Wireless Personal Communications (2020) 112:2297-2333
https://doi.org/10.1007/s11277-020-07151-2

®

Check for
updates

Systematic Review Analysis on SQLIA Detection
and Prevention Approaches

Muhammad Saidu Aliero’ - Kashif Naseer Qureshi?® - Muhammad Fermi Pasha’ -
Imran Ghani? - Rufai Aliyu Yauri*

Published online: 30 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

SQL injection attack (SQLIA) is one of the most severe attacks that can be used against
web database driving applications. Attackers use SQLIA to get unauthorized access and
perform unauthorized data modification. To combat problem of SQLIA, different research-
ers proposed variety of tools and methods that can be used as defense barrier between cli-
ent application and database server. However, these tools and methods failed to address the
whole problem of SQL injection attack, because most of the approaches are vulnerable in
nature, cannot resist sophisticated attack or limited to scope of subset of SQLIA type. With
regard to this different researcher proposed different approach (experimental and analytical
evaluation) to evaluate the effectiveness of these existing tools based on type SQLIAs they
can detect or prevent. However, none of the researcher considers evaluating these exist-
ing tool or method based on their ability to be deployed in various injection parameters
or development requirements therefore, in this study Kitchenham’s guidelines of perform-
ing systematic review of software for conducting our study. In this paper, we reviewed the
tools and methods that are commonly used in detection and prevention of SQLIA, Finally,
we analytically evaluated the reviewed tools and methods based on our experience with
respect to SQIAs types and injection parameters. The evaluation result showed that most
researchers focused on proposing approaches to detect and prevent SQLIAs, rather than
evaluating the efficiency and effectiveness of the existing SQLIA detection and prevention
tools/methods. The study also revealed that more emphasis was given by the previous stud-
ies on prevention measures than detection measures in combating problem of SQLIAs. An
analysis showed that these tools and methods are developed to prevent subset of SQLIAS
type and only few of them can be deployed to various injection parameters to be consid-
ered in examining SQLIAs. It further revealed that none of the tools or methods can be
deployed to prevent attacks that can take advantage of second order (server side SQLIA)
SQLI vulnerability. Finally, the study highlights the major challenges that require immedi-
ate response by developers and researchers in order to prevent the risk of being hacked
through SQLIAs.

D4 Kashif Naseer Qureshi
Kashifnq@ gmail.com

Extended author information available on the last page of the article

@ Springer

http://orcid.org/0000-0003-3045-8402
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-020-07151-2&domain=pdf

2298 M. S. Aliero et al.

Keywords SQLIA prevention - SQLIAs detection - Detection method - Detection tool -
Types of SQLIASs - Injection parameters - Analytical evaluation

1 Introduction

Technology and networks enable organizations to have adopted web-based applications as
a backbone to conduct their day to day activities. Different domains like Intelligent Trans-
portation Systems [1], Healthcare Systems [2], Industrial Technologies [3], E-commerce
[4], social activities are all now available on web-based databases driving applications
and where the security of web applications is, in general, quite poor and demanding [5,
6]. These applications process the data and store the result in a back-end database server
where the organization’s related data are stored. Depending on the specific purpose of the
application, most of the communication with customers and users use the services offered
by the organization. The fact that these applications can be invoked by anyone worldwide
drew the attention of attackers who wish to benefit from these vulnerabilities. One of the
techniques to exploit these applications (web-based driving database applications) is called
SQLIA (SQL injection attack). SQLIA is a situation whereby attack modifies programmer
intended queries to have access to restricted data or perform unauthorized data manipula-
tions. SQLIA comes in a variety of types depending on what attacker wants to accom-
plish, but the main cause of SQLIA is improper validation of input by user which program-
mer should take care of while developing the application [5-7]. To tackle the problem of
SQLIA, researchers have been proposed different techniques to handle SQLIA. These tech-
niques have limitations starting from research scope to address particular type of SQLIA,
deployment capability to the approach, tool or technique.

Most of the researches regarding the evaluation of SQLI prevention measure have
focused on evaluation ability to address the particular type of attacks. Similarly, the need to
evaluate such SQIAs and taken prevention measures or develop a new approach in various
injection parameters is also important. Because the SQLI prevention measures can affect
the effectiveness of the tool to address the SQIAs types. If the tool cannot be deployed in a
particular injection parameter, it implies that attack injected through that injection param-
eters would be carried out successfully without any detection or prevention by tool or tech-
nique. Thus, the focus of this review is to assess the effectiveness of current SQL injection
prevention (SQLIP) tools and techniques based on their ability to address SQLIAs with
respect to development approach and ability to be deployed in different injection param-
eters and also determine the new trend of the research in the field of SQLIA. The results
of our evaluation will help new researchers who want to improve the current trends in
SQLIAs prevention measures.

2 Research Material and Review Method

Systematic Literature Review (SLR) is a type of review that follows a sequence of pre-
cise methodological steps for reducing bias in research. This SLR on SQLIA prevention
measures is based on well-established and evaluated review protocols to extract, analyze,
and report the results as shown in Fig. 1. We adopted the guidelines provided by [8] with a
three-step review process that includes planning, conducting and documenting.

@ Springer

Systematic Review Analysis on SQLIA Detection and Prevention... 2299

Search Strategy n) Inclusion and Exclusion l> Evaluation
1. Planning 2. Conducting 3. Documenting

RL\ - Pr‘)to"()l StudV RepOIt

Fig. 1 Research methodology steps

Figure 1 summarizes the steps of the review process; planning, conducting and docu-
menting the methodology adopted in this SLR. The results of the analysis are documented
in terms of a data summary in Sect. 2.3, and findings and research implications in Sect. 2.4.

2.1 Planning Phase

In this SLR of SQL injection detection and prevention measures, the planning phase begins
with an identifying need for SLR, identification of the research questions and describing
the review process. Having these parameters defined, we can formulate a review protocol.

2.1.1 Identifying Need for SLR

There are several studies on SQLIAs detection and prevention tools and methods such
as [5, 9-14]. None of these methods provide a systematic way of conducting a literature
review on tools and methods. This gives us the motivation to conduct SLR on SQLIAs
detection and prevention tools based on research questions (Table 1).

2.1.2 Specifying Research Questions

This study is mainly based on four (4) research questions (RQs). Most of the proposed
approaches have focused on evaluating the effectiveness of existing SQLIAs detec-
tion and prevention tools which are based on SQIAs types where each tool or method
can detect or prevent. In addition, this study tries to investigate further by consider-
ing the effectiveness of tools and methods which are based on tool or method ability
to be deployed on particular injection parameters (Sect. 2.3.2). Based on development
requirements, proposed a method or tool (i.e. anomaly-based that are prone to false

@ Springer

2300

M. S. Aliero et al.

Table 1 Research questions and motivation

Research question

Motivation

RQ1: What are the types of SQLIA?

RQ2: What are the possible injection parameters
by which attackers inject the SQLIA to a database?

RQ3: What are the current tools and techniques
used to detect and prevent SQLIA?

RQ4: How effective these techniques are with
respect to the development approach and their
ability to be deployed in various injection param-
eters?

The objectives are to identify various techniques of
performing SQL injection attacks against web-
based database driving applications

The aim is to identify the path by which attack injects
as a malicious query on web-based database driv-
ing applications

The aim is to investigate the current tools and
techniques proposed by different researchers in
combating SQLIA against web-based database
driving applications

The aim is to evaluate tools and techniques consid-
ered in this review based on their ability to detect
different types of SQLA and their ability to be
deployed in identified injection parameters in RQ2

positive and false negative alarm). Concerning the aforementioned motivation, we
defined four research questions that represent the foundation for deriving the search
strategy for literature extraction (See Table 1).

2.1.3 Review Process

After identifying the need for SLR, RQs are the next step to refine the review process.
This begins with related studies retrieval from different databases, studies selection,
extracting the result from data in the selected studies and information synthesis. Fig-
ure 2 shows the follow of processes followed in the review process.

Searching Related studies query retrieval covered six different databases (Table 2).
The search terms and guidelines adopted from which a composition of 453 different
search strings have used (Fig. 3).

- N—1 Initial Study Tnclusion and . > Primary
g exclusion criteria Selection
& m >
& Y .
A N~ Tnitial
o =)
= 25 |m ’ studies v
[o —
5 cz
2 S 3
” N——
> Final selection
Primary Q .
- >

Quality Assessment Criteria
-

Fig.2 Study selection process

@ Springer

Systematic Review Analysis on SQLIA Detection and Prevention... 2301

Table 2 Search query result from S/N

. Databases searched
different databases

Sources Result
1 IEEE explore 119
2 Google scholar 435
3 ACM digital library 95
4 Scopus 378
5 Springer berlin 145
6 Science direct 89

Total relevant article 1261

=
"E SQL injection prevention<OR> SQL injection prevention tool<OR> SQL injection prevention
% method <OR >SQL injection prevention techniques <OR >SQL injection prevention measures
2
&
=
g
AND
g o
-% SQL injection detection <OR> SQL injection detection tool<OR> SQL injection detection
< method <OR >SQL injection detection techniques <OR>>SQL injection detection measures
a
3
g
AND
SQL injection types <OR> SQL injection attacks <OR> SQL injection procedure <OR >
= SQL injection parameters <OR> SQL injection tool <OR> SQL injection method <OR> SQL
4 injection technique <OR> SQL injection firewall

Fig.3 Used search strings

Based on the above strings (search term used), we retrieved 1261 peer-reviewed lit-
eratures, methods and techniques from the years 2006 to 2019 (inclusive) from six
sources (Table 2).

Initial Selection This activity is carried out by screening the titles and abstracts of
potential primary studies performed by the researchers against inclusion/exclusion cri-
teria in Table 3. For almost 30% of studies, no decision could be made. In such cases,
exclusion or proceeding for final selection is involved in examining the full text.

Inclusion and Exclusion Criteria Table 3 provides the summary of inclusion and
exclusion criteria adopted in this study.

Final Selection After scanning the result from initial selection validation ware made
on studies based on proposed SQL methods, techniques, and firewall/tool and SQL
types to support the evaluation approach. By considering inclusion criteria we selected
46 studies based on selection criteria adopted from Guidelines [8] snowballing which
is based on data and result presented in the considered study (Quality assessment cri-
teria). Out of these 83 studies, one is guideline is not related to the field of the study,
therefore, the total number of studies considered is 83 as shows in Table 4.

