, replication technique need to be followed.

In Distributed controller, there may be chance of overload on one controller needs to
migrate its switch to underloaded controller, aggregate load of the system will be over-
loaded and need to include more controller to balance the load and any controller may be
shut down due to accidental error in hardware or software in all above cases fault gener-
ated. Fault may generate due to overload on controller. So Load balancing considered as
fault management issue and switch migration techniques applied to solve it. Switch migra-
tion technique can be implemented as game theoretic approach [74], distributed decision
[75], load informing strategy [76] and BalCon [77]—balanced controller approach. Details
of all techniques given in next section. Replication technique are divided into active and
passive replication [67, 78]. Flexibility and programmability are key capability of SDN.
They meet the current network necessities such as multi-occupant cloud networks, versatile
optical networks. SDN should solve fault management issues related with legacy network
also.

4 Switch Migration in Distributed SDN Controller

In distributed controller domain, Switch migration is done in overloading of controller or
flow requests of switch increases, heavily loaded switches should be migrated to lightly
loaded controller. So dynamically change the relationship between switches of heavily

Fig. 3 Switch migration process [1, 2]

3523Fault Administration by Load Balancing in Distributed SDN…

1 3

loaded controller to lightly loaded controller. Different methods used for switch migration
(Fig. 3).

Figure 3 demonstrates a total depiction of the switch relocation system, which com-
prises of four stages. In stage 1, at first to wind up master controller B changes its part to
equal. For it the underlying expert (A) sends a begin movement message to B through con-
troller-to-controller channel. At that point, (B) sends Role-journeys to the change should
have been relocated. After (B) gets Role-Reply from the switch, it informs (A) that the part
changing has achieved. After (B) changes its part to level with, it gets nonconcurrent mes-
sages from the switch, however does not give a reaction. In stage 2, it embeds and expels a
spurious flows. (A) Firstly sends Flow-mod to (X) to include another flow passage, which
does not match with any packet. At that point, it sends another Flow-mod to erase the sec-
tion. Consequently, the switch can send a Flow-evacuated message to controllers due to
(B) is an equivalent controller at this moment. The Flow evacuated offers an exchange of
proprietorship for the switch (X) from (A) to (B). Additionally, an obstruction message is
asked for after the inclusion of the fake flow. In stage 3, it flushes pending solicitations for
an obstruction. (A) Transmits a Barrier-ask for and sits tight for the Barrier-answer, simply
after which it sends “end relocation” to the last master (B). In stage 4, it makes the objec-
tive controller last master. The last master (B) sets its part to master for the switch by send-
ing a Role-ask for message to the switch. At long last, it refreshes the conveyed data store.

4.1 Elastic Control (ElastiCon)

ElastiCon [46] is the primary switch movement system in view of dynamic multicontroller
design. Figure 4 sets the total system of ElastiCon, which contains three modules: load

Fig. 4 Elastic framework [1]

3524 G. Lakhani, A. Kothari

1 3

estimation modules, load adjustment choice modules, and activity modules. The load esti-
mation module gathers the load of every controller and sends the load data to load adjust-
ment choice module, which chooses load distribution among controllers. The activity mod-
ule conducts control activities (e.g., moving switch, including and evacuating controllers)
to accomplish the dynamic control of controllers and switches. ElastiCon occasionally
screens the load on every controller, distinguishes awkward nature, and naturally adjusts
the load crosswise over controllers by moving a few changes from the over-burden control-
ler to a softly stacked one. In the interim, with a specific end goal to orchestrate the move-
ment, a novel switch relocation protocol is intended for empowering such load moving,
which complies with the OpenFlow standard. At long last, a model of ElastiCon is manu-
factured and its execution is assessed in view of Mininet. In this way, ElastiCon guarantees
unsurprising controller execution even under exceedingly unique workloads.

Yang, Zhou et al. [79] proposed answer for the adaptable system structure with decou-
pled control and information plane. Relocating switches can adjust the asset use of control-
lers and enhance network execution. Switch movement issue needs to date been defined
as an asset usage expansion issue to address the scalability of the control plane. Be that
as it may, this issue is NP-hard with high-computational complexities and without tend-
ing to the security difficulties of the control plane. They propose a switch relocation strat-
egy, which translates switch movement as a mark coordinating issue and is figured as a
3-D earth mover’s distance model to ensure deliberately essential controllers in the system.
Thinking about the scalability, they additionally propose a heuristic technique which is
time-proficient and reasonable to extensive scale systems. Simulation demonstrate that our
proposed strategies can mask deliberately imperative controllers by decreasing the distinc-
tion of activity stack between controllers. In addition, our proposed techniques can essen-
tially calm the movement weight of controllers and anticipate immersion assaults.

4.2 Game‑Theoretic Approach

Chen et al. [74], the creators explain the switch movement calculation with diversion
hypothesis. By taking light controllers as the amusement players and switches as the items,
a zero-whole diversion demonstrate is abused to copy the rivalries for relocating switches
among over-burden controllers. The controller chooses the ideal components to execute the
exchange by expanding or diminishing the product estimation of the switch. The diversion
display is quick and productive to accomplish switch movement yet is not reasonable for
extensive scale organize because of the high unpredictability of calculation outline.

4.3 Distributed Decisions Scheme

Cheng et al. [75], the creators characterize the switch migration problem (SMP) and a net-
work utility maximization (NUM) issue with the goal of boosting the quantity of serv-
ing demands under the accessible control asset. Conveyed hopping algorithm (DHA) is
intended to accomplish ideal switch relocation through Log-Sum-Exp work. The DHA
strategy is a period reversible markov chain process. The simulation result show DHA beats
existing plans by decreasing stream setup time and enhancing the normal usage proportion
of controller. They proposed scalable control component to choose which switch and where
it ought to be relocated for an adjusted control plane. Each switch will be controlled by
three distinct parts of controllers. Master, equal and slave. There is just a single master for
the switch. The master can just get the switches’ states yet additionally compose changes

3525Fault Administration by Load Balancing in Distributed SDN…

1 3

to train the information plane. The equal controllers are acquainted with discrete burdens
from the master. The slaves just read the conditions of the switches. Each switch could
have in excess of one equivalent or slave controllers. On the off chance that master bombs
because of over-burden or a few special cases, the equivalent controllers, or even slaves
could be travelled to ace at the earliest opportunity. No component unequivocally demon-
strating the switch movement or controller parts move, on the grounds that the authors of
this specification feel this is the obligation of the controller to pick a master among them-
selves. The load of a SDN controller comprises of numerous components, for example,
preparing of PACKET_IN events, keeping up the nearby domain view, speaking with dif-
ferent controllers, and additionally installing flow entries. In various situation, the extents
of those components vary enormously. Be that as it may, the preparing of PACKET_IN
occasions is for the most part viewed as the most conspicuous piece of the aggregate load.
Likewise, the arriving rate of PACKET_IN occasions on a controller is checked to quantify
its load.

