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Abstract
Wireless sensor networks are used for low-cost unsupervised observation in a wide-range 
of environments and their application is largely constrained by the limited power sources 
of their constituent sensor nodes. Techniques such as routing and clustering are promis-
ing and can extend network lifetime significantly, however finding an optimal routing and 
clustering configuration is a NP-hard problem. In this paper, we present an energy effi-
cient binary particle swarm optimization based routing and clustering algorithm using an 
intuitive matrix-like particle representation. We propose a novel particle update strategy 
and an efficient linear transfer function which outperform previously employed particle 
update strategies and some traditional transfer functions. Detailed experiments confirmed 
that our routing and clustering algorithm yields significantly higher network lifetime in 
comparison to existing algorithms. Furthermore, our results suggest that Binary PSO is 
better equipped to solve discrete problems of routing and clustering than its continuous 
counterpart, PSO.

Keywords Wireless sensor networks · Binary PSO · Routing · Clustering · Network 
lifetime

1 Introduction

A WSN consists of spatially dispersed tiny sensor devices, networked together over a wire-
less medium, and one or more conveniently located powerful sinks collecting information 
from these sensor nodes (SNs). Characterized by their scalability, mobility, fault tolerance 
and simplicity of use, WSNs have emerged as effective low-cost alternatives for unsuper-
vised observation of a wide range of environments, and have been used in diverse areas 
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of application such as agriculture, military, inventory, environment monitoring etc. How-
ever, WSNs and their widespread application is primarily constrained by the limited energy 
sources of SNs. Many novel areas of research such as low-powered energy communication 
hardware [5], energy-aware medium access control [32] etc. have emerged to tackle these 
issues. Energy efficient routing and clustering protocols present a promising solution to 
various energy limitation issues faced by WSNs.

Liu [22] presented an extensive survey on clustering and routing protocols and 
expounded various advantages of clustering such as localization of route setup within 
a cluster and increased scalability of response to events in the environment. Routing in 
WSNs can be classified as flat and hierarchical [22]. While in a flat routing framework all 
nodes have the same functionality, in hierarchical routing different nodes perform different 
tasks. Hierarchical routing WSNs are organized into many clusters, and each cluster com-
prises of a leader referred as the cluster head (CH), and multiple SNs. CHs might transmit 
data to the sink either directly, or indirectly via other CHs through a multi-hop routing 
path. The latter scenario is referred to as a two-tier WSN.

In hierarchical networks, CHs bear the transmission load of multiple SNs and also 
expend energy for aggregating and eliminating redundant data from SNs. This can result 
in their overloading and early death [14]. In this regard, multiple researchers [3, 20, 21] 
suggested using special nodes with extra energy, called gateways. In the remainder of the 
paper, we use the term gateways and CHs interchangeably. Moreover like SNs, CHs are 
also battery-powered and therefore have a limited power supply. In WSNs with static sinks, 
CHs close to the sink can die prematurely since they lie at the intersection of several multi-
hop routes and consequently expend a significant amount of power to transmit huge quan-
tities of information from other nodes to the sink [16]. The death of a CH can potentially 
destabilize the network, disrupt its topology and lead to packet loss. Therefore, it is impor-
tant to balance loads on CHs and SNs in order to prolong the lifetime of a network (Fig. 1).

Both routing and clustering are NP-hard problems. Furthermore, the computational 
complexity of finding an optimal routing and clustering configuration rises as the size of 
the WSN increases. For a WSN having |G| gateways and |S| SNs, if each gateway and SN on 
an average has G and S gateways within communication range, there are |G|G and |S|G pos-
sible routing and clustering configurations, respectively. Therefore, brute force approaches 
are extremely inefficient in solving these problems. In order to obtain good routing and 
clustering configurations efficiently and quickly, meta-heuristic approaches such as BPSO, 
Genetic Algorithms (GA), Ant Colony Optimization (ACO) etc. are highly suitable. In the 
past, meta-heuristic algorithms have shown promising results in finding optimal routing 
and clustering configurations [20, 21, 27].

In this paper, we develop routing and clustering algorithms based on Binary Particle 
Swarm Optimization (BPSO). We chose BPSO partly since its continuous counterpart, Par-
ticle Swarm Optimization had performed extremely well in solving the routing and cluster-
ing problem  [20], and more so because we expect BPSO to be better suited for the opti-
mization problems at hand by virtue of its discrete nature. Experimental results comparing 
both the algorithms confirm the superior optimization performance of BPSO over con-
tinuous PSO (Sect. 7.6). However, using BPSO is not straightforward owing to the multi-
dimensional nature of routing and clustering. In particular, routing and clustering require a 
unique two-dimensional particle representation different from the uni-dimensional represen-
tation that traditional applications of BPSO use (Sect. 6.1.2). The new particle representa-
tion also necessitates new velocity and position update strategies that take into account the 
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two-dimensional nature of the particles (Sect. 6.1.4). In this paper, we propose a novel sto-
chastic position update strategy and note significant improvements in the optimization pro-
cess over its alternative, the max update strategy proposed by Izakian et al. [15] (Sect. 7.4). 
Still, the velocity matrices lie in a continuous space, while the routing and clustering configu-
rations are discrete in nature, and therefore BPSO uses a transfer function to map a continu-
ous search space into a discrete binary space (Sect. 6.1.8). To this end we propose a novel 
linear transfer function �L which is not only computationally simple but also outperforms 
traditional alternatives such as sigmoid �S and hyperbolic tan �T transfer functions in terms of 
network lifetime (Sect. 7.3).

In order to evaluate routing and clustering configuration, prior work Kuila and Jana [20] 
usually deploy CHs and SNs uniformly randomly across the deployment region. However, 
rigorous experiments on the uniform deployment revealed that the CHs closer to the base sta-
tion expend a huge amount of energy to forward incoming packets from other CHs, and thus 
die quickly. To this end, we also examined a random Gaussian deployment of gateways to 
increase their number around the base station, and found the that it increases the network life-
time significantly.

Thus, our major contributions can be summarized as follows:

• BPSO based routing and clustering algorithms along with carefully designed fitness func-
tions and a novel particle representation. In particular, we model the lifetime of a WSN in 
terms of its constituent CHs, and devise fitness functions which can effectively prolong 
network lifetime.

• A novel stochastic particle position update strategy to drive the optimization process in a 
efficient manner.

• A novel computationally-simple linear transfer function �L that outperforms traditional 
non-linear transfer functions (sigmoid �S and hyperbolic tan �T ) in terms of metrics such as 
network lifetime.

• A detailed performance comparison of discrete BPSO and its widely-used continuous 
counterpart PSO, highlighting the former’s superior performance in solving the consid-
ered optimization problems.

• An analysis of a gaussian strategy for randomly deploying CHs in the sensing area. The 
gaussian strategy effectively balances the load of CHs near the base station.

The paper is organized as follows. Relation to prior work is presented in Sect. 2. Section 3 
provides a brief overview of binary particle swarm optimization. Section  4 discusses the 
energy model and terminologies, while Sect. 5 formulates the problem statement. Section 6 
discusses the proposed algorithms. The experimental setup and detailed experimental results 
are given in Sect. 7 and we conclude the paper with avenues of future work in Sect. 8.

Fig. 1  A two-tier WSN
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2  Literature Review

A lot of research has been done in last few decades to achieve an energy efficient WSN. 
Heinzelman et al. [14] proposed a low energy adaptive clustering hierarchy (LEACH). A 
drawback of LEACH is that the CHs are selected without considering the crucial parameters 
like residual energy which makes the algorithm inefficient in some cases [23]. Heinzelman 
et  al. [14] presented LEACH-C where the base station takes the responsibility of cluster 
formation. In Younis and Fahmy [33] another extension to LEACH protocol, hybrid energy 
efficient distributed clustering (HEED) is proposed. HEED mainly focus on the residual 
energy of each SN. Souissi and Meddeb [26] proposed a weight based clustering algorithm 
which minimizes intra cluster distance. Later, Tang et  al.  [28] proposed the concept of a 
high energy relay node to be placed between CHs for long distance communication. Car-
dinality of CHs was proposed by Gupta and Younis [10] where cardinality was defined in 
terms of number of SNs associated with a CH. Many approaches have been used in which 
nature inspired algorithms are used to improve the WSN lifetime. Kuila et al. [21] proposed 
a genetic algorithm based load balancing, clustering algorithm. Heinzelman et al. [13] pre-
sented a single hop routing model in which direct transmission of energy takes place during 
the routing process. A minimum hop model was proposed by Gupta and Younis [11]. They 
emphasized on finding a multi hop route which minimizes the number of hops required to 
send data from a SN to the sink. Heinzelman et al. [14] presented a random routing model 
where a SN i randomly selects the next hop j, given that j is in transmission range of i and 
is located close to the sink. Bari et al. [3] used GA for WSN routing. Later, Gupta et al. [12] 
proposed another routing algorithm that uses GA for minimizing network energy dissipa-
tion. Kuila and Jana [20] try to find a tradeoff between number of hops and transmission 
distance in such a way to find equilibrium between delay and transmission distance. Srini-
vasa Rao and Banka [27] proposed an energy efficient clustering approach using a chemical 
reaction optimization approach. The gravitational search algorithm was used by Ebrahimi 
Mood and Javidi [8] to achieve an energy efficient network. Later, Kaur and Mahajan [17] 
presented a tree based data aggregation protocol to achieve energy efficient WSN.