@ Springer

M. S. Aliero et al.

2302

P9AJOS a18 9()07 210J0q sonssT 10adxo om pue s[oo} uonjuaraid

pue uono3p I IOS I0 pual JO SanssI JuaLINd 3y} op1aoid 0) wire saIpnis sy],
UOISIOP

9A1199[qo UE JOJ UOBUWLIOJUT JO JUNOWE S[qRUOSEaI APIA0Id JOU Op SAIPNIS ASAY [,
sioyine Surpuodsa11od Yy jo 1oded pajerar Jsow) papnjoul om ‘siaydeyd
300q IO SISAY) PAAALIRI AINUL Iy} Joj pue s1oded [euinol 10 9oUAIAJUOD YIIM
PareIo0sse a1e A[ensn SIIpnIs 9oy} OS[e 0S [eUOnIenIIs aIe A9y} 9SNeddq Wy}

9pN[OX? 0) PIPIOAP am Inq VITOS Ul s1oded 9ym snorownu 1€ 219y Y3Inoyiy
sanbruyoay $31 10 sadA)
VITOS JO uorssnosip se yons Y1 IOS [endoouod 1opIisuod 1ayjel jnq sisk[eue

MITADI UIAD JO UONUAAId J0 UonO9Iop SUI[qeus AJOIIP JOU I SAIPMIS ISAY],
sayoeoxdde uonooep Aypiqerauna [1OS 2yl parordxa Loyy

‘peasu] "V TIOS UonuaAaid 10 UOTIO93Op YIIM PIJBIOOSSE 10U ATE SAIPMIS ASAY

soyoroidde uonuaaald pue uondep YOS Yl Apnis 03 S1 9A193[qo Apns SIy [,
QUITOPINS §, wiDYyuaYd13] SN M OS MITADI OTIRWIA)SAS B ST SIOM ST,
samseaw uonuaAdxd pue
uo1199)9p [IOS JO SISA[BUE PUE ‘SOLOW ‘SUOTIN[OS OYIoads UT Pa)SAIUI T8 AN
JUSJUOD JO JUNOWE [BHUBISQNS B SUTBIUOD
pue maraa1 193d e ySnoayy Ayjenb jo [9A9] ure1reo e seojuerens roded oynuaros v

900¢ 210§9q paystiqnd sojone pareoy

S)[NS2I UOTJBN[EAD UB QABY[JOU OP JBy) SAIPNIS Paje[oy

s19)deyo pue
s1say ‘sydruosnuew ysiSug-uou Jo ‘sraded a)rym ‘SOIpnIs pamorAdI-199d-uoN

VITOS 1uaaaxd
10 399)9p 0} [00} 10 anbruyd9) ‘poyrowt € asodoid Aprordxe jou op jey) saIpms

sanI[IqeIaunA [IOS JO UONIIP Y} AJeINSIAUT Jey) SAPNIS
uonuaaaxd pue uond93ep 110OS
ssnosIp Ap1ordxa jou op Jey) saIpni§ UOTSNIXH
Apmis SIY) UT PaIdPISUOD OS[. SUIOPINSG S, UDYUIYIILY
$[00) uonuaAaxd pue uonodyep
T'10OS Jo uonenyeas 1o ‘aduarradxa ‘uonnjos 10 poyew e pasodoid jey) sarpmg

uonuaaaid pue uon
-0039p I'1OS 01 pajerar zoded pamarral-1oad oYNULIOS € JO WLIOY Y} UT SAPN)S UOISNIU]

qreuonEy

BLINNID

BLIO)LIO UOISN[OXd PUE UOISN[OU] € d|qel

pringer

Qs

Systematic Review Analysis on SQLIA Detection and Prevention... 2303

Table 4 Search material Selected studies

Sources No of
selected
articles

IEEE explore 16

Google scholar

ACM digital library 8

Scopus

Springer berlin 37

Science direct 6

Total relevant article 83

2.2 Conducting Study

Section 2 describes the procedure followed in SLR planning on SQLIAs detection and
prevention measures using guidelines in [8] and describes the procedure in conduct-
ing the SLR of SQLIAs study. This phase begins with conducting quality assessment
criteria.

2.2.1 Conduct Quality Assessment (QA)

We used the Center for Reviewer and Dissemination (CRD) and Database of Abstract of
Reviews of Effect (DARE) criteria to evaluate each technique. The following four ques-
tions are asked for quality assessment and the answers to these questions are summarized
in Table 5.

Based on above questions and answers in Table 5, where we evaluated selected studies
as summarized in Table 6.

Table 6 shows the list of selected studies, Eighty-three (83) studies are selected out of
1261 studies. This SLR indicated that more journal articles are published than conference
proceedings. Out of these studies, Sixty-nine (69) proposed tools and methods ([S2-23,
S36-S83]) Twelve (12) are survey (seven analytical analyses [S24-S30] while five are
experimental analysis [S31-S35]) related to SQLIAs detection and prevention measures
and one [S1] is not related to this study. This analysis shows that the researchers are more
focusing on solution for the detection and prevention of SQLIAs than evaluating efficiency
and accuracy of existing tools and methods (See Figs. 4, 5, 6) which show demand for
evaluating the current SQLIAs detection and prevention tools.

Because we used DARE criteria for evaluating the quality of study as described (See
Sect. 2.2.1 Table 5) therefore, information in Table 6 shows that Nineteen (19) out of
Eighty three (83) related studies [S4, S5, S6, S7, S8, 10, S11, S12, S13, S17, S19, S20,
S21, S22, S24, S24, S497, S49, S60] satisfied the quality assessment using DARE scale
by scoring 4/4, while Thirty two (32) related studies [S2, S3, S9, S14, S15, S18, S25, S36,
S38, S39, S41, S42, S44, S45, S48, S52, S58, S59, S62-69, S74-S77, S79, S80] score
3.5/4, likewise Twenty four (24) [S16, S26, S27, S28, S29, S37, S43, S46, S50, S51, S53-
S57, S61, S70-S73, S78, S81-S83] out of Eighty three (83) score 3/4, while One (1) [S35]
study score value 2.5/4 and also Six (6) [S30, S31, S32, S33, S34, S40] studies score value

@ Springer

M. S. Aliero et al.

2304

0=N
§0=d
T=A
'evO Sutremsue uoym
pousisse a1e 10308 urjer SuImo[oy Ay,

0=N
§0=d
T=A
7V O Sulromsue uaym
paugisse are 10)oey Juner Surmof[oj Ay,

0=NN
§0=d
T=X
‘uonsonb 1y Q) Surromsue uoym
pausisse a1e 10)oe} Jures SuImor[o} ay L,

paldwone A[1es[d ou sem J[nsaI ISIy Jo
Juowissasse Arfenb jey) sojesrpur (ou) N
{Apnys oYy Aq passaIppe are
jey) sonsst Ayenb saajoaur uonsanb
[oIeasa1 oy} Jey) ojeorpur ‘(Aenied) 4
‘woly pajeredas
puE pauyap A[IBI[O 918 PIIOPISUOD
'LIQILID AJ1pen() ‘91edIput (sok) X
sreuanof Jo 308 PAJOINSAI A[oWANX
ue 10 sorreIqI] [eNSIp ¢ 03 dn yoreas
9ABY sIOYINE Y} ‘SABIIPUI (0U) N
‘s3urpeaooid 9ouoIeJuUOd pue S[eu
-Inof JO 39S JO UONOLNSAI YIIM Pasn SI
PaYOIEs PaUYAp IO ‘SIISALXS YoIeds
Kue Jo uonIppe Ou YIIM PaydILds Uaaq
OABY YIIYM SOLIEIQI] [E)SIP (1) NOJ
Io (g) 9o1y) A[uo 9yeorpur ‘(Ajrented) 4
‘s1oyIne Aq paouaIafal pue
PAYTUSpI 9Ie YOIYM SEaIe PIISPISUOD
oy Surssaippe syeunol [[e Jo pappe
Q1e A391e1)S YOIBAS QWOS PUB PAYIIBIS
U99q 9ABY SALIRIQI] [RIISIP dIOW
10 () InOJ IS ‘Q)eIIpUl (SAK) X
pal1djur A[Ipeal aq jou
-UBd pue ‘pauyap Jou ‘sajedIpul (ou) N
‘pauyep A[rented ‘sojeorpur (Apred) g
‘pauyop A[Ie9[o
QI BLISILIO UOISNOUT ‘SAJBIIPUT (S9K) X

"J[nsa1 woiy pojeredas pue
pauyap A[IEa[O 918 PAISPISUOD BLIAILID
Kypenb JoUjaym QUILLISJOP 0) ST WY

sioyne AQ paouaIJoI
PUE PaYTIUSPI SI. YOIYM PAISPISUOD
eare oy) Surssaippe sjeunof [e Jo
Pappe a1 $AI39JeNS YOIBds JWOoS
PUE POYOILas U99q 9ARY SILILIQI] [}
-131p 210W 1O (f) INOJ IoyloyM
QUIULIS)P O} WY
PALISJuI A[IPEal 9q JOUURD PUB Pauyop
jou 10 ‘y1orduur A[renred o ‘Apnis
U} UI PAsSNOSIP pue pauyap A[Ies[d
SI BLISJLIO UOTSN[OUI 9Y)
IoUJOYM QUIULIAP O] ST WIe Y],

{,SIOMATARI Y Aq
SOSSE U93(Q SABY SAIPNIS papnjour
Jo Kyprrea pue Aipenb ay) ssoq ¢vO

{INOAI
-Ied [OIeds 9INJBId)I| St YIOM pajefal
118 pa12A09 A[qissod yoreas urewop s 7vO

{MOTADI UT pappe A[oje
-11doxdde pue paqrIosap [[om aIe uors
-N[OXd pUE UOISN]OUT JOJ BLIONID SO0 [V

TV SuIsn JUSWSSISSe UOTNOAF

TIV{ Sursn ssooo1d uonenfeaq Ag

UOTJBATIOIN

uonsanb v vO

ampadoid juawissasse Ajfen) ¢ ajqel

pringer

A s

2305

Systematic Review Analysis on SQLIA Detection and Prevention...

