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Abstract
Phonocardiogram based auscultation is the most suitable cardiac examination technique for 
primary health care since heart sound can be captured and analyzed using a smart-phone 
and a digital stethoscope. The phonocardiogram signal provides, among others, valuable 
information about valve functioning of the heart. It is well known that many heart prob-
lems are associated with valve dysfunctions. Notably, the time differences between valves 
closure are very critical to diagnose some pathologies. Hence, the need of the correct 
detection of these instants. Up to now, this research problem represents a serious challenge. 
This Study takes place in this area of concern and targets to propose a greedy-based two-
stage strategy to detect the instants of the heart valves closure. The first stage concerns the 
dictionary construction from the estimation of the impulse response functions associated 
to each heart valve. In the second stage, the instants of valves closures are identified by 
applying the Orthogonal Matching Pursuit algorithm alongside the constructed dictionar-
ies. Simulations on both synthetic and real-life phonocardiogram signals are performed 
to validate the performance of the proposed two-stage approach in detecting the closure 
instants of the heart valves.

Keywords  Phonocardiogram · Instants of heart valves closures · Greedy algorithm · 
Sparsity · Ensemble empirical mode decomposition

1  Introduction

Heart auscultation or listening to heart sound using a stethoscope is known as a non-
invasive detection tool for the diagnostic of many cardiac anomalies and a perfect tool for 
examination, providing valuable information about the rate, rhythm and valve functioning 
of the heart. However, the low sensitivity of human ears in the low frequency range makes 
cardiac examination difficult. The recent development in auscultation was of a significant 
aid for practitioners to extract more information from the processing of PCG (Phonocar-
diogram) signal, i.e., heart sound recorded using digital stethoscope which converts the 
acoustic sound waves to electrical signals. Nowadays, the predominant methods of cardiac 
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examination are the ECG (Electrocardiogram) and the ultrasound, but compared to PCG 
based auscultation, they are more complex and require multiple hardwares. Thus, PCG 
based auscultation is the most suitable cardiac examination technique for primary health 
care, since heart sound can be captured and analyzed using a smart-phone and an electronic 
stethoscope. The acoustic signal produced by cardiac sounds can be visually illustrated in 
the PCG. Generally, the PCG consists of two types of acoustic sounds: heart sounds and 
heart murmurs. In a cardiac cycle (heartbeat), up to four heart sounds can be found: s1 , s2 , 
s3 and s4 [1–4]. Cardiac murmurs are usually divided into two types according to the chro-
nology of the cardiac cycle: systolic murmurs occurring between s1 and s2 and diastolic 
murmurs happening between s2 and s1 . In fact, during the systole period, the heart cham-
bers eject blood, while during the diastole period, the heart chambers are filled with blood. 
The normal heart sounds in a PCG signal are known as the first and the second sounds ( s1 , 
s2 ). For s1 , it results from the closure of the mitral valve followed closely by the closure of 
the tricuspid valve at each cardiac cycle. In the same way, s2 results from the closure of the 
aortic valve followed closely by the closure of the pulmonary valve. Nevertheless, several 
heart problems can cause additional sounds in a heart cycle such as s3 and s4 which are 
associated with valve dysfunctions.

As for s1 or s2 , the time differences between valves closure is very critical to diagnose 
some pathologies ( < 30ms for normal cases). Hence, the need of an accurate detection of 
the time difference between the closure instants of the heart valves. During the last few 
years, several approaches and various tools have been proposed in this field of research. 
Many of known techniques are based on WT (Wavelet Transform) analysis which decom-
poses a signal into its low and high frequency characteristics through the use of a basis 
function [5, 6]. In [7], PCG signals were decomposed and reconstructed using DWT (Dis-
crete WT) to separate the peak values of s1 and s2 . MP (Matching pursuit), has been used 
to decompose the PCG signal into a series of time-frequency atoms and separate the first 
heart sound components [8]. In [9], MP was applied successfully for the segmentation of 
s1 and s2 with high performance. Many envelope extraction methods were performed for 
the analysis of heart sounds and the detection of s3 and s4 , namely the Shannon energy, 
the Hilbert transform, the characteristic waveform [10] and the Hilbert–Huang transform 
[11]. Recently, EEMD (Ensemble Empirical Mode Decomposition) based approaches [12, 
13] have proved their effectiveness in analyzing and denoising heart sounds. The EEMD 
is derived from the EMD, where the concept is to decompose a signal into a set of IMFs 
(Intrinsic Mode Functions) representing different simple intrinsic modes of oscillations 
[14]. This concept offers the ability to use the EEMD combined with Kurtosis as a segmen-
tation method, which was successfully achieved in [15].