3  Binary Particle Swarm Optimization: An Overview

Particle swarm optimization (PSO) is a popular optimization technique for non-linear con-
tinuous functions, originally introduced by Kennedy and Eberhart [18, 25]. PSO is inspired 
by flocks of birds and their search for food and shelter, and has been successfully used 
to solve a number of problems [6, 9, 18, 29]. The PSO algorithm comprises of a swarm 
(flock) of dynamic and interactive particles (birds) that intelligently search through a high-
dimensional search space using collaborative trial and error. Each particle represents a 
potential solution to the problem having a randomly-initialized position and velocity. Each 
particle’s velocity governs the next position that it flies to. PSO iteratively improves each 
potential solution based on a measure of quality (called the fitness function), guided by the 
direction of its fittest position (pbest), and the fittest position of any particle in the swarm 
(gbest). The fittest position that a particle has visited thus far (pbest), and the fittest posi-
tion that the swarm has achieved (gbest) represent the cognitive and social components that 
guide the swarm’s search for the solution (food).

A few years later, Kennedy and Eberhart [19] presented the binary version of their 
algorithm for discrete optimization problems. While BPSO inherits all the basic ideas 
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of its continuous counterpart, it defines a particle’s position and velocity in terms of 
changes in probabilities that a bit will be in one state or another. In the binary setting, 
each particle can be viewed as a vertex of a D-dimensional hypercube. Furthermore, the 
velocity of a particle in each dimension denotes the probability that the corresponding 
position bit will be ON (1) or OFF (0). Unlike other optimization paradigms, the position 
of a particle in BPSO is transitory i.e. a particle may have different positions in different 
instances given the same velocity. For example, consider Eq. 6 which maps the velocity 
vt
i,d

 of a particle to its position at the next time step �t+1
i,d

 . Notice that the final position of a 
particle does not depend solely on its velocity, but also on the random number ri,d.

Formally, we denote a particle �i in a D-dimensional space as:

where each xi,d ∈ {0, 1}, d ∈ {1, 2,… ,D} . Each particle �i possesses velocity repre-
sented as:

where each vi,d ∈ [vmin, vmax], vmin and vmax denote the maximum and minimum velocity. 
Let us denote the personal best position of a particle, and the global best position of swarm 
as:

Then, Eqs. 5 and 6 can be used to update the position and velocity of the ith particle’s dth 
dimension at the tth iteration:

where �S(vti,d) =
1

1+e
−vt

i,d

 . � denotes a transfer function (Sect.  6.1.8). Traditionally, BPSO 
uses the sigmoid �S transfer function.

c1 and c2 are positive acceleration constants that govern the influence of the cognitive 
and social components on the search process. Also, r1 , r2 and ri,d are uniform random num-
bers in the range [0, 1]. Algorithm 3 presents the BPSO optimization algorithm for minimi-
zation problems.

4  Energy Model and Terminologies

4.1  Energy Model

We used the simplified first-order radio model Heinzelman et al. [14] to dissipate energy of 
SNs and CHs. In this model, the transmitter expends energy to run the power amplifier and 
transmitter electronics, while the receiver expends energy to run the receiver electronics. 

(1)�i = [xi,1, xi,2,… , xi,D]

(2)Vi = [vi,1, vi,2, … , vi,d]
T

(3)pbesti = [�xi,1, �xi,2,… , �xi,D]
T

(4)gbesti = [gxi,1, gxi,2, … , gxi,D]
T

(5)Vt+1
i,d

= Vt
i,d

+ c1r1(pbest
t
i,d

− �t
i,d
) + c2r2(gbest

t
i,d

− �t
i,d
)

(6)𝜌t+1
i,d

=

{
1 if 𝜉S(v

t
i,d
) > ri,d

0 otherwise
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The energy expended to transmit a l-bit message over the distance d, using free-space and 
multi-path fading channels is given by Eq. 7:

where EElec , Efs and Emp is the energy required by the electronics circuit, and the amplifier 

in the free-space and multipath models respectively and do =
√

Efs

Emp

 . To receive a l-bit 

message, the receiver expends energy as given by Eq. 8:

The electronics energy Eelec depends on a number of factors such as digital coding, 
modulation, filtering and spreading of the signal. On the other hand, the amplifier energy 
Efs and Emp depend on the distance to the receiver and the acceptable bit error-rate.

4.2  Network Model

Our WSN model comprises of a number of immobile SNs and gateways which are deployed 
uniform randomly at the start of the simulation.1 Each SN communicates with a single gate-
way in its communication range, and is said to be assigned to that gateway. These assign-
ments result in clusters of SNs, which allow data from nodes within a cluster to be pro-
cessed locally (in their assigned gateway) and reduce the data that needs to be transmitted to 
the base station. Similar to LEACH [14], the operation of our model is divided into rounds. 
In each round, SNs collect data and send it to their corresponding CH. A CH is a gateway to 
which all SNs of a cluster are assigned. In the remaining sections of the paper, we refer to 
CHs and gateways interchangeably. A CH aggregates data to eliminate redundant informa-
tion and transmits it to the remote base station via the next hop CH. In order to save energy, 
all nodes turn off their radios between adjacent rounds. In the presented model, MAC trans-
missions are accomplished using Time-Division Multiple Access (TDMA) protocol [4].

5  Problem Formulation

Table  1 summarizes the notations used in our algorithms. The lifetime of a WSN is an 
important measure for evaluating different application-specific network configurations. 
Several metrics have been proposed in the literature to measure the lifetime of a sensor 
network [7] based on the number of alive nodes, sensor coverage, connectivity and quality 
of service requirements. Among these, the n-of-n lifetime (Ln

n
) is one the most widely used 

definitions of network lifetime:

In this definition, the lifetime of a network is the time until the first node dies. This is a 
convenient definition since it is easy to compute, and does not have to consider changes 
in topology after the death of the first node. Ln

n
 is used when all the nodes are of equal 

(7)ET (l, d) =

{
lEelec + lEfsd

2, when d < do
lEelec + lEmpd

4, when d ≥ do

(8)ER(l) = lEelec

Ln
n
= min

i ∈ N
Li

1 Gateways can also be deployed using a gaussian distribution centred at the coordinates of the base station. 
We will discuss deployment strategies in greater detail in Sect. 7.
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importance and favours algorithms that uniformly deplete the energy of each node in the 
network [7]. Since it may be either inconvenient or impossible to recharge and replace node 
batteries [14], in this paper, our main objective is to maximize n-of-n network lifetime of a 
sensor network.