0=N
¢0=d
‘I=A $VO SuLromsue uaym
paugisse are 10)oey Juner Surmof[oj Ay,

payroads are sarpmys Arewrrd
[eNPIAIPUL JO SI[NSAI OU SAJLIIPUI (OU) N
‘pajuasard
SI SAIPN)S JSIY JNOGe UOTIBULIOJUT
Krewrwuns sayeorput (A[rented) 4
‘pajuasaid st Apmys noqe
UOTBULIOJU] [TBIOP SILIIpUT (s9K) X

Apms ur pajuesard uorew ({A1orenbape paqrIosap a1om
-IOJUI [IB)3P S} SUIULISJOP O} ST Wk 9Y], UISOUOD JO SIAIPNIS/UOTIBULIOFUT AY) S0 $VO

HIvVAdA ma_m: JuaWISSasse uonnjoAq

YV Suisn sseoo1d uoneneaqg Ag

UOTIBATIOIAl uonsanb v vO

(ponunuod) g sjqer

pringer

As

2306 M. S. Aliero et al.

Table 6 Quality evaluation using

DARE scale Authors ID Type QA1 QA2 QA3 QA4 Score
[8] S1 Journal 0 0 0 0 0
[15] S2 Journal P Y Y Y 3.5
[16] S3 Journal Y Y Y P 35
[17] S4 Conference Y Y Y Y 4
[18] S5 Journal Y Y Y Y 4
[19] S6 Conference Y Y Y Y 4
[20] S7 Conference Y Y Y Y 4
[21] S8 Journal Y Y Y Y 4
[22] S9 Conference Y Y Y P 3.5
[23] S10 Journal Y Y Y Y 4
[24] S11 Journal Y Y Y Y 4
[25] S12 Journal Y Y Y Y 4
[26] S13 Journal Y Y Y Y 4
[27] S14 Journal Y Y Y P 3.5
[28] S15 Journal Y Y Y P 3.5
[29] S16 Journal Y Y Y N 3
[30] S17 Journal Y Y Y Y 4
[31] S18 Conference Y Y Y P 3.5
[32] S19 Journal Y Y Y Y 4
[33] S20 Journal Y Y Y Y 4
[34] S21 Journal Y Y Y Y 4
[35] S22 Journal Y Y Y Y 4
[36] S23 Journal Y Y Y Y 4
[5] S24 Journal Y Y Y Y 4
[9] S25 Journal Y Y P Y 3.5
[10] S26 Journal Y Y N Y 3
[14] S27 Conference Y Y N Y 3
[7] S28 Journal Y Y N Y 3
[11] S29 Journal Y Y N Y 3
[37] S30 Journal P P N Y 2
[38] S31 Journal P P N Y 2
[39] S32 Journal P P N Y 2
[40] S33 Journal P P N Y 2
[41] S34 Journal P P N Y 2
[42] S35 Journal Y P N Y 2.5
[43] S36 Conference Y P Y Y 35
[44] S37 Journal Y P Y P 3
[45] S38 Journal P Y Y Y 3.5
[46] S39 Conference P Y Y Y 3.5
[47] S40 Journal P P N Y 2
[48] S41 Journal P Y Y Y 3.5
[34] S42 Journal P Y Y Y 3.5
[49] S43 Journal P P Y Y 3
[50] S44 Journal P Y Y Y 35
[51] S45 Journal P Y Y Y 35
[52] S46 Conference P Y P Y 3

@ Springer

Systematic Review Analysis on SQLIA Detection and Prevention... 2307
Table6 (continued) Authors ID Type QA1 QA2 QA3 QA4 Score
[6] S47 Journal Y Y Y Y 4
[53] S48 Journal Y P Y Y 35
[54] S49 Journal Y Y Y Y 4
[55] S50 Conference P Y P Y 3
[56] S51 Conference P Y P Y 3
[57] S52 Journal Y Y P Y 35
[58] S53 Conference P Y P Y 3
[59] S54 Conference P Y P Y 3
[60] S55 Conference P Y P Y 3
[61] S56 Conference P Y P Y 3
[62] S57 Conference P Y P Y 3
[63] S58 Journal P Y Y Y 3.5
[64] S59 Journal P Y Y Y 3.5
[58] S60 Journal Y Y Y Y 4
[65] S61 Conference P Y Y P 3
[66] S62 Journal P Y Y Y 35
[67] S63 Journal P Y Y Y 3.5
[57] S64 Journal P Y Y Y 35
[68] S65 Journal P Y Y Y 35
[69] S66 Journal P Y Y Y 35
[70] S67 Journal P Y Y Y 35
[71] S68 Journal P Y Y Y 3.5
[72] S69 Journal P Y Y Y 35
[73] S70 Conference P Y P Y 3
[70] S71 Conference P Y P Y 3
[74] S72 Conference P Y P Y 3
[75] S73 Conference P Y P Y 3
[76] S74 Journal P Y Y Y 3.5
[77] S75 Journal P Y Y Y 3.5
[78] S76 Journal P Y Y Y 35
[79] S77 Journal P Y Y Y 35
[80] S78 Conference P Y Y p 3
[81] S79 Journal P Y Y Y 35
[82] S80 Journal P Y Y Y 3.5
[83] S81 Conference P Y P Y 3
[84] S82 Conference P Y P Y 3
[85] S83 Conference P Y P Y 3

of 2/4, One study S1 score 0/4 as is not related to this study which is used as a guideline.
In summary, the information in Table 6 shows that the maximum number of related studies

considered are satisfied with quality assessment questions.

@ Springer

M. S. Aliero et al.

2308
Types of SQLIA
Tautology Illegal/Logically Union Query Piggy-Backend Inference Store Alternate
SQLIA incorrect query SQLIA Query SQLIA SQLIA Procedure Encoding
SQLIA SQLIA SQLIA
Authenticatio Database Blind SQLIA | |TimingSQLIA
nbypassing extraction
Fig.4 SQLIA types
userid password fname Iname gender dtob country user_rating emailid
scott123 123@sco Scott Rayy M 1990-05-15 USA 100 scott123@example-site.com
ferp6734 dloeiu@&3 Palash Ghosh M 1987-07-05 INDIA 75 palash@example-site.com
diana094 kuSj@23 Diana Lorentz F 1988-09-22 Germany 88 diana@example-site.com
Fig.5 Users database records
120% oo

<« C o ® localhost/ticketreservation

Please Login Here
Username: scott
Password: eccssscs

[J Remember me

Login &

Fig.6 User input credential form to use the system with valid credential

2.2.2 Data Extraction and Synthesis

We carefully extracted and synthesized the data from each study for collecting the follow-
ing information:

1. Classification of study and its topic domain.
2. Types of SQLIAs

@ Springer

Systematic Review Analysis on SQLIA Detection and Prevention... 2309

3. Injection parameters
4. Assessment of the proposed technique’s effectiveness, if available

Having extracted data from the considered studies, we analytically evaluate them, with-
out any experimental proof (using experience), based on the classification of the study
domain and with respect to attack the injection parameters. Basically, during the evalu-
ation, we combine the classification for domain types of SQLIAs and tools effectiveness
which is one of the evaluation strategy entitled “evaluation with respect to attack types”
which enable us to answer research question four (RQ4).

2.3 Documenting

The aforementioned sections described the procedure followed in planning of this SLR
using guideline in [8]. This phase begins with conducting quality assessment criteria.

2.3.1 Types of SQLIAs Used for Attacks

In view of RQ1 (See Table 1), the study explored Eighty-two (82) studies. Out of the 82
reviewed studies, 44 fully presented the data on different techniques by which attackers use
SQLIAs for attacking the web application database (See Table 6). Attackers use SQLIA
to attack web applications and these attacks are fall in different types, depending on what
attackers want to achieve. Moreover, these attacks are classified into Seven (7) types [5,
9-14] as represented in Fig. 4.

2.3.1.1 Tautology Attack This is a type of attack that takes advantage of “WHERE?” clause
in SQL statement to evaluate the results returned by Query in a relational database which
is always true. Attackers use this type of attack to achieve authentication bypassing in
web applications or perform unauthorized database extraction [5, 9, 10, 56] Authentica-
tion bypassing: all relational database management system with no exception evaluate SQL
query with “OR 1=1" where clause is always true. Also, in a relational database manage-
ment system, anything followed by comment (—) will not be processed. For example, con-
sider the Fig. 5 database records presenting users credential and personal details and Fig. 6
shows the client sides that takes input credential from user for authentication to use system
(Table 7).

Upon pressing the login button as shown in Fig. 6, the scott details would be submitted
and passed to admin.php script (Sucredential=$ POST [‘' ucredential’];
Spcredential=$ POST|[‘pucredential’]; $Query="select * from
user ucredential where userid='Su ucredential’ and pass-
word='S$p ucredential’ “; S$result=mySQL query ($SSQL);) where it
would be validating against scott credential details stored in fig. if the input from Fig. 44
matched with one stored in the scott would be grand access to the system and logical record
output presented in Table and if the details did not match, invalid user name or password
would be received.

In the above Fig. 7, the input username credential contains malicious SQL injection
attack codes; input by malicious user and password could be anything. When this code is
passed to $ucredential and $pcredential and executed by the database server, this might
result in a serious threat. This means that the interpreter is fetched all the records which
exist from the users_details table and returned them into $result which will be presented

@ Springer

M. S. Aliero et al.

2310

wod"9)1s-a[dwexa @ g7 [N0ds

001

vsn

S1-S0-0661

A

KKey 100§ 00S®ETI 100§

I [rewyg

Suner 1osn

Anuno)

g Jo e

Iopuan

ouwreu Jse] QWIRU ISIL] pIomsseq Al esn

[eTUSPAID 1309S JO UOTIBINUAYINE [NJssa09ns Jo Indino [esrso] £ ajqel

pringer

Qs

Systematic Review Analysis on SQLIA Detection and Prevention... 2311

<« c @ ® localhost/ticket c 120%

Online Ticketing

Please Login Here
Username: tails where userid = ‘onyone’ and password = "anything' or "1=1;
Password: [T Y YY)

] Remember me

Login &

Fig. 7 User input credential form to use the system with tautology SQL injection attack

by a malicious user. The above code can be interpreted as $SQL ="select * from user_
details where ucredential ="select * from user_details where userid="onyone’ and pass-
word =’anything’ or ‘1=1;" and password =’anything’ or ‘x’=x" ;

With the help of WHERE clause the statement of 1=1 or x=x is always returning to true
for every row, therefore the query will return all the records. In this way, an attacker able to

view all the personal information of the users for example of output presented in Table 8.

2.3.1.2 lllegal or Incorrect Logical Query Knowing the server, schema, table, and column
names make it easy for attackers to gain unauthorized access to the system [5, 9, 10]. For
example, consider the Fig. 8 below with URL input as http://localhost/ticketreservation/
reserved.php/ select * from user_details where userid="onyone’ and password =’anything’
or ‘1=1;".

If you notice at the end of the ULR http://localhost/ticketreservation/reserved.php/ a
malicious code is introduced. This is local host website, where we test the malicious node
activity. This disturbs the database engine because when you type something within the
quote it is used to tell the database that this is a query and to process it. So after processing
makes the database engine returns the error message in Fig. 9.

As can be seen information in Fig. 9, it indicates database server, version, platform and
other vital information which helps the malicious users to gather the required information
to lunch devastating attacks to the target system.

