
Vol.:(0123456789)

Wireless Personal Communications (2020) 114:93–111
https://doi.org/10.1007/s11277-020-07352-9

1 3

An Adaptive Covariance Matrix Based on Combined Fully 
Blind Self Adapted Method for Cognitive Radio Spectrum 
Sensing

Rakesh Singh Rajput1 · Rekha Gupta1 · Aditya Trivedi2

Published online: 30 April 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The main aim of this paper is to analysis and simulate existing methods such as energy 
detection, Maximum–Minimum Eigen value detectors (MME), MME with blind two stage 
detector and compare with the proposed adaptive covariance threshold method. This com-
parison is being made keeping in mind the complexity and accurateness in the terms of 
the sensing receiver operating characteristics curve. The influence of signal bandwidth of 
signal in comparison to the bandwidth of observation is done for every detector. As of 
the MME detector, the ratio between the bandwidth of the signal and the bandwidth of 
the observation is observed to be 0.5 when the reasonable values are used. The perfor-
mance of the adaptive covariance threshold with combined full blind self-adapted detector 
are simulated on Matlab. The proposed method of detector shows a superior performance 
values when compared to three individual detectors. The performance metrics of proposed 
method are performed better than other three individual detector.

Keywords Cognitive radio · Spectrum sensing · Maximum–minimum Eigen value 
detectors · Low SNR environment

1 Introduction

There has been an immense amount of development and expansion in the arena of wire-
less services nowadays. With its increasing popularity, comes the increase in demand for 
higher bandwidths that can fulfill the need for soaring data rates, therefore, creating a 
situation of spectrum scarcity [1]. In such a situation, there is a dearth of adequate radio 
spectrum that can easily manage the ever-increasing mobile data traffic. Many studies 
have also found out that several of the radio spectrums are also being under-utilized 
by the existing systems [2–4]. So the problem that is being faced is that, on one hand, 
there is inadequate radio spectrum that can manage all the wireless services while on 
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the other hand, the existing systems are not properly utilizing the available radio spec-
trums. This has led to the introduction of a radio system based on the DSA (dynamic 
spectrum access) that is being one of the important attributes of CR (cognitive radio) 
system. Here, a radio enabled device can alter its transmission accepting parameters to 
adjust according to the prevalent or upcoming changes in the radio environment [5].

The foremost challenge that DSA faces is regarding detection of free of the spec-
trum-hole use. Such a spectrum hole can easily be detected with the help of either sens-
ing of spectrum technique, geolocation database, else with signals of beacon [6]. With 
the aid of sensing of the spectrum, one can easily measure the signal inside a band and 
can also find out whether a signal is present or absent [7]. Spectrum sensing can be clas-
sified into 2 categories namely non-blind and blind. In the non-blind kind of sense, that 
device which is actually doing the sensing have an idea about some of the features of the 
licensed user i.e. the PU [8–10]. The PU signals can be sometimes totally unknown or 
might be computationally expensive so cannot be restored. In the blind sensing method, 
the PU signal features are absent and that is what is needed to detect the signals [11].

The other method used for detection is the ED (energy detection) method. In this 
method, the signal energy that is received is compared and assessed with the noise 
energy. ED can be categorized as both blind as well as non-blind. It is blind considering 
the required amount of knowledge regarding signals and it is non- blind given the fact 
that for ED noise energy is still needed to be identified [12–15].

This paper presented an energy detection and MME (maximum–minimum Eigen-
value) has been introduced such as is known as the two-stage combined detector. The 
2EMC is modeled on the multistage spectrum sensing technique where both accuracy 
and complications are compromised [16–18].

2  Literature Review

The main driving force behind adopting a multistage detector is there to utilize of all 
the benefits of each of the detectors basing on the signals obtained by each of them. The 
main advantage of this detector is primarily the SNR, whose higher values make the 
initial stages simpler. However, when the SNR gives lower rates, the simplicity compro-
mises the sensing accuracy.