The time split estimation from PCG signal is a new problematic that has been raised 
just recently. In fact, Nigame and Priemer [16] proposed a technique based on blind source 
separation to estimate the time split of the second heart sound s2 . However, this method 
supposes that the components of the second heart sound A2 and P2 are statically inde-
pendent and require the measurement of two simultaneous PCG signals. Just recently, [17] 
published a paper that proposes an interesting method for estimating the time split for the 
second heart sound from PCG signals by using multiple fitting problems.

Up to now, detecting the valves closure instants is unfortunately still challeng-
ing. The difficulty mainly comes from PCG signal structure. Actually, a PCG signal 
can be illustrated as the convolution between impacts generated from valves closure 
and different Impulse Responses Functions (IRFs) related to each valve closure (each 
IRF depends on several factors such as breathing, noise generated by the digestive 
system, mood, ...). We have already addressed this problem in [3] by proposing new 
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mathematical model taking into account the most phenomena influencing heart sounds 
from the generation of impacts to the electrode. The valves closure impacts signal are 
in reality sparse as only few coefficients are non-zero. There has been a growing inter-
est in the study of sparse representations of signals in recent years. The main idea is 
that a signal can be very well approximated with only prototype signal-atoms taken 
from a redundant family, while its projection onto a basis of elementary signals may 
reduce the number of non-zero coefficients. This basic idea is the origin of recent theo-
retical development and many practical applications in denoising, compression, blind 
source separation, inverse problems, feature extraction image restoration, and stock 
market analysis [18–21]. However, representing a signal of interest using the minimum 
number of vectors from an overcomplete dictionary has been shown to be an NP-hard 
problem [22]. To solve this issue, several methods and algorithms have been proposed 
in the literature [23–26]. Some of those algorithms are identified as greedy pursuit 
algorithms, which iteratively improve the approximation by iteratively selecting an 
additional elementary signal.

The present study follows on our previous works [3, 4] and aims to propose a novel 
greedy based two-stage strategy to detect the instants of the heart valves closure occur-
ring during s1 and s2 . The first stage is dedicated to the dictionary construction from 
different estimated impulse response functions. In the second stage, the amplitudes and 
the instants of valves closures are revealed by applying a greedy algorithm alongside 
dictionaries created from the estimated IRFs. Moreover, the performance of the pro-
posed two-stage strategy is validated through a simulated study on synthetic and real 
PCG signals.

The remaining parts of this paper are organized as follow. The problem formulation 
and the PCG model are given in Sect. 2. Section 3 describes the two-stage strategy for 
the detection of impacts instants ends. To validate the effectiveness of our proposed 
approach, simulations on synthetic and real PCG signals are performed and studied in 
Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 � Problem Statement

2.1 � Problem Formulation

Each heartbeat involves a series of events referred to as the cardiac cycle. In healthy 
cases, there is two dominant heart sounds often known as the first heart sound s1 and 
second heart sound s2 , that are always present and occur with each cardiac cycle. It is 
broadly acknowledged that the asynchronous closures of the mitral and tricuspid valves 
are the main contributors to s1 . Therefore, s1 can be decomposed into two components, 
namely the mitral component (M1) and the tricuspid component (T1) as illustrated by 
Fig.  1. Usually, M1 and T1 are 30  ms apart in healthy subjects which is caused by 
the asynchronous closure of the two corresponding valves. In the same way, closures 
of the aortic and pulmonary valves produce two components mainly contribute to the 
composition of s2 . As for M1 and T1, the period between the aortic component (A2) 
and the pulmonary component (P2) must be less than 30 ms in the exhalation phase 
and around 50–60 ms at the end of inhalation. Hence, detecting the time split of s1 and 
s2 may be an indicator of several heart problems.
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2.2 � PCG Signal Modeling