2.3.1.3 Inference Attack This attack can be classified into Blind and Timing SQLIA [5].
A. Blind SQL Injection Attack

This is another method of doing database fingerprinting. Sometimes database engines
can be configured to hide database error messages and return a generic error to the user
when there is an SQL syntax error in the user’s SQL statement. This can serve as a
method to prevent attackers from database fingerprinting by using illegal or incorrect
query methods. However, this does not mean the database is secure; it only conceals the
return default error message which will be difficult for attackers who rely on database
fingerprinting as a first step in carrying out an attack. Thus blind SQL injection attack

@ Springer

M. S. Aliero et al.

2312

wod-ays-a[dwexe @ ¢ 11098 001 vsn S1-S0-0661 W Afey no3§ 035@ €Tl Noo§
wod AIs-o[dwexd @ euerp {8 Auewron 72-60-8861 d ZJUQIO] BUBI(ccolgny y6ORURID
wodays-o[duwexo @ ysered SL VIANI S0-L0-L861 W ysoyn ysered £ ®NI0[p eL9d10y
dr rewyg Suner 1os) Anuno) y)IIq jo 9re Iopuen Qureu ise] QWU ISIL] promssed Al esn

UII0J UOTIEOTIUYINE JASN UO Syoe)e uonodfur JOS A3o[oine) (nyssaoons jo ndino [eor3o7 g 3jqel

pringer

Qs

Systematic Review Analysis on SQLIA Detection and Prevention... 2313

2 localhost

online Ticketing Rerservation A

STEPS FOR BOOKING

1. ITINERARY £ 2. ACCOMODATION 3. PASSENGER 4. PAYMENT INFO
INFO

SCHEDULE OF TRAVEL ACCOMODATION TYPE TOTAL PAYMENT
PASSENGER DETAILS

ITINERARY

Origin: v
Destination: v
Departure Date: dd/mm/ yyyy

e

Fig.8 Example of illegal or incorrect logical query

<« c @ ® localhost/ticket at elect * from ‘ c S 1200 e w

Object not found!

The requested URL was not found on this server. If you entered the URL manually please check your spelling and try again.

If you think this is a server error, please contact the webmaster.

Error 404

localhost
05/10/2019 05:34:51
Apache/2.2.14 (Win32) DAV/2 mod_ssl/2.2.14 OpenSSL/0.9.8] mod_autoindex_color PHP/3.3.1 mod_apreq2-20090110/2.7.1 mod_perl/2.0.4 Perl/v5.10.1

Fig.9 Output of illegal or incorrect logical query

can be used to deduce if there is a security mechanism implemented in the web appli-
cation or not. Blind SQL injection attacks can be achieved by asking a series of true
or false queries in the database. In this case, the attacker tries to inject the following
statements:

SELECT * FROM emp_name, emp_address, gender, from employee where 1=0; drop

employee//----------- Statement (1)
SELECT * FROM emp_name, emp_address, gender, from employee wherel=1; drop
employee//-----------=--=--=------ Statement (2)

After executing the above Boolean malicious SQL query, an attacker knows about the
database is secure or not. If the same response is delivered (return a generic error mes-
sage) there is protection mechanism that has detected an attack and blocked the query from
executing and returned an error message to the user because all of the statement contains
malicious words. A different response means that the query has reached inside the database
engine and has been executed. Therefore, the first query returns an error message because

@ Springer

2314 M. S. Aliero et al.

it is an incorrect query while the second mayor may not return any error message because
it is a correct query.

B. Timing Attacks

In this type of attack, the response time which the database takes to respond to the user’s
query is noticed which helps to know some information from a database. This method uses
an if-then statement for injecting queries. WAITFOR is a keyword along the branches,
which causes the database to delay its response by a specified time. For example, an
attacker can extract information from a database using a vulnerable parameter.

declare @ varchar (8000) select @s = db_name () if (ascii
(substring(@s, 1, 1)) & (power (2, 0))) > 0 waitfor delay ‘0:0:8

2.3.1.4 Union Attack This is the most common type of attack used by attackers in gaining
access to restricted data in other tables. The malicious SQL query can be appended by an
attacker to combine with valid SQL queries to gain unauthorized access to extra data [5,
9, 10]. For an example of a malicious attack, consider the following example where online
human resources in a particular company allow employees to view only their details online.
A malicious user can access extra information such as employee salary and phone number
from Fig. 10.

The information on fig can be interpreted as

SELECT * FROM user_details WHERE userid=‘* UNION SELECT * FROM EMP_
DETAILS - * and password="‘admin’

This means that after successful authentication, the malicious user has access to Emp_
details table with the help of two dashes (—) comments.

This feature creates an opportunity for an attacker to perform dangerous action in the
database. In this case, a valid query is terminated by (;) and a malicious query is added.
After processing the valid query, a malicious query is then executed, unlike in piggy back-
end query where a malicious query has joined with a valid query and processed as a single
joined query (Fig. 11).

2.3.1.5 Alternate Encoding Most of the SQL injection mechanisms that use filters prohibit
the use of quote () in the SQL statement which can be used in constructing different kinds
of malicious query requests to the database. In this case for an attacker to bypass such a
filter and has to convert SQL query into alternatives encodings such as hexadecimal, ASCII
or Unicode. Converting SQL query into alternate encode enables them to carry out their
attacks. For example

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER HIRE_DATE JOB_ID SALARY COMHMISSION_PCT

100 Steven King SKING 515.123.4567 1987-06-17 AD_PRES 24000.00 0.00
101 Neena Kochhar NKOCHHAR 515.123.4568 1987-06-18 AD_VP 17000.00 0.00
102 Lex De Haan LDEHAAN 515.123.4569 1987-06-19 AD_VP 17000.00 0.00
103 Alexander Hunold AHUNOLD 590423 4567 1987-06-20 IT_PROG 9000.00 0.00
104 Bruce Emst BERNST 590.423.4568 1987-06-21 IT_PROG 6000.00 0.00
105 David Austin DAUSTIN 590.423. 4569 1987-06-22 IT_PROG 4800.00 0.00

Fig. 10 Employee details database records

@ Springer

Systematic Review Analysis on SQLIA Detection and Prevention... 2315

Online Ticketing

Please Login Here
Username: " UNION SELECT * FROM EMP_DETAILS -- ' and password =
Password: ecooe

[0 Remember me

Login &

Fig. 11 Example of union SQL injection attack

“0; exec (0x73587574 64 5f177 6e), “ and the result query is: SELECT accounts
FROM login WHERE username=" AND password=0; exec (char (0x73687574646j776¢))

The above example uses the char () function and ASCII hexadecimal encoding. The char
(O function takes hexadecimal encoding of character(s) and returns the actual character(s).
The stream of numbers in the second part of the injection is ASCII hexadecimal encoding
of the attack string. This encoded string is translated into the shutdown command by the
database when it is executed.

2.3.1.6 Piggery-Backend Query Attack Some of the database engines support stacked que-
ries by default. This feature creates an opportunity for an attacker to perform dangerous
actions in the database. In this case, a valid query is terminated by (;) and a malicious query
is added. After processing the valid query, a malicious query is then executed, unlike in a
union query where a malicious query is joined with a valid query and processed as a single
joined query. For example: consider in Fig. 12 below.

The information on Figure can be interpreted as

C @ @ localhost/ticketreservat 120% oo |

e Ticketing

Please Login Here
Username: admin;drop table users_details
Password: XYY T

[0 Remember me

Login &

Fig. 12 Example of Piggy Backend query SQL injection attack

@ Springer

2316 M. S. Aliero et al.

select * from wuser details where wuserid=‘admin’ and
password=‘admin’; drop table user details - ‘.

Once the first query executed then, the database server would use the query delim-

iter(“;”) and process the injected second query. The result of executing the second query
would be to drop table users_details table, which would destroy valuable information.

2.3.1.7 Stored Procedure A stored procedure is a part of the database where programmers
could set an extra abstract layer on the database as security to prevent SQL injection attack.
As the stored procedure could be coded by the programmer, so, this part is known as an
injectable web application. Depending on specific database storage procedure there are dif-
ferent ways to attack [5, 9].

2.3.2 Injection Parameters

In view of RQ2 (See Table 1), this section provides a detailed description of the injec-
tion parameter (HTTP GET, HTTP POST, Cookies, etc.) where attackers craft malicious
queries to the application databases through a client application. Two (2) [5, 9] out of 83
studies explored in this study have fully presented different injection parameters by which
attackers inject malicious queries in web-based driving database applications as discussed
in Sects. 2.3.2.1 to 2.3.2.4 below.

2.3.2.1 Injection Through User Input Field User input fields are provided in web applica-
tions to enable web application users to request information from the backed databases to
the user with the help of HTTP POST and GET (See Fig. 6). These inputs are connected
with the backend database using SQL statements to retrieve and render the requested infor-
mation for users or to allow users to connect to the system. User input fields are vulnerable
to SQL injection attacks if input provided by the user is not sanitized before sending it to
the database server for processing, which enables attackers to modify intended queries to
perform malicious action in the system.

2.3.2.2 Injection Through Cookies Cookies are structures that maintain the persistence of
web applications by storing state information on the client machine. When a client returns
to a Web application, cookies can be used to restore the client’s state information. If a Web
application uses the cookie’s contents to build SQL queries, then an attacker can take this
opportunity to modify cookies and submit to the database server.

2.3.2.3 Injection Through Server Variables Server variables are a collection of variables
that contain HTTP, network headers, and environmental variables. Web applications use
these server variables in different ways, such as session usage statistics and identifying
browsing trends. If these variables are logged to a database without sanitization, this could
create SQL injection vulnerability because attackers can forge the values that are placed in
HTTP and network headers by entering malicious input into the client-end of the application
or by crafting their request to the server.

2.3.2.4 Second Order Injection In second-order injections, attackers plant malicious inputs
into a system or database to indirectly trigger an SQLIA. When that input is called at a later

@ Springer

Systematic Review Analysis on SQLIA Detection and Prevention... 2317

Fig. 13 Trend of the study 25
. A
15

10

=¢—proposed solution == experimental evaluation

==f=review analysis

Fig. 14 Percentage selected stud-
ies with respect to Focus

M proposal solution
M experimental analysis

= review analysis

time when an attack occurs, the input that modifies the query to construe an attack does not
come from the user, but from within the system itself.

3 SQLIAs Detection and Prevention Approaches

In view of RQ3 (See Table 1), the study provides the trend of current SQLIAs detection
and prevention tools and methods proposed by various researchers to handle problems of
SQL injection attacks. These methods start from the development of best practices to auto-
matic tools for detecting and preventing SQL injection attacks. We also considered con-
sidering studies that evaluate the effectiveness of these proposed tools and methods (both
experimentally and analytically) as to be summarized in Fig. 13 below.

Result of analysis in Fig. 14, presents that there is a side by side effort by different
researchers in trying to evaluate the effectiveness of existing SQLIAs detection and preven-
tion tools and methods from 2006 to 2009 where the experimental evaluation goes high
in the year 2010-2011 and again goes down in the year 2013-2015 compared to analyti-
cal evaluation (review analysis). While in case of propose tools and methods it shows are
searchers are putting more effort into finding the way of combating with the problem of
SQLIAs, which shows a significantly increasing number of the proposed method each year
unless the year 2011 and 2015 with 2018 with highest proposed methods and tools.

@ Springer

2318 M. S. Aliero et al.

Figure 13 shows the trends of the studies related to SQLIAs detection and prevention
measures; similarly, the Fig. 6 shows the percentage (%) number of studies extracted and
selected from six different databases related to SQLIAs detection and prevention measures
in this study with proposed solution with 70 studies or 85.4%, review analysis 5 studies or
6.1% and experimental evaluation 7 or 8.5%. In summary, the study shows that researchers
focus more on proposing a solution to tackle the problem of SQLIAs rather than evaluating
the efficiency and accuracy of existing tools and methods (Figs. 13 and 14).