It has been observed that the accuracy of detection of signal varies with changing 
sampling rate. The DFT filter bank utilized to adjustments the sampling rate depending 
on the expected SNR of every detector [19]. The ED uses this as the foremost detection 
stage and cyclo-stationary as the 2nd stage if nothing is identified during the 1st stage 
[20]. In case of the recommended algorithm, if the signal absence is declared in the first 
stage only then SNR is calculated and the second stage is based on that, or else the cal-
culations of the first stage are taken into consideration [20, 21]. The two-stage detector 
differs from the proposed algorithm in the sense that SNR based estimation is carried 
out firstly and then the cyclo-stationary or energy identification is done depending on 
the SNR based estimations [22]. While in a 2-stage fuzzy, the method of detection of 
logic is commenced. In the 1st stage, there are individual detections carried out by vari-
ous CR’s by means of the different methods for detection. The 2nd stage combines the 
sensing results obtained from the 1st stage and uses fuzzy logics to estimate the pres-
ence or lack of a signal [23].
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Algorithms detecting multistage spectrums are classified into three categories. The first 
one is a sequential multistage spectrum, in which there is a serious connection between the 
different detection stages.

The energy detection is implemented in the 1st phase, and a covariance absolute value 
(CAV) detector is utilized in the 2nd stage if energy detection estimate signal absence [24].

In the 1st-stage ED is utilized to kind the channels established on SNR values and 
cyclo-stationary detection is utilized for low SNRs in the channels [25–27].

Each of the stages can be performed or skipped based on the outcome obtained from the 
previous phases. The 2nd phase is the parallel kind of detection wherein different detectors 
are utilized at the same time to continue with the detection and then the final decision is 
taken based on the combination of all these parallel kind of decisions. The 3rd category 
is where parallel or sequential kind detection is used along with SNR based estimation. 
Sequential multistage sensing faces computational complexities that are dependent on the 
SNR; the advantage is when a high SNR estimation is received. Alternatively, the parallel 
kind of sensing takes the similar time irrespective of the SNR and takes its decision basing 
on the contributions from every stage. This study paper focuses on sequential multistage 
sensing technique.

3  Motivation and Contribution

This paper lists the points that have not been addressed by authors to the best of their 
knowledge regarding sequential sensing. The various points are as follows:

1. Development of a full blind multistage detection based on adaptive covariance threshold 
method. It has been observed that several multistage detectors have a blind stage but 
none of the have adaptive covariance threshold method. The proposal laid by this paper 
regarding the full blindness of adaptive covariance threshold detectors is as follows:

(a) Using MME and 2EMC in the second stage detection in two different cases.
(b) Making use of noise detection wherein noise estimation is done by MME, 2EMC.
(c) Proposed method compared with their existing method respectively.

2. The previous studies do not lay much emphasis on the impact of other parameters apart 
from SNR. This study paper analyses on how both of the bandwidth of signal and the 
bandwidth of observation are important and the impact on the performance of the ED, 
MME as well as the 2EMC.

3. The combined kind of detector on the existing methods have been proposed through 
this paper is well tested with the help of simulation matrix and mathematical equation 
proof [28].

4  Spectrum Sensing Methods and Methodology

Here, presented the system model with some of the theoretical features, which is utilized 
through the paper.
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4.1  System Model

In our findings, we used a received signal x(n) of SU users. Here the cognitive receiver’s 
general discrete signal is shown as:

Here s(n) and x(n) represents the primary signal of PU and received signal of SU respec-
tively; (n) denotes the background noise; N denotes the size of the sample. Here the noise 
is assumed to be AWGN or Gaussian white noise that has a variance �2

0
 and () could be a 

stochastic signal that represents channel features including multipath and fading. The sam-
ples of primary signal s(n) can be demonstrated as a Gaussian random process with �2

s
 

variance. Therefore, the signal to noise ratio (SNR) is

The problem of spectrum sensing is said to be the binary hypotheses. Here  H0 repre-
sents the absence of the signal that is primary. To accomplish the higher protection to PU, 
 Pd should be high, whereas  Pf should be as small as possible to maximize the throughput 
of SU. Figure 1 demonstrations of the sequential multistage model for spectrum sensing.