Let first recall the PCG signal model proposed in [3, 4] as it represents the framework 
of the proposed methods. In order to generate a reliable synthetic PCG, the model must 
take into consideration the asynchrony between valves closure and low frequency com-
ponents since the frequency range of heart sounds is 20–200  Hz. Because of the dis-
tance between the digital stethoscope and the heart valve, the measured PCG signal cor-
responds to the convolution between the generated valves closures impacts and the low 
frequency IRFs. Generally, the IRF Hi,n(t) , for each one of the component composing 
s1 and s2 , are assumed to be an exponentially decaying sinusoid and can be very well 
approximated by Gauss Kernel. Let y(t) be the observed PCG signal. The PCG model 
can be expressed as follows:

where i denotes the impact indices generated from each valve closure (M1, T1, A2, and 
P2); ∗ stands for the convolution operator; n represents the cardiac cycle (heartbeat) index; 
�(t) stands for the Dirac distribution; fi , �i and �i,n are the parameters of the Gaussian ker-
nel; �i,n corresponds to the instants of the heart valves closure in each cycle; T stands for 
the cardiac cycle; n(t) represents an independent and identically distributed (i.i.d) additive 
noise.

The random nature of the model comes from the parameters ai,n and �i,n representing 
respectively the normally distributed random amplitude N(�ai, �

2
ai
) and the uniformly 

distributed random phase fluctuation inside the interval [�i,0 − Δ�, �i,0 + Δ�] with 

(1)

y(t) =
∑

i∈{M1,T1,A2,P2},n

ai,ne
(t−�i,n−nT)

2∕2�2
i cos(2�fi(t − �i,n − nT) − �i,n) + n(t)

=
∑

i∈{M1,T1,A2,P2},n

ai,n�(t − �i,n − nT) ∗ e−t
2∕2�2

i cos(2�fit − �i,n) + n(t)

=
∑

i∈{M1,T1},n

ai,n�(t − �i,n − nT) ∗ Hi,n(t) +
∑

i∈{A2,P2},n

ai,n�(t − �i,n − nT) ∗ Hi,n(t) + n(t)

= s1(t) + s2(t) + n(t)
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Fig. 1   Normal phonocardiogram signal for a single cardiac cycle
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Δ� ∈ [0, �] and �i,0 is the ith initial phase. An example of simulated PCG signal is 
shown in Fig. 2.

As mentioned before, the aim of this paper is to restore the valves closure impacts, 
which correspond to the term 

∑
i,n ai,n�(t − �i,n − nT) , from an experimental observed 

PCG signal. The reason behind is the detection of the time-split of s1 and s2 . The result-
ing diagnostic may offer possibilities of early detection of diseases and symptoms. 
These were our major motivation while designing the proposed strategy.

2.3 � Sparsity of the Impacts of Valves Closures Signal

Let x(t) be the sparse signal containing the valves closure impacts, i.e, 
x(t) =

∑
i,n ai,n�(t − �i,n − nT) . The model of relationship (1) can be approximately writ-

ten in a standard matrix form as,

where xj corresponds to the impact amplitude ai,n , the column vector �j is formed by the 
samples of �(�, �, f ,�, t) = e(t−�)

2∕2�2

cos(2�f (t − �) − �) , and Ω denotes the set of the 
sparse coefficients indexes. Equation (2) corresponds to a sparse approximation problem. 
The key idea of sparse approximation is that a signal can be very well approximated with 
only a few elementary signals (hereinafter referred to as atoms) taken from a redundant 
family (often referred to as dictionary), while its projection onto a basis of elementary sig-
nals may lead to a larger number of nonzero coefficients.

Of course, the results of the sparse approximation depend mainly on the dictionary 
constructed from the IRF. This latter requires the correct estimation of ( �i , fi ) for each 
heart valves and ( �i,n , �i,n ) for each heart valve and each cardiac cycle. The estima-
tion of the four parameters is carried out using different techniques and methods. First, 
�i and fi are estimated respectively by using the synchronous mean envelope and the 
EEMD method. At last, �i,n and �i,n can be estimated simultaneously through any sparse 
approximation algorithm.

(2)
y ≃ ΦΩxΩ + n

≃
∑

j
xj�j + n , j ∈ Ω
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Fig. 2   Synthetic PCG signal generated from Eq. 1. a Over a single cardiac cycle. b Over several cardiac 
cycles
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2.3.1 � The Orthogonal Matching Pursuit

The OMP [24] is one of the earliest methods for sparse approximation and belongs to the 
family of greedy algorithms. It iteratively selects at each step the atom which maximizes 
the scalar product with the residual. The update corresponds to an orthogonal projection of 
the data on the whole selected atoms. This avoids the selection of already chosen atoms but 
increases the computation cost as the amplitudes associated with all the selected atoms are 
updated.