3.1 Discussion of Reviewed SQLIAs Detection and Prevention Approaches

In view of RQ4 (See Table 1), we assess the effectiveness of current SQLIA detection and
prevention measures with respect to development approach and the ability to be deployed
in various injection parameters considered (Sect. 2.3.2).

To achieve that, the following questions were asked:

What are the scopes of current techniques to address particular attack type?
How effective is this technique is with respect to deployment requirements?
Do current techniques be deployed in each injection parameters?

Does techniques required code modification when new web page is added?

3.2 Discussion on SQLIAs Prevention Tools Based with Respect to Attack Types

We analyzed and evaluated each proposed method as shown in Tables 9 and 10. To ensure
a particular tool or method is capable of addressing a particular attack type described
(Sect. 2.3.1); we used analytical evaluation based on experience. We have not assessed any
of the tools or methods in real-time practice for the reason that most tools or method’s
implementation codes are not available or some methods are not implemented. Table 9 pre-
sents evaluations of SQLIAs detection tools and methods considered in this study.

As indicated in Table 9 out of the tools and methods considered, only Three (3) of them,
[S4], [S6] and [S7] focus on addressing all types of SQLIAs considered the rest of pro-
posed tools and method focusing on addressing a subset of SQLIAs. However, the effec-
tiveness of these tools and methods considered for addressing particular types of SQLIAs
varies depending on the approach used, in developing tools or method, and its ability to be
deployed in various injection described parameters, (See Sect. 2.3.2 for injection param-
eters consider in this study). For example, we used four different symbols “e”, “X” “”
and “-" to describe the effectiveness of the tool or method considered in Table 8, with “e”
indicates that a method can successfully stop all attacks of that type, “X” indicates that
a method is not able to stop all attacks of that type and “<” indicates that a method can
address the attack type considered, but cannot provide any guarantee of completeness.“~"
indicates that a method can partially address the attack type considered, but cannot provide
a guarantee of completeness.

For example, tick dot symbol (“e”) as can be seen in Table 8 is used for [S3], [S5],
[S12], [S13], [S14], [S19], [S20], [S21], [S22], [S23] which indicates this method or tool
can guarantee protection of particular SQLIAs type which they are developed to addressed
(but cannot prevent out of their scope). However, out of these tools and methods, none of
the tools can successfully be deployed to prevent all injection parameters considered (See
Table 9). The (‘) and (“~”) symbols are used in Table 9 to indicate that method or tool
can partially detect and prevent SQLIAS type considered without guaranteeing that a given

@ Springer

2319

Systematic Review Analysis on SQLIA Detection and Prevention...

X X X X . . . [¢6S]
X X X X . . . [osS]
X X X X . . . l6¥S]
X X X ° o o o [8S]
X X X X] .] [¢zS]
X X X X . . . [zzs]
X X X X . . . [12S]
X X X\ X . . . [ozs]
X . X X . . . [61S]
- X X X - - - [81s]
X - X X - - - [L1s]
X o ° ° ° ° ° [91S]
X - - - - - - [c1s]
X X X X . . . [v1S]
X X X X . . . [e1S
X X X X . . ° [z1S]
X X X o o ° ° [11S]
X ° X o ° ° ° [o1S]
X o X o ° o o [6S]
X o X o o o ° [8S]
° o o ° ° ° ° [LS]
° ° ° ° ° ° ° [9S]
X . X [¢S]
- - - - - - - [rs]
]] X [¢S]
] . X [zS]
SpoOYIaJl pup $100] UOUIA2AJ VITOS

mpaooid parolg 9pOOUR BUIN Y QouQIJuU] puyoeg-4£3314 K1onb uorun 1901100Ul/[e39[[] K3orone], ar

sad£) yoe)rR UO Paseq spoylw pue s[00) uonuaAaid jo uonenfeAq 6 3jqeL

pringer

As

M. S. Aliero et al.

2320

ssoua)a[dwod Jo dojuerens apraoid jouued Jnq ‘paroprsuod ad£) yoene oy ssappe A[[ented ued poyjow e Jey) SAJEIIpUI

ssoua)o[dwoo Jo 9djuerens Aue opraoid jouued Inqg ‘paIdpIsuod 2dA) yoryle YY) SSAIPPE UL POYIdW B Jey) SABIIPUl

W

ad£) 1er Jo sypene [re dois 03 9[qe Jou Sem POYIAW © JeY) SABIIPUT X,
ad£) e jo syoene e dois A[nJssedons ued poyjaw & jey) SAJedIpur e,

X X X X . .] [9.S]
X X X X . .] [6LS]
X X X X . . . [¥LS]
X - - - - - - leLs]
X X X X . . . [zLS]
X X X X . . . [1.S]
X X X X . . . [oLS]
X X X ° ° ° ° [+9S]
X X X X . . ° [¢9S]
X X X X . . . [z9s]
X X X X . . . [19S]
X - - - - - - [09s]
X X X X . . . [6SS]
X X X X . . . [86S]
X X X X . .) [L6S]
X - X X - - - CISY
X o ° ° ° ° ° [¢sS]
X - - - - - - (¢S]
ampasoid parolg 9POOUR BUIN[Y QouIJuU] puayoeg-43314 K1onb uorupn 1991100U1/[e33[] KSorone], ar

(ponunuod) 6 3jqer

pringer

A s

Systematic Review Analysis on SQLIA Detection and Prevention...

2321

<<ui>>

<<Component>>

Valid SQL Query to
post and get data

10)

%«omponent»

SQL query consist of malicious
codes to get and post data

<<Component>>
<<Component>>
(IF ELSE, DO ...) P A<fDTponent>> 0
ctual query parse |
$q="varid =". “12; returntrue;// [0 tree
Original Parser L4 8q = g((hls;:d‘ ==id) o sQ keyword
<<Component>> return true; q .= “else return g tree structure
false;” values
Check for alternative
lencoding character for
control statement (IF ELSE, <<Component>> <<Component>>
DO...) from mapping table -
) pPing Generate alternative character -0 Shadow query parse 0

Dual Parser

<Component>>
A mapping table of
alternative character
encoding for control

statement ((IF ELSE, DO...)

encoding a table that maps
characters from various language to
detect deviation of original query
value ($q =“varid =”. “12; return
true;//” . “if(this.id == id)
return true;” $q .= “else return
false;”)

Shadow
values

tree

sQL keyword
tree structure

6 Mapping Table

Fig. 15 Component of the solutions proposed in studies S4

method prevents the future attack of similar addressed type. We used (“°””) for methods that
implement anomaly or machine learning-based approach to detect and prevent SQLIAs for
example [S6], [S7], [S8], [S9], [S10], [S11], and [S16], this is because these approaches
use sets of typical application queries as input data set to train the protection model, thus
any query that goes against the model might result in false positive or false negative.
Therefore, the effectiveness of these tools and methods is highly dependent on the qual-
ity of training data set used and how good the model trained, as poor training data set and
model result in false-positive and negative. Thus, the effectiveness of methods and tools
implementing these approaches is considered partial using circle (“°””) symbol as shown in
Table 9. Other methods considered as partial are [S4], [S15], [S17] and [S18] methods that
use SQL query related errors (first-order SQLI vulnerability) to detect prevent SQLIAs as
SQL query related errors is only one of the many possible ways to prevent of SQLIAs. We
used (“=") to represents tools and methods implementing such an approach (Table 9).

Diglossia is tool that is able to partially adress all type of SQL injection attack consid-
ered in this study (Table 9). Diglossia consist of two major conponet (Fig. 15) that intecept
user queries (valid and malacious) break it into SQL keyword. This enable the tool look for
malicious keyword or character in the user request to database.

Alternate encoding and stored procedure are the most important case of SQL injection
attacks that are hard to defend by many of the proposed tools and methods considered.
However, S4 provides a partial solution with a filter that detects and prevent the use of
quote () in the user input, to avoid malicious request that is being constructed with (°).
While in the case of the stored procedure, S4 can examine code that generates the query
when stored is executed on the database unlike most of the methods considered focus on
preventing an attack on queries that are generated with applications.

3.3 Discussion on SQIAs Detection Tools Based with Respect to Attack Types

Table 9 above represents an evaluation of SQLIAs prevention tools and method while
Table 10 below represents an evaluation of SQLIAs detection tools. In Table 10 we

@ Springer

M. S. Aliero et al.

2322

PRI9PISUOD YoeNe Je[noned sSAIppe J0UUED POYIOU IO [00) AJEIIPUL,, X

PAIOPISUOD JOBIIE JO SSAIPPE UBD POYIAUIL IO [00) AJBIIPUL, A

Koo XK K

XooKoK X K K K X K K K K) K

Hoox

ol

[T T B

D T T T T T T T

Koo > < >SS S S

o >SS K x> >SS x>

N T T I T

[€8s]
[zss]
[18s]
[08s]
l6LS]

>
>

A D S
D T T T
SO S S SIS S S S S S S S S S SSSSDS

N

vy

e

>
—_
O
ISA)
)

SpoyIa N puy s100L uond212(q VI10S

ampaosoid paiolg

QpOJUR AqeUINY

duAIJUT

puoyoeg-A3314

K1onb uorun 1031100U1/Te39[[[A3ojone], dl

sad£3 yor)IER UO PISEq SPOYIAW PUE S[O0] UONISIAP JO uoneneaq Q| djqeL

pringer

A s

Systematic Review Analysis on SQLIA Detection and Prevention... 2323

described effectiveness of each tools and method considered using Four different sym-
bols while in Table 8 we used only Two different symbols (and X) this is because in
detection approach considered in different researchers uses similar approach (dynamic
approach or penetration testing) in trying to resolve problem of SQLIAs while in
prevention approach different researchers employed different approaches (i.e. anom-
aly-based, machine learning-based blacklisting and white listening, etc.) in develop-
ing these tools and methods and some of these methods are problematic in nature
i.e. anomaly-based (prone to false and negative alarm) some cannot be deployed in
every injection parameters considered in this study i.e. whitelisting and blacklisting
approaches.

Table 10 shows that most of the detection tools and method considered in this study
are able to resolve” tautology, illegal or incorrect query, union query and alternate
encoding SQLIAs” while inference and stored procedure attack seems to be a diffi-
cult attack to be addressed by many of the tools and methods considered this because
the code that generates the query is stored and executed on the database and most
of the methods considered focus on preventing attack on queries that are generated
with applications. However, it is important to note that we did not take precision into
account for evaluation, that is to say, many methods and tools considered are based on
conservative analysis that may result in false positive.