4.4 Load Informing Strategy

Yu et al. [76], display a load adjusting system in view of a load advising technique for con-
trollers. Decidedly, it constructs distributed choice architecture, including four parts that
were load estimation, load illuminating, and adjusting choice and switch movement. In this
procedure, every controller can occasionally effectively report its load data to different con-
trollers, and it likewise handles and stores the load data from others. While the periodical
dynamic load educating can diminish the choice deferral, it likewise causes extra prepar-
ing and correspondence overhead in the control plane. Particularly, when the present load
esteem does not change much contrasted with the last esteem, revealing it to different con-
trollers is an excess task.

4.5 Balanced Controller (BalCon)

BalCon is a heuristic solution proposed in [77]. One key limitation of distributed control-
ler, with static mapping between switch and controller with uneven load distribution may
rise among the controllers that may arise when network traffic condition may change dur-
ing network operation. They proposed problem as mathematical optimization problem. It is
NP-complete problem. Algorithm works runtime based on congestion analysis, when con-
troller becomes overloaded, the algorithm finds a small strongly connected cluster of SDN
switches to migrate such that overall control plane congestion is reduced. It depends on two
key perception: (1) a compelling switch relocation ought to consider the correspondence
examples of the SDN switches, (2) the switch movement ought to be prepared at the granu-
larity of groups: switches with solid associations, which has the shorter remoteness to con-
troller, ought to dependably be doled out to a similar controller. BalCon is accomplished by
a reasonable model in view of Ryu, and the outcomes indicate BalCon altogether lessens
the quantity of moving switches.

4.6 Load Fluctuating Based Synchronization (LVS)

Guo et al. [80] have proposed a controller state synchronization procedure named
Load Variance based Synchronization (LVS), in order to redesign the execution of load

3526 G. Lakhani, A. Kothari

1 3

modifying in the multi-controller multi region SDN sort out. Interestingly with periodic
synchronization based methods, LVS-based systems performed genuine state synchroniza-
tions among controllers while a load of a server outperforms a predefined constrain, which
fundamentally restrains the synchronization overhead of controllers. The preliminary
comes to fruition have exhibited that LVS gets authentic load modifying execution and
circle free sending with less synchronization overhead, interestingly with existing systems.
Nevertheless, two proposed LVS-based methodologies have not evaluated in a bona fide
testbed.

4.7 SMDM (Switch Migration Based on Decision Making Scheme)

Wang et al. [81] proposed greedy calculation for switch relocation procedure. Proposed
system will be utilized as a part of big business systems and WAN. They demonstrated
that Dynamic switch movement is a promising way to deal with versatile scaling and load
adjusting. By and by, switch movement happens in three cases. Right off the bat, if the
accumulated traffic load goes past the limit all things considered, the new controllers ought
to be included and the switches would be moved to them. Furthermore, as a controller is
closed down or to rest for sparing correspondence cost and power, its switches ought to
be relocated away. Thirdly, regardless of whether there is no adjustment in the quantity of
sent controllers, switch movement activity must be performed by relocating chosen change
to different controllers when an individual controller load is past its ability. It is known as
load adjusting. They utilized switch movement trigger matric, the relocation productivity
model to fabricate tradeoff between relocation expenses and load adjusting rate. Movement
effectiveness show control the conceivable relocation activity. They execute evidence of
the plan and present numerical assessment utilizing Mininet emulator to exhibit the ade-
quacy of their proposition. SMDM plans appears (1) how to quantify load irregularity of
controllers and choose whether to perform switch movement? (2) How to utilize movement
arrange for that uses the relocation effectiveness model to manage the decision of con-
ceivable relocation activities. They utilized total load an incentive to demonstrate genuine
load data and give switch relocation procedure. Conventional SDN execution depends on
centralized controller and have a few confinement related with execution and adaptability.
Dispersed controllers approach can be utilized to take care of this issue. Authors et al. [82]
give a system that modifies the quantity of dynamic controllers and delegates every con-
troller. This system could limit flow setup time while acquiring low communication over-
head. Be that as it may, it effectively prompts arrange reassignment since it needs to play
out a reassignment of the whole control plane in light of the gathered activity measure-
ments. They proposed logically centralized control plane, which could accomplish better
scalability and reliability with independent controllers when an uneven enormous move-
ment load touch base at these distributed controller.

4.8 Scalable and Crash Tolerant SDN Controller

Liang et al. [19] proposed group controller method for switch relocation calculation. They
utilized unique load rebalancing strategy for grouped controllers. The numerous controllers
utilized JGroup to organize the activity of switch movement. The total system partitioned
into numerous groups and each group is setup one controller bunch. Anticipated strategy
can progressively move the load over the various controllers through switch relocation. The
component bolster controller failover without switch detachment maintaining a strategic

3527Fault Administration by Load Balancing in Distributed SDN…

1 3

Ta
bl

e
4

 A
n

ov
er

vi
ew

 o
f c

ur
re

nt
 sw

itc
h

m
ig

ra
tio

n
te

ch
ni

qu
es

 fo
r s

ol
vi

ng
 lo

ad
 b

al
an

ci
ng

 in
 d

ist
rib

ut
ed

 c
on

tro
lle

r

Sr
 n

o.
A

ut
ho

rs
O

bj
ec

tiv
e

M
od

e
M

et
ho

d
N

o
of

 sw
itc

he
s

Fl
ow

s/
se

co
nd

(M

bi
ts

/s
)

M
ig

ra
tio

n
co

st
(m

s)
C

on
tro

lle
r

re
sp

on
se

 ti
m

e
(m

s)

Th
ro

ug
hp

ut

(M
bi

t/s
)

Si
m

ul
at

io
n/

ev
al

ua
tio

n

1
W

an
g

et
 a

l.
[8

1]
Im

pr
ov

in
g

m
ig

ra
tio

n
effi

ci
en

cy
 b

y
us

in
g

sw
itc

h
m

ig
ra

tio
n

tri
gg

er
 m

at
-

ric
, m

ig
ra

tio
n

effi
ci

en
cy

m

od
el

 u
se

d
m

ig
ra

tio
n

co
sts

 a
nd

lo

ad
 b

al
an

ce

ra
te

. U
se

d
effi

ci
en

cy

aw
ar

e
sw

itc
h

m
ig

ra
tio

n
al

go
rit

hm

Fl
at

 B
ea

co
n

co
nt

ro
lle

r
M

U
M

A
 (m

ax
im

iz
e

re
so

ur
ce

 u
til

iz
at

io
n

al
go

rit
hm

)

4
12

.8
14

0
50

7
Sw

itc
h

m
ig

ra
tio

n
sc

he
m

e
ba

se
d

on
 g

re
ed

y
al

go
rit

hm
 to

 m
ax

im
iz

e
th

e
tra

de
-o

ff
be

tw
ee

n
m

ig
ra

tio
n

co
sts

 a
nd

 th
e

lo
ad

 b
al

an
ce

 ra
te

. a
n

effi
ci

en
cy

-a
w

ar
e

m
ig

ra
-

tio
n

al
go

rit
hm

 b
as

ed

on
 g

re
ed

y
m

et
ho

d
w

as

de
sig

ne
d

to
 u

til
iz

e
th

e
m

ig
ra

tio
n

effi
ci

en
cy

m

od
el

 a
nd

 th
us

 g
ui

de

th
e

ch
oi

ce
 o

f p
os

sib
le

m

ig
ra

tio
n

ac
tio

ns

D
N

M
A

(D
ist

rib
ut

ed

ne
ar

es
t m

ig
ra

tio
n

al
go

rit
hm

)

4
12

.8
10

5
65

4

SM
D

M
(S

w
itc

h
m

ig
ra

tio
n

ba
se

d
de

ci
si

on
 m

ak
in

g)

4
12

.8
10

0
47

2

2
Li

an
g

et
 a

l.
[8

3]
Sc

al
ab

le
 a

nd

cr
as

h
to

le
ra

nt

SD
N

 c
on

tro
l-

le
r

Fl
at

C
lu

ste
re

d
co

nt
ro

lle
rs

8
15

.3
2

20
0.