The n-of-n network lifetime can be expressed in terms of residual energy of cluster 
heads at the start of network operation and the highest energy expended per round by any 
CH as shown in Eq. 9:

where Eres(ci) is the residual energy of the CH ci , and E(ci) is the energy it expends per 
round. It must be noted that in the real life E(ci) may vary for every round of operation due 
to extraneous factors, however for the sake of simplicity we assume that E(ci) is constant 
throughout the operation of a CH. If the residual energy ( Eres ) for all CHs is equal at the 
start of operation, then the lifetime of a network has an inverse relationship with the high-
est energy expended per round by any CH, as shown in Eq. 10:

where ∀ci ∈ ℂ, Eres(ci) = � . Alternatively, � is called the initial energy of CHs.
Each CH expends energy for receiving data sensed by its member SNs, aggregating the 

data, and eventually sending it to the base station. Furthermore, every CH ci also consumes 
energy to forward data received from any CH cj whose routing path to the base station passes 
through ci . Therefore, the energy expended by each CH has two components: an intra-cluster 
component due to receiving, aggregating and transmitting data sensed by its member SNs, 
and a forwarding component due to relaying data sensed in other parts of the network. The 
intra-cluster component shown in Eq. 11 is formulated using Eqs. 7 and 8 as follows:

(9)Ln
n
= min

i ∈ N
Li = min

ci ∈ ℂ

⌊
Eres(ci)

E(ci)

⌋

(10)Ln
n
= min

i ∈ N
Li = min

ci ∈ ℂ

⌊
Eres(ci)

E(ci)

⌋
≈ min

ci ∈ ℂ

(
�

E(ci)

)

Table 1  A summary of notation

Abbreviation Full form

WSN Wireless sensor network
SN Sensor node
CH Cluster head
BPSO Binary particle swarm optimization

Notation Definition

� Set of SNs such that � = {s1, s2, ...s|�|} , where |�| is the number of SNs in the network
ℂ Set of CHs such that 𝕔 = {c1, c2, ...c|ℂ|} , where |ℂ| is the number of CHs in the network
� Base station
d(ei, ej) A function which returns the Euclidean distance between (ei, ej) ∈ 𝕊 ∪ ℂ ∪ 𝕓

D Communication range of SNs and CHs.
pCHsi

The set of probable CHs of a SN si ∈ � such that pCHsi
= {ci | d(si, ci) ≤ D & ci ∈ ℂ}

CHsi
The CH assigned to si

pNHci
The set of probable next hop CHs of a CH ci ∈ ℂ which are closer to � , such that 
pNHci

= {cj | cj ∈ (ℂ − ci) & d(cj,𝕓) ≤ d(ci,𝕓) & d(ci, cj) ≤ D}

NHci
The next hop relay of CH ci
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where � is the number of member SNs of ci , �ER(l) is the total energy expended by ci to 
receive l-bit messages from each of its � member SNs, and �ED(l) is the total amount of 
energy consumed in aggregating a total of � × l bits of messages from member SNs (each 
member SN sends a l-bit message to the CH) into a fixed m-bit packet which is transmitted 
from the CH ci to the base station. This aggregation mechanism, where SNs transmit l-bit 
messages to their assigned CH, which thereby aggregates all the messages into a single 
m-bit message, follows from prior work [8, 20, 27]. The energy spent on transmitting the 
aggregated m-bits of packet is given by ET (m, d(ci,NHci

)).
Similarly, the forwarding component is formulated in Eq. 12:

where N(ci) is the number of inbound data packets from all CHs cj whose next hop relay is 
ci . We can recursively compute N(ci) as shown in Eq. 13:

The total energy expended by a CH ci is given in Eq. 14:

Therefore, the energy consumed by a CH depends on the number of SNs assigned to it ( � ), 
the number of inbound data packets ( N(ci) ) and the distance between the CH and its next 
hop ( d(ci,NHci

) ). While N(ci) and ( d(ci,NHci
) ) depends on the routing setup, � depends on 

the clustering configuration of the network. By carefully formulating fitness functions for 
routing and clustering, we can effectively minimize the energy consumption for each CH 
and prolong their lifetime. Mathematically,

Essentially, maximizing network lifetime is equivalent to maximizing the lifetime of the 
CH which has minimum lifetime.

6  BPSO‑Based Routing and Clustering

The network is setup in three different phases: bootstrapping, routing, and clustering. First 
each entity (CH and SN) in the network is assigned a unique ID. Next, each entity broad-
casts it’s ID using the Carrier Sense Multiple Access with Collision Avoidance (CSMA/
CA) MAC layer protocol, which allows all the gateways and SNs to collect IDs of entities 
which are within their communication range. This information is then sent to the base sta-
tion which executes the proposed routing and clustering algorithm. The base station utilizes 
the best route returned by the routing algorithm to find the best clustering configuration. 

(11)EC(ci) = � ER(l) + � ED(l) + ET (m, d(ci,NHci
))

(12)EF(ci) = N(ci)ER(m) +N(ci)ET (m, d(ci,NHci
))

(13)N(ci) =

�
0, if NHcj

≠ ci∀ cj ∈ ℂ∑
(N(cj) + 1) otherwise

(14)
E(ci) = EC(ci)

+ EF(ci)

= � ER(l) + � ED(l) +N(ci)ER(m) + (N(ci) + 1)ET (m, d(ci,NHci
))

(15)max(Ln
n
) ∝ max

(
min
ci ∈ ℂ

(
1

E(ci)

))
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Later, each gateway is informed of its next hop relay, while each SN is informed about the 
ID of the gateway that it is assigned to.

6.1  Routing Algorithm

6.1.1  Formulating the Routing Problem

Our main objective for routing is to minimize the forwarding energy EF(ci) of CHs in order 
to effectively minimize their total energy consumption E(ci) and thereby increase their 
lifetime. We must remember that the routing setup influences the essential components of 
EF(ci) , namely the number of inbound packets ( N(ci) ) and the distance between a CH and 
its next hop ( d(ci,NHci

)).

6.1.2  Particle Representation in BPSO

Representing particles is fundamental to designing effective BPSO algorithms since it 
maps a BPSO particle to the solution of a problem. Our particle representations, namely 
the indirect and direct representation, are inspired from Izakian et  al. [15]. In the direct 
representation or alternatively the position vector of a particle, a solution is encoded as a 
1 × m vector where each dimension contains an integer in the closed interval [1, n]. Fig-
ure 2 illustrates the direct representation of a particle representing a routing solution. We 
note the following characteristics of the direct representation: 

1. The length of the vector m is equal to the number of CHs in the network |ℂ|.
2. The ith dimension of the vector is j, if the CH ci routs to cj i.e. NHci

= cj.
3. Since a CH can route to another CH or the base station, each dimension must contain an 

integer in the closed interval [1,m + 1] . The ith dimension of the vector is m + 1 if the 
CH ci routs directly to the base station � i.e. NHCi

= � . Alternatively, we can justify the 
choice of interval [1,m + 1] by arguing that n must be equal to the number of potential 
next hop relays for any CH, and since a CH can route to any entity in ℂ ∪ 𝕓 , we have: 
n = |ℂ ∪ 𝕓| = |ℂ| + 1 = m + 1.

4. In Fig. 2, m = 5 and the CH c1 routs to c2 ; c2 , c3 and c4 route to c5 and c5 routs to the �.

In the indirect representation or alternatively the position matrix of a particle, a solu-
tion is encoded as a n × m matrix, where each cell contains either 0 or 1 representing the 
absence or presence of a communication link. As an example, consider Fig. 3 which illus-
trates the indirect representation of the same routing configuration as Fig. 2. The indirect 
representation of a routing particle has the following properties: 

1. All elements of the matrix have either the value 0 or 1.
2. m is equal to the number of CHs in the network |ℂ| and n = m + 1.
3. M[ci, cj] = 1 if cj routs to ci and 0 otherwise.

Fig. 2  A direct representation of a routing particle (position vector)
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4. In each column of the matrix M only one element is 1 and all other elements are 0. This 
is because a CH cj only routs to a single CH ci.

As apparent from Figs. 2 and 3 , the direct and indirect representations of a particle are 
easily convertible to each other. While the indirect representation results in sparse matrices 
consisting of binary numbers, the direct representation is concise and requires less mem-
ory. While we use the direct representation to encode our particles for both routing and 
clustering, the indirect representation is useful in interpreting velocity matrices.

6.1.3  Particle Velocity, pbest and gbest

Each particle’s velocity can be represented as a n × m matrix where each element lies 
between vmin and vmax . If Vk represents the velocity of the kth particle, then its velocity 
matrix is given by:

The velocity matrix has the same shape as the position matrix, since the velocity Vk(i, j) 
essentially indicates the probability that cj routs to ci.2

Since a particle’s pbest and the swarm’s gbest also represent routing configurations, 
they can be also be represented by direct and indirect representations discussed in the pre-
vious section.

6.1.4  Updating a Particle’s Velocity and Position

Most researchers [1, 24, 30], using BPSO in the past have used uni-dimensional position 
and velocity matrices to represent solutions. However, in this paper we use two-dimen-
sional position3 and velocity matrices to intuitively represent routing and clustering con-
figurations. Figures 3 and 4 concretely illustrate the difference between two-dimensional 
and uni-dimensional position matrices, respectively.

Two-dimensional position matrices require different position and velocity update strate-
gies than their uni-dimensional counterparts, which give rise to the need of new velocity 
and position update strategies.