3.4 Evaluation of SQLIAs Detection and Preventions Tools and Methods
with Respect to Injection Parameters

In this section we combine evaluation of SQLIAs detection and prevention tools and
methods together (Table 11), this is because every attacker who wants to perform
SQLIAs against web-database driving applications has to use one or more injection
parameters considered in this study, therefore, there is no need of separation of evalu-
ation since this injection parameter are same to any web-database driving application.
In this regard, we analyzed each tool and method considered with respect to their han-
dling of the various injection mechanisms described (Sect. 2.3.2). We used “Yes” to
indicate a tool or method that can be deployed to that injection parameter and “No” to
indicate that the tool cannot be deployed that parameter injection parameter (Table 11).

Table 11 shows only [S2, S3, S4, S6, S7, S8, S9, S42, S47, S63, S64, S66, S75,
S78, S79] can be deployed in “URL login, search, and cookies input fields, while [S5,
S10, S11, S16, S17, S19, S20, S21, S37, S38, S40, S41, S43, S45, S46, S47-549, S54,
S55, S57-S59, S65, S81, S82] can be deployed in “URL, login and search input fields
and [S12, S13, S14, S15, S18, S22, S23, S36, S39, S44, S50-53, S56, S60-S62] can
only be deployed in “URL and login” input fields. This shows that none of the stud-
ies (tool or method) considered can be deployed to detect or prevent an attack that
exploits the server-side vulnerability. This is due to the fact that server-side is vulner-
able to second-order SQLIV which is not a problem of sanitizing sensitive function but
is intentionally created by attackers through vulnerable parts of the application (not
necessarily through Login. Add user page or ULR attacker may also use file inclu-
sion attack to exploit dynamic file include) and reside in application database. In sum-
mary, it is important to know that all of the tools and method considered can address
attacks through URL and login input fields, halve of the tools and method considered
can examine queries in search input field, average number of the tools and methods

@ Springer

2324

M. S. Aliero et al.

Table 11 Evaluation of detection
and prevention tools and methods
based on injection parameters

@ Springer

1D URL Login Search Cookies Server side
[S2] Yes Yes Yes Yes No
[S3] Yes Yes Yes Yes No
[S4] Yes Yes Yes Yes No
[S5] Yes Yes Yes No No
[S6] Yes Yes Yes Yes No
[S7] Yes Yes Yes Yes No
[S8] Yes Yes Yes Yes No
[S9] Yes Yes Yes Yes No
[S10] Yes Yes Yes No No
[S11] Yes Yes Yes No No
[S12] Yes Yes No No No
[S13] Yes Yes No No No
[S14] Yes Yes No No No
[S15] Yes Yes No No No
[S16] Yes Yes Yes No No
[S17] Yes Yes Yes No No
[S18] Yes Yes No No No
[S19] Yes Yes Yes No No
[S20] Yes Yes Yes No No
[S21] Yes Yes Yes No No
[S22] Yes Yes No No No
[S23] Yes Yes No No No
[S36] Yes Yes No No No
[S37] Yes Yes Yes No No
[S38] Yes Yes Yes No No
[S39] Yes Yes No No No
[S40] Yes Yes Yes No No
[S41] Yes Yes Yes No No
[S42] Yes Yes Yes Yes No
[S43] Yes Yes Yes No No
[S44] Yes Yes No No No
[S45] Yes Yes Yes No No
[S46] Yes Yes Yes No No
[S47] Yes Yes Yes Yes No
[S48] Yes Yes Yes No No
[S49] Yes Yes Yes No No
[S50] Yes Yes No No No
[S51] Yes Yes No No No
[S52] Yes Yes No No No
[S53] Yes Yes No No No
[S54] Yes Yes Yes No No
[S55] Yes Yes Yes No No
[S56] Yes Yes No No No
[S57] Yes Yes Yes No No
[S58] Yes Yes Yes No No
[S59] Yes Yes Yes No No

Systematic Review Analysis on SQLIA Detection and Prevention... 2325

Table 11 (continued)

1D URL Login Search Cookies Server side
[S60] Yes Yes No No No
[S61] Yes Yes No No No
[S62] Yes Yes No No No
[S63] Yes Yes Yes Yes No
[S64] Yes Yes Yes Yes No
[S65] Yes Yes Yes No No
[S66] Yes Yes Yes Yes No
[S75] Yes Yes Yes Yes No
[S78] Yes Yes Yes Yes No
[S79] Yes Yes Yes Yes No
[S81] Yes Yes Yes No No
[S82] Yes Yes Yes No No
[S83] Yes Yes No No No

considered can examine queries in cookie fields, and none of the tools or method con-
sidered can detect or prevent attacks that take advantage of server-side SQLI vulner-
ability (See Table 11).

4 Conclusion

This SLR on SQLIAs detection and prevention measures adopt guideline in [8] on con-
ducting a systematic literature review on software, our study explores different studies from
six different studies published the database, we carefully selected Eighty-two (82) studies
out of initial 1261 based on inclusion and exclusion criteria defined in a study. Out of these
eighty-two (82) studies, our study shows that seventy 70 or 85.4% are methods and tools
proposed by different researchers to mitigate the problem of SQLIAs, while 7 or 8.5% are
proposed experimental evaluation 5 or 6.1% are analytical analysis.

The evaluation result showed that a few of these proposed SQLIAs detection and pre-
vention tools and methods are developed to address all types of SQLIAs while others
focused on addressing a subset of particular SQLIAs type considered. Similarly, the result
showed that a few of these tools can examine malicious SQL queries injected through
cookies with no tool or method considered be able to detect or prevent attacks from server-
side vulnerability.

In conclusion, one of the reasons why researchers have not been able to find the ultimate
solution for the problem of SQLIAs is that each proposed methods and tools have a limita-
tion on how it addresses a particular attack, starting from scope of the proposed method to its
weakness in the development approach. For example, as can be seen in Fig. 16, almost each
of the proposed SQLIAs prevention tools and methods reviewed in this study provides the
guarantee of protection tautology, illegal/incorrect query, and union query SQLIA by 62.2%,
alternate encoding attack by 42.2%, piggy-backend query attack by 22.2%, inference, and
stored procedure attack by 11.1%. Likewise, SQLIAs detection tools and methods consid-
ered in this study provides the guarantee of protection tautology, illegal/incorrect query, and
union query SQLIA by 20%, alternate encoding and piggy-backend query attack by 17.7%,

@ Springer

M. S. Aliero et al.

2326
Analytical Tautology
Evaluation 28
15.6%
20%
62.2%
Tllegal/
Incorrect 28
62.2% 20%
Experimental Union Query
Evaluation
11.1%
62.2% 20%
Piggy-
Backend
222%
17.7%
Inference
11.1%
11.1%
Alternate
Encode
42.2% 17.7%
Stored @
Procedure L%
2.2%
[S24-S30] [S31-35] SQLIA Types i [S2-S23] [S36-S46]
SQLIA Prevention SQLIA
Detection
Survey Focus Propose Solution

Fig. 16 Research contributions regarding SQLIAs

inference attack by 11.1% and stored procedure attack by 2.2%. On the other hand, the study
shows that the number of studies that proposed an evaluation of existing SQLIAs detection
and prevention tools and methods is quite low, which is around 26.7%, 15.6% for analyti-
cal evaluation, and 11.1% for experimental evaluation. Lastly, this study highlights the major
challenges that required immediate response by developer and researchers in order to prevent
the risk of being hacked through SQLIAs lack of capability to detect attacks that can exploit

@ Springer

Systematic Review Analysis on SQLIA Detection and Prevention... 2327

«» «Component>> y «Component>>) «<Component>>
Sead TIRT Crawling Attacking Analysis

<«<Components>

Reporting

<«<Component=>
Hittp Fetcher Eig;m'» . SQL Query
Il SQLIA ' Related Etror
HTML pages SQL emor Resnonse
s based
P SQLIAs
Links extractor
%‘<COIWIII(» 0
T 0
)] - g
[~ HTMLpages Blnd SQLIA vad & Requests on one
««Component>> invalid Page imilarity
SQLIAs
URLs i
distributor gdfoupoml» <<Components> i ‘omponent>>
T Tautology 0 Presence of 0 Generate report U
Y. URLs SQLIA “login", “log
«C Authentic w’, “Ssign-out’, | pesion of
Custom URLS ation sing out’, 108 | successt
Filter bypassing out”, “logout login
o™,
“dashboard”,
“profile” m
o page response

Fig. 17 Components of the solutions proposed in studies S47

server-side SQLI vulnerability, poor prevention of inference and stored procedure attacks lack
of ability to be deployed in various SQL injection parameter used in target applications.

5 Future Work

The study provides a comprehensive overview of SQL injection detection and defensive
tools and method to combat unauthorized access and data modification on web-based data-
base-driven applications. However, these tools and methods have weaknesses ranging from
development practice to deployments capabilities. Our study reveals that none of the tools
can fully detect or prevent all SQL injection attacks types. Tools [S4, S6, and S7] attempts
to stops SQL injection attacks of all type, however, their accuracy highly dependent on the
quality of training data set used and how good the model was trained, as poor training data
set and model result in false-positive and negative. Therefore, these tools can only partially
depend against a subset of SQL injection attacks considered as a result of common devel-
opment errors and attackers are continually inventing ways of bypassing anomaly-based
approach detection and prevention mechanism. Therefore, the effectiveness of these tools
and methods is highly dependent on the quality of training data set used and how good the
model was trained, as poor training data set and model result in false positive and negative.

Furthermore, the study recommends S47 for future improvements as a tool can be
deployed in various injection parameters to detect SQL injection attack types except for
stored procedure and time SQL injection attacks type. S47 is designed with the concept
of components based software engineering practice as described in Fig. 17 below, which

@ Springer

2328 M. S. Aliero et al.

allows easier and efficient future improvement, maintenance and reuse much complexity
as the system becomes complex. The proposed tool has four major components, namely:
crawling, attacking analysis and reporting in addition to this, each component has sub-com-
ponents indicating activities performed by the component. In the attack component, the
tool claimed to detect SQL injection attack type considered except stored procedure SQL
injection attack.

Finally, the study recommends designing of hybrid SQL injection attack tool that
detects and block SQL injection attacks using the static and dynamic approach to have a
more accurate result with high efficiency. In future, our focus on most recent studies of
internet of vehicles, vehicular ad hoc networks and wireless sensor networks security anal-
ysis [86-88].

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical Approval This article does not contains any studies with human participants performed by any of the
authors.

References

1. Qureshi, K. N., Bashir, F., & Abdullah, A. H. (2019). Distance and signal quality aware next hop selec-
tion routing protocol for vehicular ad hoc networks. Neural Computing and Applications, 1-14.

2. Anwar, M., et al. (2018). Securing data communication in wireless body area networks using digital
signatures. Technical Journal, 23(02), 50-55.

3. Qureshi, K. N., & Abdullah, A. H. (2014). Adaptation of wireless sensor network in industries and
their architecture, standards and applications. World Applied Sciences Journal, 30(10), 1218-1223.