9
15

A
gg

re
ga

te
 lo

ad
 o

f c
lu

ste
r

sh
ou

ld
 b

e
co

lle
ct

ed

be
fo

re
 m

ig
ra

tio
n

w
hi

ch

in
cr

ea
se

d
th

e
pr

oc
es

s-
in

g
tim

e

3528 G. Lakhani, A. Kothari

1 3

Ta
bl

e
4

 (c
on

tin
ue

d)

Sr
 n

o.
A

ut
ho

rs
O

bj
ec

tiv
e

M
od

e
M

et
ho

d
N

o
of

 sw
itc

he
s

Fl
ow

s/
se

co
nd

(M

bi
ts

/s
)

M
ig

ra
tio

n
co

st
(m

s)
C

on
tro

lle
r

re
sp

on
se

 ti
m

e
(m

s)

Th
ro

ug
hp

ut

(M
bi

t/s
)

Si
m

ul
at

io
n/

ev
al

ua
tio

n

3
D

ix
it

et
 a

l.
[1

]
El

as
tic

 sw
itc

h
m

ig
ra

tio
n

by
 a

dd
in

g/
re

m
ov

in
g

SD
N

 c
on

tro
l-

le
rs

Fl
at

C
lu

ste
re

d
co

nt
ro

lle
rs

8
55

–1
35

0.
35

–2
.8

0.
21

–0
.7

6
15

5.
4

Se
am

le
ss

 m
ig

ra
tio

n
of

sw

itc
he

s a
m

on
g

m
ul

-
tip

le
 c

on
tro

lle
rs

 H
ow

to

 se
le

ct
 sw

itc
he

s a
nd

ta

rg
et

 c
on

tro
lle

rs
 n

ot

de
sc

rib
ed

4
Ya

ng
 Z

ho
u

et
.a

l
[7

9]
El

as
tic

 sw
itc

h
m

ig
ra

tio
n

fo
r

co
nt

ro
l p

la
ne

Lo

ad
 b

al
an

c-
in

g
in

 S
D

N

Fl
at

O
pt

im
al

 sw
itc

h
m

ig
ra

tio
n

m
od

el

an
d

he
ur

ist
ic

 sw
itc

h
m

ig
ra

tio
n

m
od

el

30
78

.6
8

18
2.

7
10

Si
m

ul
at

io
n

di
ffe

re
nt

ia
te

str

at
eg

ic
al

ly
 im

po
rta

nt

co
nt

ro
lle

rs
 b

y
di

m
in

-
is

hi
ng

 th
e

di
ffe

re
nc

e
of

 tr
affi

c
lo

ad
 b

et
w

ee
n

co
nt

ro
lle

rs
. P

ro
po

se
d

m
et

ho
d

re
liv

es
 tr

affi
c

pr
es

su
re

 o
f c

on
tro

lle
rs

an

d
pr

ev
en

t s
at

ur
at

io
n

at
ta

ck
s

5
D

ix
it

et
 a

l.
[4

6]
A

ch
ie

vi
ng

 th
e

dy
na

m
ic

m

ap
pi

ng

be
tw

ee
n

sw
itc

he
s a

nd

co
nt

ro
lle

rs

Fl
at

Li
ne

ar
 p

ro
gr

am
m

in
g

4
10

20
12

17
Th

e
co

nt
ro

lle
r r

es
po

ns
e

tim
e

ha
s b

ee
n

re
du

ce
d

to
 5

 m
s a

ve
ra

ge
ly

3529Fault Administration by Load Balancing in Distributed SDN…

1 3

Ta
bl

e
4

 (c
on

tin
ue

d)

Sr
 n

o.
A

ut
ho

rs
O

bj
ec

tiv
e

M
od

e
M

et
ho

d
N

o
of

 sw
itc

he
s

Fl
ow

s/
se

co
nd

(M

bi
ts

/s
)

M
ig

ra
tio

n
co

st
(m

s)
C

on
tro

lle
r

re
sp

on
se

 ti
m

e
(m

s)

Th
ro

ug
hp

ut

(M
bi

t/s
)

Si
m

ul
at

io
n/

ev
al

ua
tio

n

6
C

he
n

et
 a

l.
[7

5]
St

ud
yi

ng
 h

ow

to
 im

pr
ov

e
th

e
lo

ad

ba
la

nc
in

g
pe

rfo
rm

an
ce

of

 c
on

tro
lle

rs

in
 S

D
N

Fl
at

G
am

e
th

eo
ry

10
0

10
22

30
15

O
nl

y
1.

25
%

 sw
itc

he
s

ha
ve

 b
ee

n
m

ig
ra

te
d

w
he

n
a

ha
lf

of
 c

on
-

tro
lle

rs
 n

ee
d

m
as

te
r

re
el

ec
tio

n
op

er
at

io
n

7
C

he
ng

 e
t a

l.

[7
5]

St
ud

yi
ng

 w
hi

ch

sw
itc

h
sh

ou
ld

be

 m
ig

ra
te

d
an

d
w

he
re

it

w
ill

 b
e

m
ov

ed

Fl
at

H
eu

ris
tic

 a
pp

ro
ac

h
74

15
10

10
15

O
nl

y
10

%
 o

f t
he

sw

itc
he

s i
n

su
ch

 a
s

ne
tw

or
k

ha
ve

 b
ee

n
m

ig
ra

te
d

to
 lo

ad

re
ba

la
nc

e
w

he
n

th
er

e
ar

e
40

~5
0%

 h
ea

vy

co
nt

ro
lle

rs
8

Y
u

J e
t a

l.
[7

6]
C

on
tro

lle
r t

ak
e

lo
ad

 b
al

an
c-

in
g

de
ci

si
on

lo

ca
lly

 a
s

ra
pi

dl
y,

re

du
ci

ng

tim
e

of
 lo

ad

ba
la

nc
in

g

Fl
at

Li
ne

ar
 p

ro
gr

am
m

in
g

8
12

.7
8

21
50

16
Re

su
lt

sh
ow

s t
ha

t l
oa

d
ba

la
nc

in
g

is
 c

om
pl

et
ed

w

ith
in

 5
 s

Th
e

pr
op

os
ed

 m
et

ho
d

ha
s h

ig
he

r t
hr

ou
gh

pu
t

co
m

pa
re

d
w

ith
 st

at
ic

m

ap
pi

ng
 b

et
w

ee
n

sw
itc

h
an

d
co

nt
ro

lle
r

3530 G. Lakhani, A. Kothari

1 3

Ta
bl

e
4

 (c
on

tin
ue

d)