(16)Vk(i, j) = v ∈ [vmin, vmax] ∀i, j, i ∈ {1, 2,… n}, j ∈ {1, 2,…m}

Fig. 3  An indirect representation 
of a routing particle (position 
matrix)

2 This is true for routing particles. For clustering particles, the Vk(i, j) instead, indicates the probability that 
the SN sj is assigned to the CH ci.
3 A minor implementation detail for the sake of completeness: we use position vectors (direct representa-
tion of particles) instead of matrices to save space. However, a uni-dimensional decimal position vector 
(Fig. 2) is essentially a two-dimensional binary position matrix (Fig. 3) and Sect. 6.1.2.
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6.1.5  A Two‑Dimensional Velocity Update Strategy

The velocity of particles having two-dimensional position matrices can be updated by aug-
menting the velocity update equation used in traditional BPSO (refer Eq. 5) with two posi-
tional indices to refer any element present in the ith row and jth column of its velocity 
matrix. Accordingly, the two-dimensional velocity update strategy is given by Eq. 17:

where Xt+1
k

(i, j) represents the element of the ith row and the jth column of the kth parti-
cle’s position matrix at the t + 1 th time step while Vt+1

k
(i, j) represents the ith row and the 

jth column of the kth particle’s velocity matrix. c1 and c2 are positive acceleration constants 
that govern the influence of the cognitive and social components on the search process. 
Also, r1 , r2 are uniform random numbers in the range [0, 1].

6.1.6  Max and Stochastic Position Update Strategies

In addition to velocity update, the position update strategy is principal to the optimization 
process since it facilitates a particle’s exploration and exploitation of the search space. A 
correct position update strategy for the routing problem must ensure that the updated posi-
tion of a particle represents a valid routing configuration. Therefore, it must ensure that in 
the updated routing configuration: 

1. Each column in a particle’s routing position matrix M must contain a single 1 only.
2. Each gateway must only route to another gateway in its communication range.

Condition 2 can be easily handled by initializing the velocities in each dimension i of 
a column j to negative infinity if ci is not in the communication range of cj , as shown in 
Eq. 18.

Initializing the velocity to negative infinity ensures that any updates to the velocity Vt+1
k

(i, j) 
always results in negative infinity. Furthermore, we constrain our normalizing function � , 
such that it always returns 0 on an input of −∞ i.e. �(−∞) = 0 . This ensures that the 

(17)
Vt+1
k

(i, j) = Vt
k
(i, j) + c1r1(pbest

t
k
(i, j) − Xt

k
(i, j))

+ c2r2(gbest
t
k
(i, j) − Xt

k
(i, j))

(18)Vt+1
k

(i, j) = −∞ ∀i, j s.t. d(ci, cj) > D

Fig. 4  An example of a uni-dimensional position matrix. This position matrix may represent a solution to 
the 0/1 knapsack problem by considering a

i
 to be the ith object, where 1 indicating that the ith object is 

included in the knapsack
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probability that cj routs to ci always remains 0 i.e. Pt+1
k

(i, j) = 0 and therefore, ℕcj
 can never 

take the value i.
A naive position update strategy can be formulated by making the same additions to Eq. 6 

as the two-dimensional velocity update strategy:

where � ∶ [vmin, vmax] ∪ {−∞} → [0, 1] is a normalizing function (detailed explanation in 
Sect. 6.1.8). However, it can be clearly seen that the naive strategy may lead to an invalid 
routing configuration since it has no way of guaranteeing that conditions 1 and 2 hold for 
the updated position of a particle.

To this end, Izakian et al. [15] had proposed what we call the Max position update strategy. 
The Max update strategy however limits the exploration, and therefore results in premature 
convergence to local optima. To overcome its limitations, we propose the Stochastic update 
strategy which encourages more exploration owing to its probabilistic nature (Sect. 7.4). We 
now explain the max and stochastic update strategies in detail.

For each gateway cj , let the random variable ℕcj
 map its next hop NHcj

 to integers in the 
closed interval [1,m + 1] , such that if NHcj

= ci then ℕcj
 , i ∈ [1,m + 1] . Therefore, each col-

umn of the position matrix and each element of the position vector can be summarized using 
random variables ℕ as [ ℕc1

 ℕc2
 ... ℕc|ℂ| ].

Let us consider that we carry out the following transformations in each particle’s velocity 
matrix: 

1. Normalization Pass each velocity element Vt
k
(i, j) through a normalizing function � such 

that it lies in the range [0, 1].
2. Re-scaling Re-scale each column such that the sum of the velocity elements in a column 

is 1.

These transformations result in the Probability Matrix P in which each element P[i, j] rep-
resents the probability that cj routs to ci i.e. P(NHcj

= ci) = P[i, j] . The second transformation 
ensures that sum of the probabilities of all mutually exclusive events such as NHcj

= ci and 
NHcj

= ck is 1. Both the transformations can be summarized in Eq. 20:

Each column in the probability matrix P can be seen as representing a discrete probability 
distribution, which provides the probabilities that a particular gateway routs to another gate-
way in the network or base station. Alternatively, for each gateway cj , the random variable ℕcj

 
has a probability distribution given by the jth column of the probability matrix P.

(19)Mk(i, j)
t+1 =

{
1 if 𝜉( Vt+1

k
(i, j) ) > r

0 otherwise

(20)Pt
k
(i, j) =

�(Vt
k
(i, j))∑m

i=1
�(Vt

k
(i, j))

, ∀i ∈ [1, n], j, ∈ [1,m]
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Algorithm1: Max Position Update Strategy
Input: Probability matrix (P )
Output: Arouting solution: Sr = {ci ∀j ∈{ 1, 2, 3... C|} such that ci = NHcj

1 begin
2 Initialize Sr ← φ
3 for j ← 1 to |C| do
4 NextHop j ←0
5 MaximumProb j ←0
6 for i ← 1 to |C| +1 do
7 // |C| +1 denotes the base station
8 if P [i][j] >MaximumProb j then
9 MaximumProb j ← P [i][j]

10 NextHop j ← i

11 end
12 end
13 Sr ← Sr ∪NextHop j

14 end
15 return Sr

16 end

Given the Probability Matrix P of a particle, the Max [15] and Stochastic strategies 
update the positions of particles as follows:

• Max Position Update strategy Izakian et al. [15] proposed the following equation for 
updating a particle’s position: 

where Xt+1
k

(i, j) represents the element of the ith row and the jth column of the kth parti-
cle’s position matrix at the t + 1 th time step while Pt

k
(i, j) represents the ith row and the 

jth column of the kth particle’s probability matrix at the same time.
  Therefore, Eq. 21 assigns ci as next hop to cj ( Xt+1

k
(i, j) = 1 ) when the probability 

P(NHcj
= ci) = P[i, j] is the highest. If P[i, j] = P[k, j] i.e. the probability that cj routs 

to either ci or ck is equal,4 then the next hop CH is chosen at random between them. 
We must note that Eq. 21 ensures that condition 1 always holds.

• Stochastic position update strategy Our proposed update strategy is consistent with 
the stochastic nature of the position update equation of classical BPSO. In this strat-
egy, for each gateway cj we sample the probability distribution corresponding to ℕcj

 
once, using inverse transform sampling. The sampled value � ∈ [1,m + 1] indicates 
the updated next hop relay c� of cj.

(21)Xt+1
k

(i, j) =

{
1 if Pt

k
(i, j) = max{�(Vt

k
(i, j))} ∀i ∈ {1, 2,… n}

0 otherwise

4 The probability of routing to ci or ck must be larger than any other CH.
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Algorithm 2: Stochastic Position Update Strategy
Input: Probability matrix (P )
Output: A routing solution: Sr = {ci ∀j ∈ {1, 2, 3... |C|}} such that ci = NHcj

1 begin
2 Initialize Sr ← φ
3 for j ← 1 to |C| do
4 CDF ← φ
5 CDF ← (CDF ∪ P [1][j]);
6 for i ← 2 to |C| + 1 do
7 CDF ← CDF ∪ CDF [i− 1] + P[i][j];
8 end
9 Generate a uniform random number r ∼ Unif(0, 1)

10 for i ← 1 to |C| + 1 do
11 // |C| + 1 denotes the base station
12 if CDF [i] ≥ r then
13 Sr ← Sr ∪ i
14 break;
15 end
16 end
17 end
18 return Sr

19 end

Algorithms 1 and 2 can be used to carry out max and stochastic position updates, 
respectively. Both the algorithms take the Probability matrix P as input, and return the 
routing solution Sr . Both the algorithms can be easily modified to support clustering.