4. Igbal, S., et al. (2018). Critical link identification and prioritization using Bayesian theorem for
dynamic channel assignment in wireless mesh networks. Wireless Networks, 24(7), 2685-2697.

5. Aliero, M. S., Ghani, I., Zainudden, S., Khan, M. M., & Bello, M. (2015). Review on SQL injection
protection methods and tools. Jurnal Teknologi, 77(13), 49-66.

6. Aliero, M. S., et al. (2019). An algorithm for detecting SQL injection vulnerability using black-box
testing. Journal of Ambient Intelligence and Humanized Computing, 11, 1-18.

7. Thiyagarajan, A., et al. (2015). Methods for detection and prevention of SQL attacks in analysis of web
field data. International Journal of Computer Science and Mobile Computing, 4(4), 657-662.

8. Kitchenham, B., et al. (2009). Systematic literature reviews in software engineering—A systematic
literature review. Information and Software Technology, 51(1), 7-15.

9. Halfond, W. G., & Orso, A. (2007). Detection and prevention of sql injection attacks, in Malware
Detection (pp. 85-109). Berlin: Springer.

10. Sadeghian, A., Zamani, M., & Manaf, A. A. (2013). A taxonomy of SQL injection detection and pre-
vention techniques. In 2013 international conference on informatics and creative multimedia (pp.
53-56). IEEE.

11. Tiwari, Y., & Tiwari, M. (2015). A study of SQL of injections techniques and their prevention meth-
ods. International Journal of Computer Applications, 114(17), 31-33.

12. Tajpour, A., Ibrahim, S., & Sharifi, M. (2012). Web application security by SQL injection detection-
tools. IJCSI International Journal of Computer Science, 9, 2.

13. Kindy, D. A., & Pathan, A. S. K. (2011). A survey on SQL injection: Vulnerabilities, attacks, and pre-
vention techniques. In 2011 IEEE 15th international symposium on consumer electronics (ISCE) (pp.
468-471). IEEE.

14. Tajpour, A., & zade Shooshtari, M. J. (2010). Evaluation of SQL injection detection and prevention
techniques. In 2010 2nd international conference on computational intelligence, communication sys-
tems and networks (pp. 216-221). IEEE.

@ Springer

Systematic Review Analysis on SQLIA Detection and Prevention... 2329

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

37.

38.

Doshi, J. C., Christian, M., & Trivedi, B. H. (2014). SQL FILTER-SQL Injection prevention and log-
ging using dynamic network filter. In International symposium on security in computing and communi-
cation (pp. 400-406). Springer, Berlin, Heidelberg.

Medhane, M. (2013). R-WASP: Real time-web application SQL injection detector and preventer. Inter-
national Journal of Innovative Technology and Exploring Engineering (IJITEE), 2(5), 327-330.

Son, S., McKinley, K. S., & Shmatikov, V. (2013). Diglossia: Detecting code injection attacks with
precision and efficiency. In Proceedings of the 2013 ACM SIGSAC conference on computer & commu-
nications security. ACM.

Shin, Y., Williams, L., & Xie, T. (2006). Sqlunitgen: SQL injection testing using static and dynamic
analysis. In 17th IEEE proceedings of the international symposium on software reliability engineering
(ISSRE).

Bandhakavi, S., et al. (2007). CANDID: Preventing SQL injection attacks using dynamic candidate eval-
uations. In Proceedings of the 14th ACM conference on computer and communications security. ACM.
Liu, A, et al. (2009). SQLProb: A proxy-based architecture towards preventing SQL injection attacks.
In Proceedings of the 2009 ACM symposium on applied computing. ACM.

Cheon, E. H., Huang, Z., & Lee, Y. S. (2013). Preventing SQL injection attack based on machine
learning. International Journal of Advancements in Computing Technology, 5(9), 967-974.

Joshi, A., & Geetha, V. (2014). SQL injection detection using machine learning. In 2014 international
conference on control, instrumentation, communication and computational technologies (ICCICCT).
IEEE.

Shahriar, H., & Zulkernine, M. (2012). Information-theoretic detection of SQL injection attacks. In
2012 IEEE 14th international symposium on high-assurance systems engineering. IEEE.

Gubbi, J., et al. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions.
Future generation computer systems, 29(7), 1645-1660.

Johari, R., & Sharma, P. (2012). A survey on web application vulnerabilities (SQLIA, XSS) exploita-
tion and security engine for SQL injection. In 2012 international conference on communication sys-
tems and network technologies. IEEE.

Mishra, N., & Gond, S. (2013). Defenses to protect against SQL injection attacks. International Jour-
nal of Advanced Research in Computer and Communication Engineering, 2(10), 3829-3833.

Manoj, R. J., Chandrasekhar, A., & Praveena, M. A. (2014). An approach to detect and prevent tautol-
ogy Type SQL injection in web service based on XSchema validation. International Journal Of Engi-
neering And Computer Science, 10, 2319-7242.

Lee, L, et al. (2012). A novel method for SQL injection attack detection based on removing SQL query
attribute values. Mathematical and Computer Modelling, 55(1), 58—68.

Indrani, B., & Ramaraj, E. (2011). X-log authentication technique to prevent SQL injection attacks.
International Journal of Information Technology and Knowledge Management, 4(1), 323-328.

Das, D., Sharma, U., & Bhattacharyya, D. (2010). An approach to detection of SQL injection attack
based on dynamic query matching. International Journal of Computer Applications, 1(25), 28-34.
Prabakar, M. A., Karthikeyan, M., & Marimuthu, K. (2013). An efficient technique for preventing SQL
injection attack using pattern matching algorithm. In 2013 IEEE international conference on emerging
trends in computing, communication and nanotechnology (ICECCN). IEEE.

Narayanan, S. N., Pais, A. R., & Mohandas, R. (2011). Detection and prevention of sql injection
attacks using semantic equivalence. In International conference on information processing (pp. 103—
112). Springer, Berlin.

Kumar, K., Jena, D., & Kumar, R. (2013). A novel approach to detect SQL injection in web applica-
tions. International Journal of Application or Innovation in Engineering & Management (IJAIEM),
2(6), 37-48.

Zhang, X. H., & Wang, Z. J. (2010). A static analysis tool for detecting web application injection
vulnerabilities for ASP program. In 2010 2nd international conference on e-business and information
system security (EBISS).

Tongshu, L., Jing, Z., & Jianzheng, L. (2013), SQL injection prevention. Google Patents.

Randive, P. U., Khatke, M. B., & Reddi, M. B. (2014). An Approach for Prevention of SQL Injection
Attacks on Database: A Review. International Journal of Innovative Research in Advanced Engineer-
ing, 1(3), 38-41.

Masri, W., & Sleiman, S. (2015). SQLPIL: SQL injection prevention by input labeling. Security and
Communication Networks, 8(15), 2545-2560.

Antunes, N., & Vieira, M. (2009). Comparing the effectiveness of penetration testing and static code
analysis on the detection of SQL injection vulnerabilities in web services. In 2009 15th IEEE pacific
rim international symposium on dependable computing. IEEE.

@ Springer

2330 M. S. Aliero et al.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Antunes, N., & Vieira, M. (2011). Enhancing penetration testing with attack signatures and interface
monitoring for the detection of injection vulnerabilities in web services. In 2011 IEEE international
conference on services computing. IEEE.

Antunes, N., & Vieira, M. (2015). Assessing and comparing vulnerability detection tools for web
services: Benchmarking approach and examples. IEEE Transactions on Services Computing, 8(2),
269-283.

Khoury, N. et al. (2011). An analysis of black-box web application security scanners against stored
SQL injection. In 2011 IEEE third international conference on privacy, security, risk and trust
(PASSAT) and 2011 IEEE third international conference on social computing (SocialCom). IEEE.
Antunes, N., & Vieira, M. (2012). Evaluating and improving penetration testing in web services. In
2012 IEEE 23rd international symposium on software reliability engineering. IEEE.

Dijuric, Z. (2013). A black-box testing tool for detecting SQL injection vulnerabilities. In 2013 Sec-
ond international conference on informatics & applications (ICIA). IEEE.

Liban, A., & Hilles, S. M. (2014). Enhancing MYSQL Injector vulnerability checker tool (MYSQL
Injector) using inference binary search algorithm for blind timing-based attack. In 2014 IEEE 5th
control and system graduate research colloquium. IEEE.

Doupé, A.et al. (2012). Enemy of the state: A state-aware black-box web vulnerability scanner. In
Presented as part of the 21st {USENIX)} Security Symposium ({ USENIX} Security 12).

Shakhatreh, A. Y. I. (2010). SQL-injection vulnerability scanner using automatic creation of SQL-
injection attacks (MySqlinjector), Universiti Utara Malaysia).

Ciampa, A., Visaggio, C. A., & Di Penta, M. (2010). A heuristic-based approach for detecting
SQL-injection vulnerabilities in Web applications. In Proceedings of the 2010 ICSE workshop on
software engineering for secure systems. ACM.

Fu, X. et al. (2007). A static analysis framework for detecting SQL injection vulnerabilities. In 37st
annual international computer software and applications conference (COMPSAC 2007). IEEE.
Cho, Y.-C., & Pan, J.-Y. (2015). Design and implementation of website information disclosure
assessment system. PLoS ONE, 10(3), e0117180.

Falcove. (2007) Falcove web vulnerability scanner and penetration testing. http://www.ramsayfalc
ove.com/htdocs/Welcome.html. Accessed June 29, 2015

Singh, A. K., & Roy, S. (2012). A network based vulnerability scanner for detecting sqli attacks in
web applications. In 2012 Ist international conference on recent advances in information technol-
ogy (RAIT). IEEE.

Aliero, M. S., & Ghani, I. (2015). A component based SQL injection vulnerability detection tool.
In 2015 9th Malaysian software engineering conference (MySEC). IEEE.

Seyyar, M. B., Catak, F. O., & Giil, E. (2018). Detection of attack-targeted scans from the Apache
HTTP Server access logs. Applied Computing and Informatics, 14(1), 28-36.

Eassa, A. M., et al. (2019). NoSQL injection attack detection in web applications using RESTful
service. Programming and Computer Software, 44(6), 435-444.

Taylor, C., & Sakharkar, S. (2019). DROP TABLE textbooks: An Argument for SQL injection cov-
erage in database textbooks. In Proceedings of the 50th ACM technical symposium on computer
science education (pp. 191-197). ACM.

Basit, N., Hendawi, A., Chen, J., & Sun, A. (2019). A learning platform for SQL injection. In Pro-
ceedings of the 50th ACM technical symposium on computer science education (pp. 184—-190). ACM.
Batista, L., et al. (2018). Fuzzy neural networks to create an expert system for detecting attacks by
SQL Injection. The International Journal of Forensic Computer Science, 13(1), 8-21.