Sr
 n

o.
A

ut
ho

rs
O

bj
ec

tiv
e

M
od

e
M

et
ho

d
N

o
of

 sw
itc

he
s

Fl
ow

s/
se

co
nd

(M

bi
ts

/s
)

M
ig

ra
tio

n
co

st
(m

s)
C

on
tro

lle
r

re
sp

on
se

 ti
m

e
(m

s)

Th
ro

ug
hp

ut

(M
bi

t/s
)

Si
m

ul
at

io
n/

ev
al

ua
tio

n

9
C

el
lo

 e
t a

l.
[7

7]
Lo

ad
 b

al
an

ci
ng

pr

ob
le

m
 a

s
m

at
he

m
at

ic
al

op

tim
iz

at
io

n
pr

ob
le

m
 a

nd

ba
se

d
on

co

ng
es

tio
n

an
al

ys
is

Fl
at

H
eu

ris
tic

 a
pp

ro
ac

h
8

85
16

.5
0

2.
05

40
Th

e
pr

op
os

ed
 so

lu
-

tio
n

re
du

ce
 th

e
lo

ad

im
ba

la
nc

e
am

on
g

SD
N

co

nt
ro

lle
rs

 b
y

40
%

 b
y

m
ig

ra
tin

g
sm

al
l n

um
-

be
r o

f s
w

itc
he

s.
Th

e
co

m
pu

ta
tio

na
l t

im
e

is

11
.5

1
s i

n
th

e
pr

op
os

ed

m
et

ho
d

10
H

u,
 T

ao
 e

t a
l.

[8
4]

Lo
ad

 d
iff

er
-

en
ce

 m
at

rix

an
d

tri
gg

er

fa
ct

or
 u

se
d

to

m
ea

su
re

 lo
ad

ba

la
nc

in
g

on

co
nt

ro
lle

rs
,

lo
ad

 b
al

an
c-

in
g

ra
te

 a
nd

m

ig
ra

-
tio

n
co

st
co

ns
id

er
ed

fo

r m
ig

ra
tio

n
effi

ci
en

cy

ca
lc

ul
at

io
n

Fl
at

Effi
ci

en
cy

 aw
ar

e
sw

itc
h

m
ig

ra
tio

n
ap

pr
oa

ch

5–
20

2
70

12
3.

6
Re

du
ci

ng
 c

on
tro

lle
r

re
sp

on
se

 ti
m

e
by

 2
2%

,
im

pr
ov

in
g

co
nt

ro
lle

r
th

ro
ug

hp
ut

 b
y

30
%

 o
n

av
er

ag
e,

 m
ai

nt
ai

ni
ng

go

od
 lo

w
 m

ig
ra

tio
n

co
sts

 a
nd

 ti
m

e,
 b

al
an

c-
in

g
ra

te

3531Fault Administration by Load Balancing in Distributed SDN…

1 3

distance from the single purpose of disappointment issue. They executed a model frame-
work in view of OpenDayLight Hydrogen controller to assess the execution of our plan.
Primer outcome demonstrates that the technique empowers controllers to calm the over-
burden by means of switch movement and can enhance throughput and diminish the reac-
tion time of the control plane. They intend to execute topology mindful switch movement
calculation for enhancing scalability of the network.

Table 4 shows comparison of different switch migration techniques for load balanc-
ing. Different parameters such as flows/second, migration cost, controller response time,
throughput are observed with respect to available different approaches taken by previ-
ous researchers. It is observed that Wang et al. [81] enhancing movement effectiveness
by utilizing switch relocation trigger matric, migration efficiency model utilized move-
ment expenses and load adjust rate. Utilized efficiency aware movement calculation. They
took after MUMA (maximize resource utilization algorithm), DNMA (Distributed nearest
movement algorithm) and SMDM (Switch migration based decision making). Switch relo-
cation based in view of greedy algorithm to amplify the exchange off between movement
costs and the load adjust rate. An effectiveness migration algorithm in light of greedy strat-
egy was intended to use the migration proficiency model and hence manage the decision of
conceivable relocation activities.

Liang et al. [83] utilizing scalable and crash tolerant group of controller. Total load of
group of controller ought to be gathered before relocation which expanded the processing
time. Yang Zhou et al. [79] followed optical and heuristic switch relocation model. Their
Simulation differentiate deliberately important controllers by diminishing the difference of
traffic load between controllers. Proposed method relives traffic pressure of controllers and
prevent saturation attacks. Dixit et al. [1, 46] proposed flexible switch relocation for con-
trol plane load adjusting for achieving dynamic mapping between switches and controllers.
Utilizing their strategy the controller reaction time has been decreased to 5 ms averagely,
however they not portrayed how to choose switch and target controller.

Cheng et al. [74, 75] depicted which switch relocated and where it will be moved? They
demonstrated that only 10% of the switches in such as network have been migrated to load
rebalance when there are 40~50% overwhelming controllers. Yu et al. [76] depicted con-
troller take load adjusting decision locally as quickly, reducing time of load balancing.
Result shows that load balancing is completed within 5 s. The proposed method has higher
throughput compared with static mapping between switch and controller. Cello et al. [77]
proposed heuristic solution reduce the load imbalance among SDN controllers by 40% by
relocating modest no of switches. Its computational time is 11.51 s. They take load balanc-
ing problem as mathematical optimization problem and based on congestion analysis. Hu,
Tao et al. [84] described load difference matrix and trigger factor used to measure load
balancing on controllers, load balancing rate and movement cost considered for migration
efficiency calculation. They used efficiency aware switch migration approach. Simulation
reveals reducing controller response time by 22%, improving controller throughput by 30%
on average, maintaining good low migration costs and time, balancing rate.

3532 G. Lakhani, A. Kothari

1 3

5 Future Work—Fault Management in Distributed Controller

Analyzing surveyed effort we found future challenged in the fault management of distrib-
uted controller such as (1) providing same level of fault management as found in traditional
legacy network(2) exploration of new possibilities in distributed SDN (3) integration of
SDN with traditional network. Open issues discussed with different layers are as follows.

5.1 Data Plane

SDN permits novel one of a kind fault recovery arrangement, anyway recovery time in the
coordination of various layers of SDN will be expanded. Indeed, even inheritance organize
have issue of slow convergence, they are broadly actualized and completely tried through
years, improving their heartiness and proficiency. In future dominant part of SDN testbed
have more insight in information plane, incorporation between layers. In SDN numerous
arrangements broaden the southbound protocol conduct as well as repurpose header fields
(e.g. to utilize need field to allot reinforcement ways) so as to help fault recovery systems.
In any case, the absence of standardization constrains the selection and common sense uti-
lization of these arrangements. More up to date OpenFlow specifications give highlights
identified with QoS and traffic checking, which can be utilized to help novel adaptation to
non-critical failure components, despite the fact that these highlights are not straightfor-
wardly identified with fault recovery.