Let the sub-matrix ΦΛ built-up from the columns of Φ where the indexes are in Λ , 
�i = Φ{i} , and Λ(k) is the set of the selected indexes at iteration k. The vectors are defined as 
follows, x = [x1,… , xLx ]

� , y = [y1,… , yLy ]
� and r = [r1,… , rLy ]

� which denotes the resid-
ual. Finally, Ly and Lx stand respectively for the length of y and x.

•	 Selection: Λ(k) = Λ(k−1) ∪ {i(k)}

•	 Update: 

•	 Stopping criterion:

The next section introduces the proposed two stage strategy for the restauration of valves 
closure impacts.

3 � Greedy Based Two‑Stage Strategy

3.1 � Flowchart of the Proposed Strategy

This section gives a detailed description of the proposed two stage strategy for the restaura-
tion of the valves closures impacts. The flowchart in Fig. 3 summarizes the different steps 
of the proposed two-stage strategy.

In order to estimate the different IRF with accuracy we included a segmentation step to 
analyze the two heart sounds separately. For simplification, we note s a heart sound rep-
resenting either s1 or s2 since the same procedure will be applied to both of them. The 
proposed strategy runs two times. In the first iteration, the IRF parameters of the most 
energetic component in s is estimated. At the end of the first iteration, the impacts of the 
first heart valve are restored and the residue corresponds to the noise and the remaining 
component. In the second iteration, the input signal of the algorithm is the residue. This 
way, the IRF parameters of the remaining component will be estimated. As a result, the 
sparse representation algorithm restores the remaining impacts of the second valve, while 
the residue corresponds to the noise. At the strategy end, all the impacts contained in both 
heart sounds are restored with precision. More details about the proposed two-stage strat-
egy are provided below.

(3)i(k) = argmax
i

|��

i
r
(k−1)|

(4)
solution: x

(k)

Λ(k)
= (Φ�

Λ(k)ΦΛ(k) )−1Φ�

Λ(k)y

residual: r(k) = y − ΦΛ(k)x
(k)

Λ(k)
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3.2 � First Stage of the Strategy

The first stage of the two-stage based strategy is completely dedicated to the estimation of 
the parameters �i and fi for each heart valve.

3.2.1 � PCG Signal Segmentation

The segmentation step aims to separate the PCG signal into two signals representing each 
heart sound, s1 or s2 , individually. The major benefice of the segmentation step is to reduce 
the interference between heart sound components, which allows a better estimation of the 
IRFs parameters. The segmentation of the PCG signal is carried by the envelope and the 
estimation of the cardiac cycle period. The first step concerns the time-localization of the 
different heart sounds present in the signal by using the Hilbert envelope of the signal, 
Fig. 4. In the second step, the estimation of the cardiac cycle period through the envelope 
analysis helps with the identification of which ones of the detected heart sounds are s1 and 

Fig. 3   Flowchart of the proposed greedy based two-stage strategy
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which ones are s2 . After the classification of the detected heart sounds, they are grouped in 
two different signals s1(t) and s2(t) for further analysis. More details about the segmenta-
tion technique can be found in [10, 27].

3.2.2 � Estimation of the Damping Coefficient �i

Let take the model of Eq. 1, one can remark that this model corresponds to a linear com-
bination of amplitude modulated impacts. It is well known that the envelope allows the 
extraction of the shape of the modulating signal. In our case, the heart sounds components 
in our model are weighted by exponential terms, ai,ne(t−�i,n−nT)

2∕2�2
i  . In this step, the damp-

ing ratio �i for i ∈ {M1, T1,A2,P2} is calculated from the envelope of the PCG signal syn-
chronous mean [28]. In the previous step we localized the different heart sounds using the 
envelope. By using this information, we can correct the heart sound position and remove 
cardiac cycle fluctuation. Next, we perform the synchronous averaging to extract the deter-
ministic periodic part, i.e, synchronous mean.