(1)
H0 ∶ x(n) = �(n)

n = 0, 1,… ,N − 1

(2)H1 ∶ x(n) = s(n) + �(n)

(3)SNR = �2

s
∕�2

0
.

Fig. 1  Sequential multistage 
model for spectrum sensing
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The probability of false alarm Pfa and probability of detection  pd is formulated as

4.2  Detection Methodology

4.2.1  Energy Detector

The samples of signal have being squared up and then added up to evaluate the energy of 
signal in the ED. Let’s say, the energy of signal is estimated from the given values of N that 
is received signal.

Later,  xj and  sj represent the received-signal with noise signal respectively. Following 
the estimation of the energy signal is consequently contrasted against the components of 
the energy related to noise-only in the spotting band. Therefore, the below stated conclu-
sion is stated as:

where � is the detection threshold. The outcome of the ED is in the form of Chi square 
distribution, than may be estimated as being Gaussian distributed assuming that the 
N → ∞ [26, 29], stay on the estimation, the Pd versus Pfa of the ED. The Pfa for the ED pE

f
 

achieved by

Here Q(·) is the Q function demonstrating the cumulative distribution function (CDF) of a 
Gaussian random process as well as �2

z
(noise variance).

Here  Q−1(·) representing inverse function of Q.
After calculating the ρ from Eq. (7), based on the ρ value calculate the probability of 

detection ( pE
d
 ) using the following formula:

As for the ED complexity, the multiplication operations of N are needed to square up 
the samples received, as well as (N−1) summations are required in summing them up alto-
gether. Thus, the complexity of the ED, CE is achieved as

(4)
Pfa = Pr

(
H1|H0

)
pd = Pr

(
H1|H0

)
}
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4.2.2  Maximum–Minimum Eigenvalue Detector

The Eigenvalues distribution of the covariance matrix is offered an interactive process of 
research in the theory of random matrix [30; 31]. In general, the theory of random matrix 
and in particular, the distribution of covariance matrix Eigenvalue, are broadly utilized to 
solve the problems related to wireless-communication [32].

Many techniques have been established based on the eigenvalues and eigenvectors of 
the received signal covariance matrix for spectrum sensing. In addition to MME methods 
include the signal energy with minimum and maximum eigenvalue for generalized likeli-
hood ratio test. Elaborated elucidations of the procedures are incorporated. This segment 
of this research paper offers one of these techniques of eigenvalue-based detection, such 
as, MME, that is established within [17] and [18]. The first step to compute the MME is a 
sample covariance matrix (SCM) R̂x as

With (·)H representing the Hermitian. From Eq. (10) R̂x , is calculating and here L eigenval-
ues indicated λ1, λ2… λL, where λ1 > λ2 > … > λL, are achieved. Subsequently, a detection 
threshold (Λ) is measured as:

where Pfa for MME is ( 
(
PM
f

)
 , and F−1

1
 (·) represented the inverse Tracy–Widom distribu-

tion order 1.

As follow the Ref. [18], the pd values for MME is indicating PM
d

 and the computation is 
very complex. So make the process easier empirical formula is found in [18].

The bandwidth of the signal is one of the important factors which influence the accu-
racy of sensing of the MME [33]. We have first introduced the following terms and the 
notations. The bandwidth observed happens to be the bandwidth of the elements as the 
recipient captured and is designated to be B. The occupation bandwidth observed when 
comprises of the mixture of the signal as well as noise, whereas the other part of the band-
width observed consists of the components being noise. The ratio of the occupation band-
width to the designated by β = (b/B). In the blind sensing, the underlying assumption is that 
β is unidentified and isn’t computed; thus, the detection is being done individually, but is 
affected by β [33]. For the Gaussian form of signals, at β = 1, the signal as well as the noise, 
summed up on top of one another. As a result, the resulting outcome of this summation of 
the variance ( �2

s
+ �2

s
 ) [34]. Thus, the null hypothesis  H0 will be stated when no signal is 

there else when a Gaussian signal exists there engaging the whole observation bandwidth. 
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N
XXH
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In the 2 cases, the detection probability is at its minimum, that is, 0000, the false alarm 
probability. Consequently, the MME detection probability is found to be a concave func-
tion relating to β. As of [33], the below relations are being proven:

As affirmed in [18], to the MME computational complexity context, the governing two 
MME procedures are erecting the SCM, in (13), as well as attaining the L Eigen values of 
the SCM by decomposition of singular value. To determine the SCM (since its Toeplitz 
Matrix [18]), evaluating the 1st row only that is required. It needs N number of multiplica-
tions as well as (N − 1) summations. Thus, evaluating the 1st row of the SCM has the com-
plication of O(N). The 2nd procedure of carrying out decomposition of singular value has 
the complexity of O  (L3) [35]. Coalescing of the two procedures would have outcome of a 
MME complexity  CM as

4.2.3  Maximum–Minimum Eigenvalue with Combined Detector Solution

Generally, MME surpasses ED as of the detection probability. This benefit of MME over 
ED with regard to the detection probability is traded off against the complexity of sensing. 
As given in (9) and (15) equations, the MME executes the sensing at an order of  (L3) extra 
operations contrasted with the ED.

The detection probability of a 2-staged detector is devised in [21] as well as [22]. From 
the detection process flow in the sensing of sequential multistage spectrum, the detection 
probability relationship in [21] and [22] is designated pd(γ) and may be universalized for a 
detector of M-stage as

Likewise, the false alarm probability for a 2-staged detector is establish to be within 
[21] and [22] as well as universalized for a detector of M-stage. Designate this universal-
ized false alarm probability as  pf, that is

In context to the prior shown contrast, if a completely blind detector is intended for, 
then we require to make a decision about which detector to use and when. How so ever, 
completely blind will depict that the detector doesn’t know the received SNR range to 
be expected, the occupation bandwidth values, and moreover, the noise energy within 
the interest band. Thus, a detector that obtains benefit from each of the detectors hav-
ing no prior information of the conditions of the signal received is required. A 2-staged 

(13)argmin
(
pM
d

)
= [0, 1]

�

(14)argmix
(
pM
d

)
= 0.5

�

(15)CM = O(N) + O
(
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ED–MME combined detector has been built up in this research paper that is elucidated 
in a detailed manner later. Henceforward, the combined detector thus developed is 
known as 2EMC that stands for 2-staged EMM combined detector. Figure 2 represent-
ing the system model diagram of the 2EMC.

From Eq. (17), the pfa for the 2EMC denoted pC
f
 is obtained as

As in Eq. (18), if a specific Pfa is represent for the ED below the limit of pfa is fixed 
for the 2EMC, consequently the MME Pfa is found as

As in Eq. (19a), there are the combinations of pM
f

 and pM
f

 in infinite number to attain 
a particular value of pC

f
 . If the pE

f
 value happens to be too elevated, consequently the 

ED would be capable to spot signals of weaker manner and would be utilized more. 
The complexity of the 2EMC on the whole would be diminished. It would craft the 
MME less proficient since the false alarm probability would be too low, and it would 
not be able to spotting signals with less values of SNR. Whereas, for too low pE

f
 values, 

the stage of ED needs high value of SNR to be capable of detecting, and mostly, it will 
entrust the decision over to the MME, which makes the ED less useful and consequently 
2EMC further complex. To solve this problem, a halfway solution with equivalent Pfa 
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Fig. 2  The model of the 2EMC detector



101An Adaptive Covariance Matrix Based on Combined Fully Blind…

1 3

of the ED and MME both are put into this method. Therefore, with the solution (18), the 
Pfa for both the stages are ascertained to be

Based on (15), the pd of the 2EMC indicated as pC
d
 is related to pE

D
andpM

d
 as

4.3  Proposed Adaptive Covariance threshold Detection Method

Now the proposed Adaptive Covariance threshold-based detection (ACTD) scheme can be 
summarized as:

• Select the L (smoothing factor) and  Ns (number of samples).
• Obtain the sample covariance matrix of the received signal by SU using Eqs. (4–5) from 

energy detection phase.
• Measure the test statistics using Eqs. (21) and (22):

where  rnm  (Ns) is f the sample covariance matrix Rs  (Ns).