Also, many switch sellers and system controllers just execute more established adap-
tations of OpenFlow protocol. In rundown, there is a gap between adaptation to internal
failure endeavours and southbound protocol standardization, and between protocol speci-
fications and accessible usage. Future specifications of OpenFlow and other southbound
protocols, for example, OpFlex [4], may open new conceivable outcomes to fault tolerance
research. Some extra capacities of information plane, for example, capacity to recognize
navigated ways, while others propose new deliberations to help stateful information send-
ing. This brings up some examination issues: How much, assuming any, insight ought to
be set in the network devices? Which tradeoffs are included? In which cases is this suited?
Initiatives like P4, a high level language for writing computer programs switches’ packet
processing, give more independency to information plane and enable more mind boggling
rationale to be put in the network devices.

5.2 Control Plane

Most endeavors that utilization physical distribution use current methods, for example,
appropriated file frameworks, to accomplish adaptation to non-critical failure. In any case,
a gap that we identified in this approach is that it does not completely exploit SDN abilities.
Methodologies more specific to SDN and systems administration may open new potential
outcomes and accomplish preferred outcomes over more nonexclusive techniques. Most
endeavors that utilization physical circulation use current strategies, for example, appropri-
ated file frameworks, to accomplish adaptation to internal failure. In any case, a gap that
we identified in this approach is that it does not completely exploit SDN abilities. Meth-
odologies more specific to SDN and systems administration may open new potential out-
comes and accomplish preferable outcomes over more nonspecific strategies.

Most distributed control plane designs share their state among copies. This approach,
at most, enables applications to configure consistency level wanted. A more flexible

3533Fault Administration by Load Balancing in Distributed SDN…

1 3

programming stage could offer control to organize applications define distinctive adap-
tation to internal failure strategies for various occasions and sorts of traffic. Also, the
programming stage may bolster the definition of abnormal state adaptation to internal
failure targets. For example, most recent variants of ONOS [6] enable software engi-
neers to make goals, which speak to abnormal state control wants (e.g., availability
between two has) that are interpreted and always authorized through low-level tenets.

5.3 Application Plane

Programming system arrangements, administrations, and indeed, even switch packet
processing, brings numerous new potential outcomes to systems administration. In any
case, we identified that couple of endeavors investigate.

What these conceivable outcomes convey to fault administration. One of the pri-
mary benefits of SDN is the likelihood of system administration through abnormal state
terms. Numerous applications proposed for deliberations for example, network struc-
ture, modular composition of applications, and virtualization. Adaptation to internal
failure reflections can be utilized to determine abnormal state adaptation to non-critical
failure procedures and fault tolerant builds. Furthermore, many adaptation to non-crit-
ical failure components display some sort of trade off, e.g. network resilience vs. net-
work performance. Deliberations can be given to permit specification of various strate-
gies that would implement distinctive levels of adaptation to non-critical failure. A few
endeavours as of now proposed techniques.

SDN can be incorporated in this way giving programmability and intelligent centrali-
zation for an incredible decent variety of situations, for example, 5G framework, Inter-
net of-Things administration, virtual systems, remote systems. It is additionally con-
ceivable to utilize different methodologies to use SDN abilities. For instance, Cui et al.
[85] contend that enormous information preparing can be utilized to enhance organize
execution by removing important data from a large number of system gadgets. Progress-
ing research is as of now researching conceivable bearings [86, 87] to completely inves-
tigate SDN potential.

Fig. 5 Deployment of fault tolerance plane in SDN stack

3534 G. Lakhani, A. Kothari

1 3

6 Proposed Fault Tolerance Plane in the SDN Stack

Figure 5 shows the fault tolerance plane added in SDN stack. This plane is derived from
the application plane. All the controllers of the clusters are calculating their own load at
regular interval and send all the load details to the load calculation and decision mak-
ing module. Coordinator controller will be decided through coordinator controller algo-
rithm [88]. Two controllers are taken as a sample from the cluster of the controller.
Master Controller can read/write the state of the switch. While slave controller can read
only the state of the switch. The controllers run multiple applications that process the
received events and may send commands to one or more switches in reply to each event.
This cycle repeats itself in multiple switches across the network as needed.

In order to maintain a correct system in the presence of faults, states of switch and
controller must handle consistently. To ensure this, the entire cycle presented in above
deployment diagram is processed as a transaction: either all or none of the components
of this transaction are executed. This means that (i) the events are processed exactly
once at the controllers, (ii) all controllers process events in the same (total) order to
reach the same state, and (iii) the commands are processed exactly once in the switches.

All the modules shown in Fig. 5 will be implemented and tested with reference to
scalability, consistency and reliability and finally derived a novel load balancing model
which gives robust distributed SDN controller is the prime goal of our research.

Sequence of the event in the master and slave controllers are as (1) Switches gener-
ates events and forwarded to the controller. Such events are generated when switches
receives packets or status of the port changes, (2) the controllers runs multiple appli-
cations that process and received events. Different events are ordered with zookeeper
services which is used as East/westbound API also. (3) Events are processed by the
multiple user programs at application layers (4) and replied to different switches as a
command.

7 Conclusion

This work far reaching view on fault management in distributed controller. The paper
identified fault management issues on each layers/interfaces. It is observed that that fault
management issues raised by SDN are related to their layered engineering and logical
centralization. In distributed controller Control plane have numerous controllers, over-
burden on any controller may prompt to failure of controller, node or link and it lead
to fault. So we discussed solution of it as switch relocation of overloaded controller to
underloaded one, different methods of switch migration compared with their flow/sec-
ond, migration cost, controller response time, and throughput. Paper surveyed through
classification of SDN controllers vide their adaptability, documentation, design choice
(hierarchical/flat). Main concentration given on the faults generated because of overload
on the controllers. Controllers are failed due to overload and their orphan switches need
to migrate to the underloaded controller. Prior work done on switch migration technique
studied and finally one additional fault tolerance plane will be derived from application
plane and inserted between application plane and control plane in the SDN stack. A
novel load balancing model including different module, will be proposed at the end of
paper for generating robust distributed SDN controller.

3535Fault Administration by Load Balancing in Distributed SDN…

1 3

References:s

 1. Dixit, A. et al. (2013). Towards an elastic distributed SDN controller. In: ACM SIGCOMM Com-
puter Communication Review. Vol. 43. No. 4. ACM.

 2. Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., & Banerjee, S. (2011).
DevoFlow: scaling flow management for high-performance networks. ACM SIGCOMM Computing
Communication Review., 41, 254–265.

 3. Yu, M., Rexford, J., Freedman, M. J., & Wang, J. (2010). Scalable flow-based networking with
DIFANE. ACM SIGCOMM Computing Communication Review, 40, 351.

 4. OpenFlow switch specification 1.5.1, https ://www.openn etwor king.org/wpcon tent/uploa ds/2014/10/
openfl ow-switc h-v1.5.1.pdf page no 74, accessed online on 13th Feb 2018.