Algorithm 1 assumes that CHs are enumerated from 1 to |ℂ| , and |ℂ| + 1 represents the 
base station such that a CH cj is denoted by j. For each j it then finds the row i correspond-
ing to the maximum probability value (P[i][j]) in the column j of the probability matrix P. 
Subsequently, it assigns i (corresponding to ci ) as the next hop relay of j (corresponding to 
cj).

Time and Space Complexity Analysis The time complexity of Algorithm 1 is O(|ℂ|2) 
in the worst case owing to the two nested for loops in lines 3 and 6 which are executed for 
every combination of a gateway and its probable next hops. The algorithm however, has 
constant space complexity ( O(1)).5

Like Algorithm 1, Algorithm 2 also assumes that CHs are enumerated from 1 to |ℂ| , 
and |ℂ| + 1 represents the base station. Then, for each CH j, the algorithm iteratively builds 
a array CDF which represents its discrete Cumulative Distribution Function. This array 
( CDFj ) is subsequently utilised to perform inverse transform sampling to find the next hop 
relay i (corresponding to CH ci ) for the cluster head j.

The worst case time complexity of Algorithm 2 is also O(|ℂ|2) due to the nested for 
loops on lines 3 and 6 which are executed for every combination of a gateway and its prob-
able next hops. Unlike Algorithm 1, this algorithm has a linear ( O|ℂ| ) space complexity 
owing to the generation of the CDF array.

While both the update strategies have comparable time complexities, the stochastic 
strategy has slightly higher (linear) space complexity in comparison to the max strategy 
(constant). While space complexity is undoubtedly an important factor in practical applica-
tions, we must also consider the significantly superior optimization performance (Sect. 7.4) 
of the stochastic strategy as against the max strategy.

5 Since the Sr array which stores the routing solution is an output, it is not counted into space complexity.
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6.1.7  Stochastic Update Strategy Parallels the Particle Update Equation in Classical 
BPSO

The position update equation of classical BPSO is given by Eq. 22:

where �S(vt+1i,d
) =

1

1+e
−vt+1

i,d

 and ri,d is a uniformly distributed random number in the range 

[0, 1]. It can be seen that the velocity vt+1
i,d

 serves as a probability threshold that partitions 
the interval [�S (vmin), �S (vmax)] into two sub-intervals I1 = [�S (vmin), �S (v

t+1
i,d

)] and 
I2 = [�S (v

t+1
i,d

), �S (vmax)] . If the uniformly distributed random number ri,d ∈ [0, 1] lies in 
interval I1 then the corresponding bit is set to 1, whereas if it lies in I2 then the bit is set to 
0. Therefore, if the optimal solution contains 1 at some position, then BPSO learns to grad-
ually increase the corresponding velocity in order to increase the length of interval I1 and 
accordingly increase the chance that the random number ri,d lies inside it.

In order to understand the essence of the BPSO optimization process in case of the sto-
chastic update strategy, let us assume that gateway cj routs to gateway ci in the optimal 
solution. BPSO gradually increases the velocity Vt+1

k
(i, j) thereby increasing the probability 

mass on the outcome i of the random variable ℕcj
 . Increasing the probability mass on the 

outcome i increases the chance of i being sampled from the probability distribution of ℕcj
 

such that NHcj
= ci . Like the position update equation in classical BPSO, the stochastic 

update strategy ensures that the position of a particle is ephemeral, i.e. the same velocity 
matrix can be interpreted as an altogether different position matrix and routing configura-
tion. On the other hand, the max update strategy would always return the same position 
matrix for the same velocity matrix (Sect. 6.1.11).

6.1.8  The Choice of the Transfer Function �

A transfer function � ∶ [vmin, vmax] ∪ {−∞} → [0, 1] is a mapping that takes an input in the 
closed interval [vmin, vmax] or −∞ and outputs a number in the closed interval [0, 1]. The 
transfer function is also called the normalizing function, and helps in the process of map-
ping a continuous search space to a discrete binary space. While routing and clustering 
configurations are discrete in nature, the velocity matrices lie in a continuous space. BPSO 
essentially searches for a velocity matrix in a continuous search space which maps to the 
optimal routing or clustering configuration in the discrete space.

Transfer functions must be effective as well as computationally simple since they are 
evaluated in numerous occasions, for every dimension of each particle every time its posi-
tion is updated. To get an idea as to how many times a transfer function is called while 
executing BPSO for routing, let us consider a WSN with 60 gateways. Let us also assume 
that we run BPSO for 300 iterations with a swarm size of 50. Therefore, the transfer func-
tion is applied 60 × 61 × 50 × 300 or 54,900,000 times in total.

In this paper, we propose a linear transfer function �L which not only reduces the com-
putational complexity of BPSO, but also outperforms traditional alternatives such as sig-
moid �S and hyperbolic tan �T transfer functions in terms of network lifetime and average 
increase in network lifetime (Sect. 7.3).

(22)𝜌t
i,d

=

{
1 if 𝜉S( v

t+1
i,d

) > ri,d
0 otherwise
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Traditional transfer functions, �S and �T are given by Eqs. 24 and 25, respectively:

It must be noted that the slope of the linear transfer function �L depends on the difference 
between vmin and vmax , in contrast to �S and �T which have fixed slopes.

6.1.9  Fitness Function

Now we design a fitness function in order to evaluate each particle of the population. The 
fitness function is a measure of goodness of a routing solution offered by a particle. Since 
our main objective for routing is to minimize the forwarding energy EFci

 of CHs, the fitness 
function for routing is given by:

The lower is the fitness value, the better is the particle position and corresponding routing 
configuration.

6.1.10  A Summary of BPSO‑Based Routing

Algorithm  3 presents the proposed BPSO based routing algorithm which minimizes the 
routing fitness given by Eq. 26. It takes the coordinates of all the CHs ( � ) and the number 
of particles in the swarm ( Np ) as input. The algorithm begins by randomly initializing each 
particle’s velocity matrix in the range [vmin, vmax] (Sect. 6.1.3). In order to ensure that Con-
dition 2 (Sect. 6.1.6) holds, every cell V(i, j) for which cj is not in the communication range 
of ci , is initialized to −∞ . Next, the global best (gbest) position and personal best (pbest) 
positions of all particles in the swarm are updated by comparing their fitness values in 
lines [3-5]. In order to compute the fitness of a particle its position, which corresponds to 
a routing configuration, must be found. To this end, its velocity matrix (V) is transformed 
into a probability matrix (P) using Eq. 20, and then a routing configuration (position) is 
generated either using the Max (Algorithm 1) or Stochastic (Algorithm 2) position update 
strategy. Subsequently, a particle’s fitness is calculated using Eq. 26. The algorithm then 
proceeds to optimize the routing configuration in an iterative fashion (lines [7–17]) by first 
updating each particle’s velocity matrix using Eq. 17, finding their new fitness values and 
updating the global and their personal best positions in the same way as discussed above. 
Thus, the velocity updates for each particle is encapsulated in the Update(Pi) procedure. 

(23)�L(V
t+1
k

(i, j)) =
Vt+1
k

(i, j) − vmin

vmax − vmin
=

Vt+1
k

(i, j)

vmax − vmin
+

−vmin

vmax − vmin

(24)�S(V
t+1
k

(i, j)) =
1

1 + e(V
t+1
k

(i,j))

(25)�T (V
t+1
k

(i, j)) =
tanh(Vt+1

k
(i, j)) + 1

2

(26)fitness = arg max
i ∈ ℂ

EF(ci)
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Algorithm 3: BPSO Algorithm (Minimizer)
Input: Set of CHs C = {c1, c2, ... c|C|}, Swarm size = Np

Output: A routing solution: Sr = {cj ∀i ∈ {1, 2, 3... |C|}} such that cj = NHci
1 begin
2 Initialize each particle Pi ∀i ∈ {1, 2, 3, ...|Np|}
3 for i ← 1 to |Np| do
4 Evaluate fitness(Pi)
5 Assign

gbest = pbestj | fitness(pbestj) = min(fitness(pbestj)) ∀ j ∈ {1, 2, ...|Np|}
6 end
7 while ! Terminate do
8 for i ← 1 to |Np| do
9 Update(Pi)

10 if fitness(Pi) < fitness(pbesti) then
11 pbesti = Pi

12 end
13 if fitness(pbesti) < fitness(gbest) then
14 gbest = pbesti
15 end
16 end
17 end
18 Sr = Generate Solution(Gbest)
19 end

6.1.11  Illustration

Let us consider a WSN with 5 gateways ℂ = {c1, c2, c3, c4, c5} and 15 SNs 
� = {s1, s2,… , s15} . Therefore, the dimensions of the routing position vector and matrix 
are 1 × 5 and 6 × 5 respectively. The velocity matrix has the same shape as the position 
matrix. The directed acyclic graph G(V, E) shown in Fig. 5 illustrates the WSN. The ver-
tices (V) of the graph G represents the set of gateways (ℂ) and the base station ( � ). The set 
of edges (E) consists of dotted red lines which denote probable next hops and black lines 
which denote the chosen routing path. Table  2 comprises of the probable next hops for 
each gateway cj ∈ ℂ . Algorithm 3 can be used to perform BPSO-based routing.