• Achieved the complete correlation strength (γL) between the sequential L samples in 
Eq. (23), considering 30 sensing interval i.e. N = 30Ns.is defined as:

where N represents total no. of samples including previous sensing intervals making 
N ≫ Ns

• Compute the best decision threshold Y∗ for indicated spectrum deployment ratio in 
Eq. (24).
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where α1 represents the correlation between signal samples. Figure 3 shown the systematic 
diagram of the proposed work. It can be noted that, under hypothesis  H1, the overall corre-
lation between the sequential L samples can be obtained from the off-diagonal fundamen-
tals of the sample covariance conditions  Rx  (Ns) and  T2 (Ns) it can be written that:

• Achieve the test statistic.

• Takings the sensing conclusion as:

where the decision D = 0 designates when the PU is absent,where decision D = 1 means 
that primary user is active.

5  Simulation and Numerical Results

This paper present the simulation of Energy-Detection (ED), ED with Maximum–Mini-
mum Eigenvalue (MME), ED-MME with combine detector (2EMC) and Noise estima-
tion with MME Spectrum Sensing Methods. All these methods are proposed based on the 
Covariance based Adaptive threshold detection (ACTD). The results presented in this paper 
demonstrate the performance of the proposed Adaptive Covariance threshold-based detec-
tion (ACTD) approach. The existing approach are compared with the proposed covariance 
(ACTD) based spectrum sensing schemes. The method of spectrum sensing are proposed 
and compare to each other respectively such as ED with ED-ACTD, ED-MME with MME-
ACTD, 2EMC with 2EMC-ACTD and last on NMSE with NMSE-ACTD based spectrum 
sensing scheme are also simulated and compare the performance to each other respectively.

In our experiments, we proposed to solve two probabilities that are concerned with 
detection which is  Pd and false alarm as represented by  Pf.

Here,  Pd is concerned with the algorithm probability that accurately detects if primary 
signals are present or not under  H1 hypothesis.  Pf relates to the false algorithm relating to 
the declaration of the primary signal. During the transmission mode of the PU, the SU has 
to leave the band. This results in false alarm low probability resulting in higher reusability 
of bands that are unoccupied. Similarly, if the probability detection is high then, PUs is 
detector better (Table 1).
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In the experiment, the number of samples (N)is a sensing interval, which is vary from 
1000 to 5000, the parameter L is taken as 5, 20 and 50.

Various simulations scenarios on the different SNR approaches were done.  H0 
hypothesis is kept as constant independent of the size of the sample. The ratio of the 
false alarm is kept as invariant. The size of sample could have an influence on the prob-
ability of detection in hypothesis  H1.
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Fig. 3  The model of the proposed detector
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When the performance of ED, MME and 2EMC are concerned without applied adap-
tive covariance threshold method, they are evaluated based single test statics T (Y) and 
threshold by considering the probabilities of false alarm and detection. It is denoted by 
using Pd and Pf.

Experiments of Monte Carlo are done for about 5000 runs L = 1000. The detec-
tion performance curves versus false alarm probability of energy detection and proposed 
energy detection with covariance threshold with different SNR (dB) in Figs.  4 and 5 
respectively, where the primary and the binary phase shift keying BPSK signal is modu-
lated with frequency carrier of fc = 40 kHz. Here the sampling frequency fs = 100 kHz 
and the sampling time is t = 5 ms.