 5. Oktian, Y. E., et al. (2017). Distributed SDN controller system: A survey on design choice. Com-
puter Networks, 121, 100–111.

 6. Berde, P, et al. (2014) ONOS: towards an open, distributed SDN OS. In: Proceedings of the third
workshop on hot topics in software defined networking. ACM, 2014.

 7. Koponen, T., Martin, C., Natasha, G., Jeremy, S., Leon, P., Min, Z., et al. (2010). Onix: A distrib-
uted control platform for large-scale production networks. OSDI, 10, 1–6.

 8. Tootoonchian, A., & Yashar, G. (2010) Hyperflow: A distributed control plane for OpenFlow. In:
Proceedings of the 2010 internet network management conference on research on enterprise net-
working. 2010.

 9. Medved, J., et al. (2014) Opendaylight: Towards a model-driven sdn controller architecture. In:
2014 IEEE 15th International Symposium on. IEEE, 2014.

 10. Sakic, E., & Kellerer, W. (2017). Response time and availability study of RAFT consensus in
distributed SDN control plane. IEEE Transactions on Network and Service Management, 15(1),
304–318.

 11. Shalimov, A., et al. (2015) The Runos OpenFlow Controller. In:Software Defined Networks
(EWSDN), 2015 Fourth European Workshop on. IEEE, 2015.

 12. Sadasivarao, A., et al. (2013) Bursting data between data centers: Case for transport SDN. In: High-
Performance Interconnects (HOTI), 2013 IEEE 21st Annual Symposium on. IEEE, 2013.

 13. Big cloud fabric, [online] available: https ://www.bigsw itch.com/produ cts/big-cloud -fabri c. Accessed:
July, 2018.

 14. BORON, [online] available: https ://www.opend aylig ht.org/what-we-do/curre nt-relea se/boron .
Accessed: July, 2018.

 15. OSC, [online] available: https ://www.sdxce ntral .com/produ cts/cisco -open-sdn-contr oller -osc/.
Accessed: July, 2018.

 16. Phemius, K., Mathieu, B., & Jeremie, L. (2014). Disco: Distributed multi-domain sdn controllers.
In: Network Operations and Management Symposium (NOMS), 2014 IEEE. IEEE, 2014.

 17. Hassas Yeganeh, S., & Yashar, G. (2012). Kandoo: a framework for efficient and scalable offloading of
control applications. In: Proceedings of the first workshop on hot topics in software defined networks.
ACM, 2012.

 18. Matsumoto, S., Hitz, S., & Perrig, A. (2014). Fleet: Defending SDNs from malicious administrators.
In: Proceedings 3rd Workshop Hot Topics Software Defined Network, pp. 103–108.

 19. Ferguson, A., Guha, A., Liang, C., Fonseca, R., & Krishnamurthi, S. (2013). Participatory networking:
An API for application control of SDNs. In Proceedings ACM SIGCOMM Conference, pp. 327–338.

 20. Katta, N., Zhang, H., Freedman, M., & Rexford, J. (2015). Ravana: Controller Fault-Tolerance in Soft-
ware-Defined Networking. In: Proceedings of the ACM SIGCOMM Symposium on SDN Research,
SOSR’15, (Santa Clara, CA, USA), June 2015.

 21. Banikazemi, M., Olshefski, D., Shaikh, A., Tracey, J., & Wang, G. (2013). Meridian: An SDN plat-
form for cloud network services. IEEE Communications Magazine, 51(2), 120–127.

 22. Gude, N., et al. (2008). "NOX: towards an operating system for networks. ACM SIGCOMM Computer
Communication Review, 38(3), 105–110.

 23. J. McCauley et al. POX. [Online]. Available: https ://githu b.com/noxre po/pox. Accessed: 15 Jul 2018.
 24. Ryu OpenFlow Controller. [Online]. Available: https ://www.osrg.githu b.io/ryu. Accessed: 15 Jul 2018.
 25. Erickson, D. (2013). The beacon OpenFlow controller. In: Proceedings 2nd ACM SIGCOMM Work-

shop Hot Topics Software Defined Networking 2013, pp. 13–18.
 26. Salman, O., et al. (2016). SDN controllers: a comparative study. In: Electrotechnical Conference

(MELECON), 2016 18th Mediterranean. IEEE, 2016.
 27. Project Floodlight. Floodlight. [Online].Available: https ://www.proje ctflo odlig ht.org/flood light /.

Accessed: July, 2018.

https://www.opennetworking.org/wpcontent/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wpcontent/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.bigswitch.com/products/big-cloud-fabric
https://www.opendaylight.org/what-we-do/current-release/boron
https://www.sdxcentral.com/products/cisco-open-sdn-controller-osc/
https://github.com/noxrepo/pox
http://www.osrg.github.io/ryu
http://www.projectfloodlight.org/floodlight/

3536 G. Lakhani, A. Kothari

1 3

 28. Lee, B., et al. (2014). IRIS: the Openflow-based recursive SDN controller. In: Advanced Communi-
cation Technology (ICACT), 2014 16th International Conference on. IEEE, 2014.

 29. OpenMUL. High Performance SDN. [Online]. Available: https ://www.openm ul.org/. Accessed:
July. 2018

 30. Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., & Sherwood, R. (2012) On controller
performance in software-defined networks. In: Proceedings 2nd USENIX Conference Hot Topics
Management Internet Cloud Enterprise Network. Services, 2012.

 31. Zhang, Y., et al. (2017). A survey on software defined networking with multiple controllers. Jour-
nal of Network and Computer Applications, 103, 101–108.

 32. VMware NSX, [online] available:https ://www.sdxce ntral .com/vmwar e/defin ition s/what-is-vmwar
e-nsx/. Accessed: July, 2018.

 33. Programmable flow controller NEC, [online] available:https ://www.sdxce ntral .com/sdn/defin ition s/
sdn-contr oller s/opend aylig ht-contr oller /nec-progr ammab leflo w-contr oller /. Accessed: July, 2018.

 34. vneio/sdnc, [online] available: https ://githu b.com/vneio /sdnc/wiki. Accessed: July, 2018.
 35. Cherry, [online] https ://githu b.com/super kkt/cherr y. Accessed: July 2018
 36. Opencontrail, [online] available: https ://www.openc ontra il.org/openc ontra il-quick -start -guide /.

Accessed: July, 2018.
 37. Faucet, [online] available: https ://githu b.com/fauce tsdn/fauce t. Accessed: July, 2018.
 38. VSC, [online] available: https ://www.sdxce ntral .com/sdn/defin ition s/sdn-contr oller s/opend aylig ht-

contr oller /nuage -netwo rks-vsc/. Accessed: July, 2018
 39. VortiQa, [online] available: https ://www.sdxce ntral .com/produ cts/frees cale-vorti qa-open-netwo rk-

on-direc tor-softw are/. Accessed: July, 2018.
 40. B4N, [online] available: https ://brain 4net.com/produ cts/. Accessed: July, 2018.
 41. Fu, Y., et al. (2014) Orion: A hybrid hierarchical control plane of software-defined networking for

large-scale networks. In: 2014 IEEE 22nd International Conference on Network Protocols (ICNP).
IEEE, 2014.