Khanna, S., & Verma, A. K. (2018). Classification of SQL injection attacks using fuzzy tainting.
In Progress in intelligent computing techniques: Theory, practice, and applications (pp. 463-469).
Springer, Singapore.

Uwagbole, S. O., Buchanan, W. J., & Fan, L. (2016). Numerical encoding to Tame SQL injec-
tion attacks. In NOMS 2016-2016 IEEE/IFIP network operations and management symposium (pp.
1253-1256). IEEE.

Ross, K. et al. (2018). Multi-source data analysis and evaluation of machine learning techniques for
SQL injection detection. In Proceedings of the ACMSE 2018 conference (pp. 1-8). ACM.
Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In ICISSP (pp. 108-116).

Moh, M. et al. (2016). Detecting web attacks using multi-stage log analysis. In 2016 IEEE 6th
international conference on advanced computing (IACC) (pp. 733-738). IEEE.

Springer

http://www.ramsayfalcove.com/htdocs/Welcome.html
http://www.ramsayfalcove.com/htdocs/Welcome.html

Systematic Review Analysis on SQLIA Detection and Prevention... 2331

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.
82.

83.
84.

85.

86.

87.

88.

Igbal, S., et al. (2016). On cloud security attacks: A taxonomy and intrusion detection and preven-
tion as a service. Journal of Network and Computer Applications, 74, 98—120.

Deepa, G., & Thilagam, P. S. (2016). Securing web applications from injection and logic vulner-
abilities: Approaches and challenges. Information and Software Technology, 74, 160—180.

Yadav, N., & Shekokar, N. (2018). Analysis on injection vulnerabilities of web application. In Pro-
ceedings of international conference on wireless communication (pp. 13-22). Springer, Singapore.
Buro, S., & Mastroeni, I. (2018). Abstract code injection. In International conference on verifica-
tion, model checking, and abstract interpretation (pp. 116—137). Springer, Cham.

Deshpande, G., & Kulkarni, S. (2019). Modeling and mitigation of XPath injection attacks for web ser-
vices using modular neural networks. In Recent findings in intelligent computing techniques (pp. 301—
310). Springer, Singapore.

Schwichtenberg, H. (2018). Reading and modifying data with SQL, stored procedures, and table-valued
functions. In Modern Data Access with Entity Framework Core (pp. 305-315). Apress, Berkeley, CA.
Heled, J., et al. (2018) Research on SQL injection detection technology based on SVM. In MATEC web of
conferences.

Yan, R, et al. (2018). New deep learning method to detect code injection attacks on hybrid applications.
Journal of Systems and Software, 137, 67-T1.

Wang, X., & Zhao, Y. (2018). Order-revealing encryption: File-injection attack and forward security. In
European symposium on research in computer security. Springer, Cham.

Thomé, J., et al. (2018). Security slicing for auditing common injection vulnerabilities. Journal of Systems
and Software, 137, 766-783.

Stasinopoulos, A., Ntantogian, C., & Xenakis, C. (2019). Commix: Automating evaluation and exploita-
tion of command injection vulnerabilities in Web applications. International Journal of Information Secu-
rity, 18(1), 49-72.

Kaur, G., et al. (2018). Efficient yet robust elimination of XSS attack vectors from HTMLS web applica-
tions hosted on OSN-based cloud platforms. Procedia Computer Science, 125, 669-675.

Irmak, E., & Erkek, 1. (2018). An overview of cyber-attack vectors on SCADA systems. In 2018 6th inter-
national symposium on digital forensic and security (ISDFS). IEEE.

Barzegar, M., & Shajari, M. (2018). Attack scenario reconstruction using intrusion semantics. Expert Sys-
tems with Applications, 108, 119-133.

Babiker, M., Karaarslan, E., & Hoscan, Y. (2018). Web application attack detection and forensics: A sur-
vey. In 2018 6th international symposium on digital forensic and security (ISDFS). IEEE.

Nadeem, R. M., et al. (2017). Detection and prevention of SQL injection attack by dynamic analyzer and test-
ing model. International Journal OURNAL of Advanced Computer Science and Applications, 8(8), 209-214.
Rahman, T. F. A,, et al. (2017). SQL injection attack scanner using Boyer-Moore string matching algo-
rithm. JCP, 12(2), 183-189.

Baror, S. O., & Venter, H. (2019). A Taxonomy for cybercrime attack in the public cloud. In International
conference on cyber warfare and security (pp. 505). Academic Conferences International Limited.
Mukherjee, S. (2019). Popular SQL server database encryption choices. arXiv preprint arXiv:1901.03179.
Zheng, L. et al. (2019). Research and implementation of web application system vulnerability location
technology. In The international conference on cyber security intelligence and analytics. Springer, Cham.
Awad, M., et al. (2019). Security vulnerabilities related to web-based data. Telkomnika, 17(2), 852-856.
Deshpande, D. S., Deshpande, S. P., & Thakare, V. M. (2019). Detection of online malicious behavior: An
overview. In Ambient communications and computer systems (pp. 11-24). Springer, Singapore.

Kozik, R., Choras, M., & Keller, J. (2019). Balanced efficient lifelong learning (B-ELLA) for cyber attack
detection. Journal of Universal Computer Science, 25(1), 2-15.

Qureshi, K. N., Bashir, F., & Abdullah, A. H. (2017). Provision of security in vehicular ad hoc networks
through an intelligent secure routing scheme. In 2017 international conference on frontiers of information
technology (FIT). IEEE.

Qureshi, K. N., Bashir, F., & Islam, N. U. (2019). Link aware high data transmission approach for inter-
net of vehicles. In 2019 2nd international conference on computer applications & information security
(ICCAIS). IEEE.

Qureshi, K. N., Abdullah, A. H., & Igbal, S. (2016). Improving quality of service through road side back-
bone network in Vanet. Jurnal Teknologi, 78(2), 7-14.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://arxiv.org/abs/1901.03179

2332

M. S. Aliero et al.

Muhammad Saidu Aliero He is Lecturer at Kebbi State University of
Science And Technology Aliero and Data Entry Operator at Goggo
Global Link Company Limited. Currently he is student in cyber secu-
rity department, Monash University, Malaysia. Muhammad Saidu
Aliero, B.Sc. Information Technology, Kebbi State University of Sci-
ence and Technology Aliero 2012, Master of Information Security
Universiti Tecknologi Malaysia 2016 and Ph.D. student Monash Uni-
versity Malaysia.

Dr. Kashif Naseer Qureshi is currently a Senior Assistant Professor
with Bahria University, Islamabad. He received his doctorate from the
University of Technology Malaysia (UTM). His research interest
focuses on but are not limited to Ad hoc communication, Internet of
Vehicles, Body area Networks, Cloud Computing and Internet of
Things and provision of security in these domains. He is a Cisco and
Microsoft Certified Network Professional. He has been a reviewer for
various reputable academic journals. He is an active researcher with
around 80 international publications in various renowned journals with
the cumulative impact factor of 50. He has lead Ministry of Higher
Education Malaysia Project by Ministry of Education Malaysia (MOE)
and conducted in collaboration with Research Management Center
(RMC) at Universiti Teknologi Malaysia (UTM) in Malaysia. Cur-
rently working with Ministry of Planning Commission and Higher
Education Commission Project Cyber Reconnaissance and Combat
(CRC) in Bahria University. This is a three years funded project on
specialized field of Cyber Security and its practical applications, which

are important components of Pakistan Vision 2025. Apart from his day job startup, he is also focusing that
how to integrate the research with industry and to new start-ups, SME’s and businesses.

@ Springer

Dr. Muhammad Fermi Pasha is graduated and earned his Ph.D. from
Universiti Sains Malaysia in 2010. He then continued working as a
research fellow at the same university for the next 5 years working on
several multidisciplinary research projects with community engage-
ment activities. Before that, while pursuing his Ph.D., he spent 4 years
working as a Senior Software Engineer and Architect in the software
industry. He is currently with Monash University, Malaysia, as a Lec-
turer attached to the School of Information Technology. Dr. Fermi is a
passionate software developer and researcher. He has received various
awards recognizing the software solutions and the research projects
that he was involved with both as member as well as team lead. Pres-
ently, his research focuses on computational neuroimaging, intelligent
network security traffic analysis, and healthcare and radiology IT with
emphasis on big data.

Systematic Review Analysis on SQLIA Detection and Prevention... 2333

Dr. Imran Ghani He is working as Senior Lecturer of Software Engi-
neering at Monash University Malaysia. He was previously worked in
Universiti Teknologi Malaysia (UTM), Studied Ph.D Business Infor-
mation Technology at Kookmin University. He did his Ph.D. from
Business Information Technology, Seoul, Korea.

Rufai Aliyu Yauri Associate Professor Rufai Aliyu Yauri, Ph.D. and
M.Sc. Universiti Putra Malaysia. Deputy Dean Faculty of Engineering,
Head of Department of ICT. Kebbi State University of Science and
Technology.

Affiliations

Muhammad Saidu Aliero’ - Kashif Naseer Qureshi?® - Muhammad Fermi Pasha’ -
Imran Ghani® - Rufai Aliyu Yauri®

! School of IT, Monash University, Malaysia, Subang Jaya, Malaysia

2 Department of Computer Science, Bahria University, Islamabad, Pakistan
Indiana University of Pennsylvani, Philadelphia, USA

Department of ICT, Kebbi State University of Science and Technology Aliero, Aliero, Nigeria

@ Springer

http://orcid.org/0000-0003-3045-8402

	Systematic Review Analysis on SQLIA Detection and Prevention Approaches
	Abstract
	1 Introduction
	2 Research Material and Review Method
	2.1 Planning Phase
	2.1.1 Identifying Need for SLR
	2.1.2 Specifying Research Questions
	2.1.3 Review Process

	2.2 Conducting Study
	2.2.1 Conduct Quality Assessment (QA)
	2.2.2 Data Extraction and Synthesis

	2.3 Documenting
	2.3.1 Types of SQLIAs Used for Attacks
	2.3.1.1 Tautology Attack
	2.3.1.2 Illegal or Incorrect Logical Query
	2.3.1.3 Inference Attack
	2.3.1.4 Union Attack
	2.3.1.5 Alternate Encoding
	2.3.1.6 Piggery-Backend Query Attack
	2.3.1.7 Stored Procedure

	2.3.2 Injection Parameters
	2.3.2.1 Injection Through User Input Field
	2.3.2.2 Injection Through Cookies
	2.3.2.3 Injection Through Server Variables
	2.3.2.4 Second Order Injection

	3 SQLIAs Detection and Prevention Approaches
	3.1 Discussion of Reviewed SQLIAs Detection and Prevention Approaches
	3.2 Discussion on SQLIAs Prevention Tools Based with Respect to Attack Types
	3.3 Discussion on SQIAs Detection Tools Based with Respect to Attack Types
	3.4 Evaluation of SQLIAs Detection and Preventions Tools and Methods with Respect to Injection Parameters

	4 Conclusion
	5 Future Work
	References