We initialize the velocity matrix Vk of a particle k by setting each of its elements Vk(i, j) 
to a random number between vmax = 10 and vmin = −10 if ci is a probable next hop of cj i.e. 
ci ∈ pNHcj

 , and −∞ otherwise.

Fig. 5  A possible routing path
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After using the sigmoid transfer function to normalize the elements of Vk and re-scaling the 
probability values using Eq. 20, the probability matrix Pk is given by Pk . Each column j of 
the probability matrix Pk represents a probability distribution of the random variable ℕcj

 . 
The probability distributions of all the random variables ℕc1

 , ℕc2
 , ℕc3

 , ℕc4
 and ℕc5

 are illus-
trated in Fig. 6. Using the probability matrix P and the max update strategy, the indirect 
and direct encoding of the particle is given by: Xk =

(
2 5 5 5 6

)
 . On the other hand, the 

stochastic update strategy could also yield the following particles6: 
Xk =

(
2 5 5 5 6

)
or

(
3 3 5 5 6

)

(27)

V
k
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−∞ −∞ −∞ −∞ −∞

6.49 −∞ −∞ −∞ −∞

6.19 3.00 −∞ −∞ −∞

−4.22 1.46 −∞ −∞ −∞

−∞ 4.21 7.71 − 4.54 −∞

−∞ −∞ − 8.33 − 8.90 − 9.39

⎞
⎟⎟⎟⎟⎟⎟⎠

P
k
=

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0.4368 0 0 0 0

0.4366 0.3544 0 0 0

0.1264 0.2929 0 0 0

0 0.3577 0.9997 0.9906 0

0 0 0.0002 0.0093 1

⎞⎟⎟⎟⎟⎟⎟⎠

Fig. 6  Probability distributions 
of random variables ℕ

c
1

 , ℕ
c
2

 etc

Table 2  Probable next hops for each gateway

Gateway ( c
i
) c

1

c
2

c
3

c
4

c
5

Probable next hops ( pNHci
) {c2, c3, c4} {c3, c4, c5} {c5,�} {c5,�} {�}

6 It must be noted that the following solutions are not exhaustive.
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6.2  Clustering Algorithm

6.2.1  Formulating the Clustering Problem

Our main objective for clustering is to maximize the lifetime of the network and minimize 
the energy dissipation of SNs. As discussed in Sect. 5, maximizing the lifetime of a net-
work is equivalent to maximizing the lifetime of the gateway with the minimum lifetime. 
After the routing configuration is finalised, clustering adjusts the number of SNs assigned 
( � ) to each gateway, such that gateways having high forwarding energy are assigned fewer 
SNs and dissipate less intra-cluster energy.

At the same time, it is important to maximise the lifetime of SNs since they perform the 
basic function of sensing and collecting data. SNs also dissipate a significant amount of 
energy in transmitting data to their assigned CHs. In order to transmit a l-bit message to a 
CH at a distance d, the SN dissipates energy as follows: ET (si) = ET (l, d) . While maximis-
ing the lifetime of CHs by reducing the number of SNs that are assigned to each CH, some 
SNs may be assigned to CHs far away from them. These SNs may die quickly due to long 
distance communication with their respective CHs. Therefore, SNs must be assigned to 
their nearest CH whenever possible.

6.2.2  Particle Representation and Velocity Matrices

Clustering particles and their pbest and gbest can also be represented using direct and indi-
rect representation. The direct representation or the position vector of a clustering particle 
exhibits the following characteristics: 

1. The length of the vector m is equal to the number of SN in the network |�|.
2. The ith dimension of the vector is j if the SN sj is assigned to the CH ci.
3. SNs can only be assigned to a single CH in the network, and therefore each dimension 

of the position vector must contain an integer in the closed interval [1, |ℂ|].

Similarly, some characteristics of the indirect representation of a clustering particle are 
as follows: 

1. All elements of the matrix M have either the value 0 or 1. Same as the direct representa-
tion, m is equal to the number of SNs in the network |�| and n = |ℂ|.

2. M[ci, sj] = 1 if sj is assigned to ci and 0 otherwise.
3. In each column of the matrix M only one element is 1 and all other elements are 0 since 

each SN can be assigned to a single CH only.

Figures  7 and  8 illustrate direct and indirect representations of a clustering particle, 
respectively.

The velocity vector of each clustering particle has the same shape as its position matrix 
i.e. |ℂ| × |𝕊| . Equation 17 and either the stochastic or the max update strategy can be used 
to update the velocity and position of the particles, respectively.

Time and Space Complexity Analysis. of Max & Stochastic strategies Following an anal-
ysis similar to Sect. 6.1.6, both the Max and Stochastic update strategies have a time com-
plexity of O(|𝕊| × |ℂ|) owing to the nested for loops which must now iterate over every 
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combination of a CH and every SN. Moreover, the Max update strategy has constant space 
complexity ( O(1) ) while the Stochastic strategy has a space complexity of O(|�|) owing to 
the generation of a CDF array with as many dimensions as the number of SNs in the WSN.

6.2.3  Fitness Function

The fitness function is derived in keeping with the main objective of clustering i.e. to pro-
long the lifetime of gateways and SNs. Therefore, our first objective is to maximize the 
lifetime of the WSN, or alternatively maximise the lifetime of the gateway with the mini-
mum lifetime. We must note that maximizing the lifetime of a gateway takes into account 
the residual energy Eres(ci) of gateways at the start of WSN operation. Consequently, the 
clustering algorithm can assign fewer member SNs to gateways having less residual energy. 
In addition, the lifetime of SNs can be prolonged if they are assigned to the CHs nearest to 
them. Therefore, we must also minimize the average distance between SNs and their cor-
responding CHs in order to minimise their energy consumption. We can therefore construct 
the following fitness function:

The higher is the fitness of a solution, the better is the position of a particle.

6.2.4  A Summary of BPSO‑Based Clustering

Algorithm 3 (Sect. 6.1.10) can be slightly modified to serve as the BPSO-based clustering 
algorithm, with the only difference being that:

• it would take the coordinates of all SNs ( � ) as input instead of the set of CHs ( ℂ ), and 
return a clustering solution Sc as output,

• the fitness of each particle is evaluated using Eq. 28,
• and the clustering fitness given by Eq. 28 is maximised unlike the routing fitness which 

is minimised. In particular, after initialization, positions corresponding to the maximum 
fitness are assigned as the pbest and gbest, respectively (line 5). Again in lines 10 and 
13, positions corresponding to greater fitness is assigned as the pbest and gbest posi-
tions, respectively (Table 3).

(28)fitness = � ×
Ln
n

1

���
∑���

i=1
d(si,CHsi

)

Fig. 7  A direct representation of a clustering particle (position vector)

Fig. 8  An indirect representation 
of a clustering particle (position 
matrix)
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7  Experimental Evaluation

7.1  Experimental Setup

In this section, we evaluate the effectiveness of our proposed algorithm and compare them 
against state-of-the-art models. We carried out several experiments with different num-
bers of SNs ranging from 200 to 500 in two different gateway configurations, with 60 and 
90 gateways, respectively. For a true comparison with previous literature, our simulation 
parameters were the same as Kuila and Jana [20]. Each SN had 2J of initial energy while 
each gateway had 10 J ( � = 10 ). We assume that the communication energy dissipation is 
based on the first-order radio model (Sect. 4.1). Furthermore, we use the same energy and 
distance constants as Heinzelman et al. [14] in our simulations (Table 4). We implemented 
and simulated our algorithms using Python, and all experiments were carried out in a com-
puter system with an Intel i7-8550U chipset, 2GHz CPU and 16 GB RAM running Micro-
soft Windows 10.