 42. Jain, S., et al. (2013). B4: Experience with a globally-deployed software defined WAN. ACM SIG-
COMM Computing Communication Review, 43(4), 3–14.

 43. Lei, T., et al. (2014). SWAN: An SDN based campus WLAN framework. In: Wireless Communica-
tions, Vehicular Technology, Information Theory and Aerospace & Electronics Systems (VITAE),
2014 4th International Conference on. IEEE, 2014.

 44. Arbettu, R.K., et al. (2016). Security analysis of OpenDaylight, ONOS, Rosemary and Ryu SDN
controllers. In: Telecommunications Network Strategy and Planning Symposium (Networks), 2016
17th International. IEEE, 2016.

 45. Chang, Y., et al. (2017). Hydra: leveraging functional slicing for efficient distributed SDN control-
lers. In: Communication Systems and Networks (COMSNETS), 2017 9th International Conference
on IEEE, 2017.

 46. Dixit, A., Hao, F., Mukherjee, S., Lakshman, T.V., & Kompella, R.R. (2014). ElastiCon; an elastic
distributed SDN controller. In: 2014 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), Marina del Rey, CA, 2014, pp. 17–27.

 47. Botelho, F., et al. (2014). Smartlight: A practical fault-tolerant SDN controller. arXiv preprint
arXiv:1407.6062.

 48. van Adrichem, N. L., Van Asten, B. J., & Kuipers, F. A. (2014). Fast recovery in software-defined
networks. In Software Defined Networks (EWSDN), 2014 Third European Workshop on, (Buda-
pest, Hungary), pp. 61–66, IEEE, Sept. 2014.

 49. Sharma, S., Staessens, D., Colle, D., Pickavet, M., & Demeester, P. (2011) Enabling fast failure
recovery in OpenFlow networks. In: Design of Reliable Communication Networks (DRCN), 2011
8th International Workshop on the, pp. 164–171, IEEE, 2011.

 50. Vinoski, S. (2006). Advanced message queuing protocol. IEEE Internet Computing, 6, 87–89.
 51. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., & Uhlig, S.

(2015). Software-defined networking: A comprehensive survey. In: Proceedings of the IEEE, vol.
103, pp. 14–76, Jan 2015.

 52. Kreutz, D., Ramos, F.M., & Verissimo, P. (2013). Towards secure and dependable software-defined
networks. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN’13, (New York, NY, USA), pp. 55–60, ACM, Aug. 2013.

 53. da Silva, A. S., Smith, P., Mauthe, A., & Schaeffer-Filho, A. (2015). Resilience support in soft-
ware-defined networking: A survey. Computer Networks, 92(1), 189–207.

 54. Chen, J., Chen, J., Xu, F., Yin, M., & Zhang, W. (2015). When Software Defined Networks
Meet Fault Tolerance: A Survey. In: Algorithms and Architectures for Parallel Processing: 15th

http://www.openmul.org/
https://www.sdxcentral.com/vmware/definitions/what-is-vmware-nsx/
https://www.sdxcentral.com/vmware/definitions/what-is-vmware-nsx/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/nec-programmableflow-controller/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/nec-programmableflow-controller/
https://github.com/vneio/sdnc/wiki
https://github.com/superkkt/cherry
http://www.opencontrail.org/opencontrail-quick-start-guide/
https://github.com/faucetsdn/faucet
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/nuage-networks-vsc/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/nuage-networks-vsc/
https://www.sdxcentral.com/products/freescale-vortiqa-open-network-on-director-software/
https://www.sdxcentral.com/products/freescale-vortiqa-open-network-on-director-software/
https://brain4net.com/products/

3537Fault Administration by Load Balancing in Distributed SDN…

1 3

International Conference, ICA3PP 2015, (Zhangjiajie, China), pp. 351–368, Springer International
Publishing, Nov. 2015.

 55. Sharma, S., Staessens, D., Colle, D., Pickavet, M., & Demeester, P. (2013). OpenFlow: Meeting
carrier-grade recovery requirements. Computer Communications, 36(6), 656–665.

 56. Fernandes, E., & Rothenberg, C. (2014) OpenFlow 1.3 software switch. In: Brazilian Symposium
on Computer Networks and Distributed Systems, 2014.

 57. Doria, A., et al. (2010) Forwarding and control element separation (ForCES) protocol specification.
In: Internet Engineering Task Force, 2010.

 58. Levin, D., Wundsam, A., Heller, B., Handigol, N., & Feldmann, A. (2012). Logically Centralized?:
State Distribution Trade-offs in Software Defined Networks. In: Proceedings of the First Work-
shop on Hot Topics in Software Defined Networking, HotSDN’12, (New York, NY, USA), pp. 1–6,
ACM, Aug. 2012.

 59. Hunt, P., Konar, M., Junqueira, F.P., & Reed, B. (2010) Zookeeper: Wait-free coordination for
internet-scale systems. In: USENIX’10 Annual Technical Conference.

 60. Heller, B., Sherwood, R., & McKeown, N. (2012). The controller placement problem. In: Proceed-
ings of the First Workshop on Hot Topics in Software Defined Networking, HotSDN’12, (New
York, NY, USA), pp. 7–12, ACM, Aug. 2012.

 61. Lakshman, A., & Malik, P. (2010). Cassandra: a decentralized structured storage system. ACM
SIGOPS Operating Systems Review, 44(2), 35–40.

 62. Johns, M. (2015). Getting Started with Hazelcast. Birmingham: Packt Publishing Ltd.
 63. Alliance, O. (2003). OSGI service platform, release 3. Clifton: IOS Press Inc.
 64. Spalla, E.S., Mafioletti, D.R., Liberato, A.B., Rothenberg, C., Camargos, L., VillaÃga, R.D.S., &

Martinello, M. (2015). Resilient Strategies to SDN: An Approach Focused on Actively Replicated
Controllers. In: Computer Networks and Distributed Systems (SBRC), 2015 XXXIII Brazilian
Symposium on, pp. 246–259, May 2015.

 65. OpenReplica Coordination Service. https ://openr eplic a.org/. Accessed: 30 Jun 2018.
 66. Lamport, L. (2001). Paxos Made Simple. ACM SIGACT News, 32(4), 34.
 67. Fonseca, P., Bennesby, R., Mota, E., & Passito, A. (2012) A replication component for resilient

openflow-based networking. In: Network Operations and Management Symposium, NOMS’12,
(Maui, HI, USA), pp. 933–939, IEEE, 2012.

 68. Pashkov, V., Shalimov, A., & Smeliansky, R. (2014) Controller failover for SDN enterprise net-
works. In: International Science and Technology Conference (Modern Networking Technologies)
(MoNeTeC), pp. 1–6, Oct 2014.

 69. Chan, Y.-C., Wang, K., & Hsu, Y.-H. (2015) Fast controller failover for multidomain software-
defined networks. In: Networks and Communications (EuCNC), 2015 European Conference on
IEEE, 2015, pp. 370–374.