It is seen that the performance is different based on the SNR values but as SNR value 
increases in the simulation with respect SNR probability of detection increased respec-
tively. The performance of energy detection with covariance threshold method versus 
Pfa based on the SNR (dB) variation having higher values of  Pf as compared to the 

Table 1  Simulation parameter Parameters Values

Operating System Windows
Matlab version 2015b
L 5, 20, 50
N 5000, 1000
SNR_dB − 20, − 14, − 12, − 10, − 8
Β 0.5:0.05:1
Algorithm ED, ED–ACTD, MME, MME–ACTD, 

2EMC, 2EMC–ACTD and noise 
estimation

10-2 10-1 100
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0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

O
f D

et
ec

tio
n

SNR= -20dB
SNR= -14dB
SNR= -12dB
SNR= -10dB
SNR= -8dB

Fig. 4  Detection performance versus false alarm probability of ED and ED-ACTD with different SNR (dB) 
and sample Size (N = 5000)
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existing energy detection method. The performance of ED is deeply degraded at low 
probability of false alarm and high SNR.

As shown in the Figs. 4 and 5, the simulated energy detection with ACTD performance 
higher at the value of SNR is − 6 dB.

Figures 6 and 7, shows the performance curves of detection. Here the MME and MME-
ACTD performance is calculated for different level of SNR where SNR is (− 20, − 14, 
− 12, − 10 and − 8) as concerned with the constant probability of false alarm. The method 
of MME-ACTD is better than the method of MME.

The detection performance comparison curves versus false alarm probability of 2EMC 
on the basics of the SNR (dB) in Figs. 8 and 9. It is seen that the performance is changing 
based on the SNR (dB) but the false alarm is constant. As we can conclude the detection 
probability is decreasing as SNR (dB) value is increasing but 2EMC–ACTD have higher 
efficiency as compare to the 2EMC and MME.

Moreover, for a variation in SNR, the detection probability performance is higher at 
(− 8 & 10 dB) and worst performance at (− 20 & 14 dB) SNR. As compare to above two 
method low SNR region is not acceptable.

The main indication of the 2EMC method of spectrum sensing is to implement a prob-
ability detection  (pd) over the high value of SNR and later on move to low SNR values 
where probability detection is very complex. In this algorithm first energy detection per-
formed, if yes then assumed SNR value is high and signal presence. If not, then SNR value 
is low and signal is signal not existence, only noise is received.

After that 2nd phase start of detection using MME algorithms, here probability for 
lower SNR are achieved highly with the high complexity.

Figures  10 and 11 shows estimated noise versus β with N = 5000, 1000 and L = 5, 
10, 50. For the various value of β assumptions, energy detection or MME outperform to 
each other, based on the different value of β. Consequently, the 2EMC algorithm shown 
improvement over the every detector where as the β values is unfamiliar.
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Fig. 5  Detection performance versus false alarm probability of ED and ED-ACTD with different SNR (dB) 
and sample Size (N = 5000)
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The Figs. 10 and 11 is generated based on SNR of − 8 dB, N = 5000, pC
f
 = 0.1 and L = 5, 

20. As shown in below figure, detection values is low at low values of β. So here perfor-
mance is checked on the variation of the β values. At the intermediate range of the vales 
MME perform recovering than the energy detections and at high values energy detection 
perform better than MME.
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Fig. 6  Detection performance versus false alarm probability of MME and MME-ACTD with different SNR 
(dB) and sample Size (N = 5000)
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Fig. 7  Detection performance versus false alarm probability of MME and MME-ACTD with different SNR 
(dB) and sample Size (N = 5000)
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6  Conclusion

In this experiment we proved that the scheme that we proposed based on the adaptive 
covariance threshold matrix taking the help of experiments of Monte Carlo. Here we 
also showed that the existing algorithm with adaptive covariance threshold matrix would 
be highly efficient as compared to the existing published algorithms based on the sin-
gle threshold. As compared to them a − 20  dB till − 8  dB improvements was observed 
respectively.
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Fig. 8  Detection performance versus false alarm probability of 2EMC and 2EMC–ACTD with different 
SNR (dB) and sample Size (N = 5000)
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Fig. 9  Detection performance versus false alarm probability of 2EMC and 2EMC-ACTDwith different 
SNR (dB) and sample Size (N = 5000)
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