Our proposed algorithms are simulated for WSNs which have a sensing field of 
500 × 500 m2 area and for each of the networks, the base station is situated at the centre 
of the region i.e. (250, 250). In order to optimize the performance of our algorithms, we 
fine tuned various parameters of BPSO and selected the parameters for which our algo-
rithms performed the best. We tested the following ranges of parameter values: c1 and c2 

Table 3  Energy and distance 
parameters

Energy and distance parameters Values

Area 500 × 500m2

SNs 200–500
Gateways 60, 90
Initial energy of SNs 2.0 J
Initial energy of CHs 10.0 J
Eelec 50 nJ/bit
Efs 10 pJ/bit/m2

Emp 0.0013 pJ/bit/m2

EDA 5 nJ/bit
Communication range 150 m
do 87.0 m
Packet Size (l) 4000 bits
Message Size (m) 200 bits

Table 4  Parameters of the BPSO 
optimizer

BPSO parameters Values

Np 60
c1 2
c2 2
vmax∕vmax (�L) +2.5∕ − 2.5

vmax∕vmax (�S & �T ) +40∕ − 40
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in [1, 3], ℕp = [10, 100] and vmax = [1, 100] . Based on experimental results, our algorithms 
performed the best for parameter values shown in Table 4.

7.2  Gaussian Gateway Deployment is Better than Uniform Deployment

In our experiments, SNs and gateways are deployed uniformly randomly across the 
sensing area for a true comparison with previous literature. Our experiments revealed 
that CHs closer to the base station expend a huge amount of forwarding energy to route 
in-bound data packets towards the base station, and therefore die quickly. To this end, 
we examine a random-gaussian deployment of gateways, which can effectively reduce 
their forwarding energy by randomly placing more gateways nearer to the base station. 
Increasing the number of gateways around the base station distributes the routing load 
among multiple gateways, reduces their forwarding energy and effectively increases 
their lifetime (refer Table 5). The gaussian-random coordinates of gateways can be gen-
erated as shown in Eq. 29:

Here, (xi, yi) denotes the x and y-coordinate pair of the ith gateway, and ri,1 and ri,2 are sam-
pled from a gaussian distribution having � mean and � standard deviation. The parameter 
� corresponds to the coordinates of the base station which is situated at (250, 250), and 
therefore we set � = 250 . On the other hand, the parameter � corresponds to the spread 
of gateways from the base station and determines the concentration of gateways around 
the base station and the extent of gateway coverage in the WSN. For our experiments, we 
found that � = 100 provided sufficient coverage and good network performance.

For our experiments, we consider a WSN with the same parameters as shown in 
Table 4 and having 60 gateways and 200 SNs. Table 5 summarizes experimental results 
derived by running the proposed algorithms on 40 independent distributions of SNs and 
CHs for both the deployment strategies. It must be noted that SNs are uniform randomly 
distributed across the sensing field in both the deployment strategies. Both the rout-
ing and clustering algorithms used the stochastic position update strategy and the pro-
posed linear transfer function with vmax∕vmin = +2.5∕ − 2.5 . The gaussian deployment of 

(29)(xi, yi) = (ri,1 ∼ N(�, �), ri,2 ∼ N(�, �))

Table 5  Comparison of Gaussian and uniform deployment: the Gaussian deployment results in lower maxi-
mum forwarding energy of gateways and higher network lifetime

The best values are highlighted with bold

Parameters Gaussian deployment Uniform deployment

Average Max Min Average Max Min

Starting max(EF(ci)) (J) 0.0077 0.0088 0.0063 0.0102 0.0095 0.0082
Final max(EF(ci)) (J) 0.0023 0.0024 0.0020 0.0040 0.0049 0.0029
Starting max(EC(ci)) (J) 0.0028 0.0041 0.0023 0.0031 0.0041 0.0027
Final max(EC(ci)) (J) 0.0020 0.0022 0.0017 0.0020 0.0026 0.0014
Lifetime (rounds) 2483 3071 2149 1754 2111 1538
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gateways results in a 42.5% reduction in the maximum forwarding energy7 on an aver-
age, and a significantly longer network lifetime. Furthermore, we observe that while the 
forwarding energy reduces sharply in case of the gaussian deployment, the inter-cluster 
component is comparable in both the deployment strategies. Figs. 9 and 10 illustrate 60 
gateways deployed using the uniform-random and gaussian distributions, respectively. 
The base station is represented by a black dot and is situated at (250, 250). From the 
figures, it can be seen that a large number of gateways are concentrated around the base 
station for the gaussian deployment.

Despite the impressive performance of the gaussian deployment, gateways are distrib-
uted uniform-randomly in all the following experiments to present a true comparison with 
previous work.

7.3  The Linear Transfer Function �
L
 Outperforms Traditional �

S
 and �

T

For comparing the performance of our proposed linear transfer function against sigmoid 
and hyperbolic tan , we consider the same network parameters as given in Table 4. We 

Fig. 9  Gateways deployed using 
Uniform random deployment 
are spread uniformly across the 
WSN

Fig. 10  Gateways deployed using 
Gaussian deployment are con-
centrated around the base station

7 Maximum forwarding energy of any gateway in the network.
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chose to compare against sigmoid and hyperbolic tan transfer functions only, since they 
have been widely used in the past for a number of applications [1, 24, 30, 31]. We tuned 
the maximum and minimum velocity parameters for each of the transfer functions in the 
range [1, 100], and chose the values of vmax and vmin (refer Table 4) for which they per-
formed the best. We found that the linear transfer function performed well for vmax = 2.5 
and vmin = −2.5 for which it linearly approximates the sigmoid function over a large 
range. Table 6 summarizes the experimental results on 40 randomly and independently 
generated sets of coordinates of gateways and SNs for each network configuration hav-
ing 200, 300, 400 or 500 SNs. We chose to test the three transfer functions on the same 
sets of coordinates to do away with any variation due to input coordinates. We found 
that the linear transfer function performed well for vmax = 2.5 and vmin = −2.5 for which 
it linearly approximates the sigmoid function over a large range (refer Fig. 11).

Firstly, we evaluated the transfer functions based on the average network lifetime 
achieved by our routing and clustering algorithms using each transfer function. Our results 
revealed that the linear transfer function resulted in a longer network lifetime on an average 
for each network configuration (refer Fig. 12). Next, we evaluated the average increase in 
lifetime for 40 runs of our algorithm using each transfer function. The average increase in 
lifetime (First Gateway Died) can be computed as follows:

Table 6  Comparison between transfer functions: the linear transfer function outperforms other traditional 
transfer functions

The best values are highlighted with bold

Parameters Linear �
L

Sigmoid �
S

tanh �
T

Average Max Min Average Max Min Average Max Min

Routing time (s) 125.6 139.75 53.42 149.7 167.8 143.32 158.6 178.50 150.73
Clustering time (s) 470.12 516.94 413.90 531.17 587.66 492.30 566.41 632.33 524.54
Average Lifetime 

(rounds)
1739 2135 1497 1592 1787 1168 1695 1897 1276

Fig. 11  Various transfer func-
tions
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where k is the number of iterations and gbesti.lifetime is the lifetime of the gbest particle at 
the ith iteration. We found that the linear transfer function increased the network lifetime 
more on an average in comparison to sigmoid and hyperbolic tan transfer functions for all 
the network configurations (Fig. 13).

The increasing trend in the average increase in lifetime can be attributed to the fact that 
network configurations with greater numbers of SNs have a larger clustering search space, 
and therefore at the start of the optimization process, randomly-generated yet good cluster-
ing solutions occur with a smaller probability. From Figs. 14 and 15 we can see that the 
linear transfer function updates the global best solution more often than tanh and sigmoid 
transfer functions. This is due to the fact that our linear function does not have a vanishing 
gradient, and therefore is equally sensitive to a change in a particle’s position at all veloci-
ties i.e. the proportion of rise in the probability that a bit is ON to an equal rise in velocity 
remains constant across the interval [vmin, vmax].