 70. Gramoli, V., Jourjon G., & Mehani, O. (2015) Disaster-tolerant storage with SDN. In: International
Conference on Networked Systems, pp. 293–307, Springer, 2015.

 71. Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A., et al. (2011) OFRewind: Enabling Record
and Replay Troubleshooting for Networks. In: USENIX Annual Technical Conference, (Portland,
OR, USA), June 2011.

 72. Scott, C., Wundsam, A., Whitlock, S., Or, A., Huang, E., Zarifis, K., & Shenker, S. (2013) How did
we get into this mess? Isolating fault-inducing inputs to SDN control software. Tech. Rep. UCB/
EECS-2013–8, EECS Dept., University of California, Berkeley, 2013.

 73. Handigol, N., Heller, B., Jeyakumar, V., Maziéres, D., & McKeown, N. (2012). Where is the
debugger for my software-defined network? In: Proceedings of the first workshop on Hot topics in
software defined networking, pp. 55–60, ACM, Aug. 2012.

 74. Chen, H., Cheng, G., & Wang, Z. (2016). A game theoretic approach to elastic control in software-
defined networking. China Communication, 13(5), 103109.

 75. Cheng, G, Chen, H, & Wang, Z, et al. (2015) DHA: distributed decisions on the switch migration
toward a scalable SDN control plane. In: IFIP Networking Conference. IFIP, 2015, pp. 473–477.

 76. Yu, J., Wang, Y., & Pei, K., et al. (2016). A load balancing mechanism for multiple SDN control-
lers based on load informing strategy. In: Network Operations and Management Symposium, 2016,
pp. 1–6.

 77. Cello, M., Xu, Y., & Walid, A., et al. (2017). BalCon: A distributed elastic SDN control via effi-
cient switch migration. In: IEEE International Conference on Cloud Engineering, 2017, pp. 40–50.

 78. Bessani, A., Sousa, J., & Alchieri, E. E. P. (2014). State machine replication for the masses with
bft-smart. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pp. 355–362, June 2014.

http://openreplica.org/

3538 G. Lakhani, A. Kothari

1 3

 79. Zhou, Y., et al. (2018). Elastic switch migration for control plane load balancing in SDN. IEEE Access,
6, 3909–3919.

 80. Guo, Z., et al. (2014). Improving the performance of load balancing in software-defined networks
through load variance-based synchronization. Computer Networks, 68, 95–109.

 81. Wang, C., Hu, B., Chen, S., Li, D., & Liu, B. (2017). A switch migration-based decision-making
scheme for balancing load in SDN. IEEE Access, 5, 4537–4544.

 82. Fonseca, P., & Edjard, M. (2017). A survey on fault management in software-defined networks. IEEE
Communications Surveys and Tutorials, 19, 2284–2321.

 83. Liang, C., Kawashima, R., & Matsuo, H. (2014). Scalable and crash-tolerant load balancing based on
switch migration for multiple open flow controllers. In: Proceedings 2nd Int. Symp. Comput. Netw.
(CANDAR), 2014, pp. 171–177.

 84. Hu, T., et al. (2017). EASM: Efficiency-aware switch migration for balancing controller loads in soft-
ware-defined networking. Peer-to-Peer Networking and Applications, 12, 1–13.

 85. Cui, L., Yu, F. R., & Yan, Q. (2016). When big data meets software-defined networking: SDN for big
data and big data for SDN. IEEE Network, 30, 58–65.

 86. Hakiri, A., & Berthou, P. (2015). Leveraging SDN for the 5G networks: Trends, prospects and chal-
lenges. CoRR, vol. abs/1506.02876.

 87. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., et al. (2013). B4: Experience with a
globally-deployed software defined WAN. SIGCOMM Computer Communication Review, 43, 3–14.

 88. Lakhani, G., & Kothari, A. (2020). Coordinator controller election algorithm to provide failsafe
through load balancing in Distributed SDN control plane. In: Proceedings of the 1st Springer CCIS
series conference, COMS2, March 2020.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Mr. Gaurang Lakhani has completed his M.E.(CSE) from Gujarat
Technological University Ahmedabad in 2013. And joined Ph.D. from
2014 in same University. His main area of research in Distributed
SDN. He had published seven National/International research papers.
Mainly Interested computer Networks, Network/ Information security,
Distributed computing, Worked as reviewer /session chair in National
level Conferences. Worked as committee members in GTU academic
activities.

3539Fault Administration by Load Balancing in Distributed SDN…

1 3

Dr. Amit D. Kothari has completed his PhD from Hemchandracharya
North Gujarat University, Patan,Gujarat in 2011. During Ph.D. his
research area was routing protocols for Mobile Adhoc Network
(MANet). Six students are pursuing their Ph.D. research work under
him. More than 13 National/International research paper are published
Delivered expert talk at many universities during 15 years of profes-
sional carrier. His interest area is—Computer Network, Network/Infor-
mation Security, Parallel/Distributed Computing and artificial intelli-
gence. He offers his service as a book reviewer for McGrew Hill
publication. He is invited as member of Doctorate review Committee
at many universities.

	Fault Administration by Load Balancing in Distributed SDN Controller: A Review
	Abstract
	1 Introduction
	1.1 Scalability Issue
	1.2 Robustness Issue

	2 Classification of SDN Controllers
	3 Fault Management Issues in Distributed Controllers
	3.1 Data Plane (Infrastructure Layer)
	3.1.1 Network Failure Discovery and Position
	3.1.2 Network Failure Recovery

	3.2 ControlInfrastructure Interface
	3.2.1 Control Network Failure
	3.2.2 Controller-Switch Dependable Communication
	3.2.3 Controller Position
	3.2.4 Controller Failover

	3.3 Control Layer
	3.3.1 Inter-Controller Consistency
	3.3.2 Control Plane State Redundancy
	3.3.3 Distributed Data Store
	3.3.4 Control Plane State-Update Messages
	3.3.5 Event Replication
	3.3.6 Traffic Replication

	3.4 ApplicationControl Interface
	3.4.1 Application Failure Separation
	3.4.2 Control Plane State Fault Tolerance

	3.5 Application Layer
	3.5.1 Application Design
	3.5.2 Application Correctness

	3.6 ApplicationControlInfrastructure Interface
	3.6.1 Network Precision Destruction
	3.6.2 Network Investigating

	4 Switch Migration in Distributed SDN Controller
	4.1 Elastic Control (ElastiCon)
	4.2 Game-Theoretic Approach
	4.3 Distributed Decisions Scheme
	4.4 Load Informing Strategy
	4.5 Balanced Controller (BalCon)
	4.6 Load Fluctuating Based Synchronization (LVS)
	4.7 SMDM (Switch Migration Based on Decision Making Scheme)
	4.8 Scalable and Crash Tolerant SDN Controller

	5 Future Work—Fault Management in Distributed Controller
	5.1 Data Plane
	5.2 Control Plane
	5.3 Application Plane

	6 Proposed Fault Tolerance Plane in the SDN Stack
	7 Conclusion
	References