(30)Average increase in lifetime =
gbestk.lifetime − gbest1.lifetime

Number of runs

Fig. 12  First gateway died: the 
linear transfer function achieves a 
high network lifetime consist-
ently

Fig. 13  Average increase in 
first gateway died: the linear 
transfer function mostly results 
in a higher average increase in 
lifetime
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Fig. 15  Average updates in clus-
tering: the linear transfer function 
has greater updates other transfer 
functions

Fig. 16  Lifetime versus number 
of SNs: stochastic update strat-
egy outperforms the max update 
strategy in increasing the lifetime 
of the network

Fig. 14  Average updates in rout-
ing: the linear transfer function 
has greater updates than other 
transfer functions
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For the WSN configuration with 200 SNs, we also evaluated the running time (refer 
Table  6) of our algorithms using the three transfer functions. Our results revealed that 
using the linear transfer function as against sigmoid and tanh, led to a 7–12% reduction 

Fig. 17  Average increase in life-
time (first gateway died) versus 
number of SNs: the stochastic 
update strategy increases network 
lifetime more than the max 
update strategy

Fig. 18  Average updates in 
routing: the stochastic update 
strategy achieves a higher 
number of updates than the max 
update strategy

Fig. 19  Average updates in 
clustering: the stochastic update 
strategy achieves a significantly 
higher number of updates than 
the max update strategy
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in average routing time and 11.5–17% reduction in average clustering time. This reduction 
can be attributed to the computational simplicity of the linear transfer function.

7.4  The Stochastic Update Strategy Outperforms Max Update Strategy

In order to evaluate the performance of the stochastic and max position update strategies, 
we compared the average lifetime and average increase in lifetime produced by our routing 
and clustering algorithms for both the position update strategies. We evaluated both the 
strategies on 40 sets of randomly and independently generated coordinates for each network 
configuration. Our results (refer Figs. 16, 17) confirmed that the stochastic update strategy 
outperforms the max update strategy, by achieving considerably longer network lifetimes 
and a significant increase in the lifetime on an average for all the network configurations.

Figures 18 and 19 illustrate the average number of updates for the global best solution 
during routing and clustering. Clearly, the stochastic update strategy updates the global 
best solution more often than the max update strategy. This is due to the fact that the sto-
chastic update strategy encourages more exploration owing to its probabilistic nature.

Fig. 20  Network lifetime (60 
gateways): BPSO achieves sig-
nificantly high network lifetime

Fig. 21  Network lifetime (90 
gateways): BPSO outperforms 
other state-of-the-art algorithms 
in terms of lifetime (first gateway 
died)
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7.5  Lifetime Comparison with State‑of‑the‑Art Algorithms

In order to compare the performance of our routing and clustering algorithms with other 
state-of-the-art algorithms, we executed the PSO-based routing and clustering algorithm 
proposed by Kuila and Jana [20] and three other clustering algorithms: GA-based clus-
tering [21], Greedy Load-Balanced Clustering Algorithm (GLBCA)[23] and Least Dis-
tance Clustering (LDC) [2]. All these clustering algorithms assumed that the base station 
is within the direct communication range of all the gateways and therefore did not con-
sider multi-hop routing. For a true comparison with our proposed algorithms, we executed 
the popular GA-based multi-hop routing algorithm proposed by Bari et  al. [3] for each 
of the three-clustering algorithm (GA-based clustering, GLBCA and LDC). We ran our 
experiments for 40 sets of independently and uniform-randomly generated coordinates 
of gateways and SNs for each unique network configuration. Moreover, we compared the 
lifetime of the network for several network configurations by varying the number of SNs 
between 200 and 500, and for 60 and 90 gateways. Figures 20 and 21 illustrate the results 
we obtained. It can be seen that our proposed algorithm leads to a better network lifetime 
than other state-of-the-art algorithms. This is due to the fact that our proposed routing 

Fig. 22  Energy consumption: our 
algorithm consumes appreciably 
lower energy than state-of-the-art 
of algorithms

Fig. 23  Packets received by base 
station (BS): our algorithm deliv-
ers significantly higher packets 
to BS than state-of-the-art of 
algorithms
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Fig. 24  BPSO versus PSO rout-
ing fitness: BPSO is less prone to 
local minima as compared to its 
counterpart

Fig. 25  BPSO versus PSO clus-
tering fitness: BPSO is less prone 
to local maxima as compared to 
its counterpart

Table 7  Comparison of PSO and BPSO: BPSO is better equipped to find an efficient routing & clustering 
solution than PSO

The best values are highlighted with bold

Parameters BPSO PSO

Average Max Min Average Max Min

Routing fitness 0.0043 0.0050 0.0026 0.0049 0.0052 0.0035
Clustering fitness 38.0543 51.3592 30.5490 17.678 27.7224 13.628
Average Distance (m) 45.0937 47.7760 41.8986 76.2279 80.3659 70.9511
Lifetime (rounds) 1739 2135 1497 1428 1921 1029
Increase in routing fitness 0.006419 0.0140 0.0032 0.00492 0.0084 0.0018
Increase in clustering fitness 20.0213 28.2360 15.2126 3.1582 4.8947 1.0198
Extent of Optimization (rounds) 1294 1373 1079 768 844 550
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algorithm recognizes that gateways dissipate a significant amount of forwarding energy 
(refer Table 5), and minimizes it to effectively prolong network lifetime (Figs. 22, 23).

From Fig. 23, it can be observed that the total packets received by the base station in 
our approach is appreciably higher than other algorithms. This is a direct consequence of 
the fact that our approach has a better network lifetime than other state-of-the-art algo-
rithms. Figure 22, compares the energy consumption of our algorithm with other state-of-
the-art algorithms for 60 gateways and 600 SNs. Our WSN has significantly lower energy 
consumption as compared to other algorithms. This demonstrates the efficacy of our pro-
posed fitness functions which are directly aimed at minimizing forwarding and intra-clus-
ter energy consumption of CHs, thereby minimizing the total energy consumption of the 
network.

7.6  BPSO Outperforms PSO at Routing and Clustering

In this sub-section, we compare the performance of continuous PSO and its discrete coun-
terpart BPSO. For this comparison, we ran PSO and BPSO-based routing and clustering on 
a WSN having the same network parameters as Table 4 having 200 SNs and 60 gateways. 
Both the algorithms were run on 40 sets of input coordinates using our fitness functions. 
We represented particles in PSO in the same manner as Kuila and Jana [20]8 and used their 
indexing function to map particle positions in a continuous space to a discrete space. As 
discussed previously, BPSO searches for a velocity matrix in a continuous search space 
which maps to a good particle position in a discrete space. In contrast, PSO searches for 
a velocity vector which maps to good particle position, both of which are in a continuous 
search space. In PSO, the indexing function is used to map the continuous position of a 
particle to a discrete routing or clustering configuration.

Our results summarized in Table 7 suggest that BPSO achieves a significantly longer 
average network lifetime than PSO. Furthermore, BPSO is better able to minimize the rout-
ing fitness and average distance of SNs from their clusters. Figures 24 and 25 illustrate the 
routing and clustering fitness per iteration for both BPSO and PSO for the same set of input 
coordinates. It can be clearly seen that BPSO quickly minimizes the routing fitness and 
reaches a fitter routing solution in comparison to PSO. During clustering, BPSO starts at a 
higher fitness than PSO owing to its better routing solution, and improves the fitness over 
iterations. Furthermore, in order to evaluate the overall increase in lifetime due to optimi-
zation over random routing and clustering configurations, we ran BPSO and PSO based 
routing and clustering for a single iteration over the same sets of 40 input coordinates. The 
routing and clustering solutions after a single iteration are as good as random. The results 
summarized in Table 7 show that BPSO increases the lifetime of a WSN by 1294 rounds 
over a random routing and clustering configuration on an average, as against PSO which is 
only able to increase the lifetime by 768 rounds. During both routing and clustering, BPSO 
was able to effectively optimize the fitness functions, while PSO repeatedly got trapped in 
local maxima. This is due to the fact that BPSO is better suited to handle discrete problems 
such as finding optimal routing and clustering solutions.

8 Refer Kuila and Jana [20] for more details.
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8  Conclusion and Future Work

In this paper, we proposed an energy efficient BPSO based routing and clustering algo-
rithm, which uses an intuitive two-dimensional particle representation along with a novel 
particle update strategy and transfer function. Results from detailed experimental evalu-
ation show that our transfer function and particle update strategy outperform traditional 
transfer functions and particle update strategies proposed in the past. Our experiments also 
reveal that our algorithm effectively maximizes network lifetime, and achieves a signifi-
cantly higher lifetime in comparison to state-of-the-art algorithms. Furthermore, our results 
confirm that BPSO is better equipped to solve discrete optimization problems like efficient 
routing and clustering than continuous PSO. Future work may include experimenting with 
fitness functions which take into account the reliability of wireless links.
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