As shown in Fig. 5, the envelope of the synchronous mean is not symmetric due to the 
interference between components. Hence, we choose the highest damping ratio where the 
interference is less between the components M1-T1 and A2-P2. In the second iteration of 
the proposed strategy, this problem is not encountered since we have only one component 
remaining for each heart sound.
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Fig. 4   Segmentation of a synthetic PCG signal generated from Eq. 1: a estimated binary signal. b Heart 
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3.2.3 � Estimation of the Components Frequency fi

This step consists in estimating the unknown low frequencies fi by the self-driven EEMD 
method applied respectively to s1 and s2 . The EEMD allows the estimation of the differ-
ent oscillation modes existing in the PCG signal by decomposing it into several IMF. By 
calculating the power of the resulting IMF, we can determine the most energetic IMF and 
consequently deduce their frequencies corresponding to the frequency of the components 
fi . Figure 6 illustrates the estimation of the first heart sound s1 component frequencies fi 
trough the EEMD technique. The EEMD decomposes s1 into several IMF, where the sec-
ond and the third IMF correspond to the oscillation modes of the two components compos-
ing s1 . Next, by calculating the fundamental frequency of the two IMF we can estimate the 
frequency of each component at 80.02 Hz and 52.00 Hz. The advantage of this method is 
the ability to estimate the components frequency in one run and without prior information 
about the previous estimated IRFs parameters namely �i,n and �i.

3.3 � Second Stage of the Strategy

3.3.1 � Estimation of the Instants �i,n and the Phase 'i,n

The second stage focuses in the recovering of the impacts of valves closures, 
ai,n�(t − �i,n − nT) , as well as estimating the phase �i,n . The redundant dictionary is built 
from the kernel et2∕2�2

i cos(2�fit − �) . Let Ψi be this dictionary; Ψi gathers several sub-
dictionaries, each one is associated to several delay values � and a unique phase value 
� ; the phase takes values in the range 0–�∕4 with a sampling of �∕20 . Ψi is simply the 
union of these sub-dictionaries and is given as, Ψi = [Ψi;1,… ,Ψi;M] , M is the number of 
sub-dictionaries.

Once the dictionary Ψi being made, we can apply the previously mentioned greedy 
algorithm OMP to retrieve the impacts of valves closure ai,n�(t − �i,n − nT) and hence the 
instants �i,n and the phases �i,n corresponding to the selected atoms. It is important to note 
that the OMP can be replaced by any greedy algorithms, such as OLS [29].
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At the strategy’s end, the residual includes noise and the contribution of the remaining 
impacts signal with different parameters �i , fi , �i,n and �i,n . Hence, the need to iterate the 
whole strategy once again over the residual to restore the remaining impacts. After that, the 
residual corresponds to noise. Finally, as for the heart sound s , let assume that s = s1 , the 
process will be applied in the same way to the heart sound signal s2 where the objective is 
to recover the impacts ( i ∈ {(A2,P2)} ). Thus, all of the impacts of valves closures will be 
retrieved and at the same time the instants �i,n.

The limitation and the performance of the mentioned method will be investigated in the 
next section, where a detailed simulation and results are provided.

4 � Evaluation Results and Discussion

4.1 � Tests on Simulated Data

A simulated study is performed to illustrate and compare the effectiveness of the proposed 
strategy. For this purpose, a synthetic PCG signal is generated from Eq. 1, Fig. 7. The gen-
erated signal represents a realistic PCG signal for a healthy subject, where the model 
parameters are listed in Table 1. It should be noted that the valves closure instants for each 
cycle �i,n are randomly generated and follows the normal distribution law N(��i

, �2
�i
) . Since 

the heart sounds energy is localized in time, it is difficult to assess the influence of the 
additive Gaussian noise. For this reason, we introduce another indicator for the noise level 
called the Localized Signal to Noise Ratio (LSNR). The LSNR measures the noise level in 
a limited interval where the signal energy is localized [30]. Mathematically, the LSNR is 
expressed by:

Table 1   Model parameters values for the synthetic PCG signal

Parameter �ai
 (mv) �ai

 (mv) ��i
 (s) ��i

 (ms) fi (Hz) �i (s) �i,0 (rad) Δ� (rad)

M1 0.60 0.082 0.2446 0.6 57.86 0.0137 0.283 �∕10

T1 0.93 0.055 0.2732 0.6 82.59 0.0147 0.314 �∕10

A2 0.70 0.068 0.5692 0.6 89.86 0.0135 0.290 �∕10

P2 0.55 0.076 0.5979 0.6 60.59 0.0144 0.305 �∕10

Fig. 7   An example of a synthetic 
PCG signal with the estimated 
valves closure impacts
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with

The interval [n1, n2] represent the event localization where the signal energy is concen-
trated. Furthermore, the sampling frequency is set to Fs = 1500 Hz, and some Gaussian 
noise is added to the signal such that the LSNR is equal to 20 dB.

The first stage of strategy consists of approximating the different IRFs in the PCG sig-
nal, and provides an adequate dictionary for sparse representation. Following the flowchart 
after the segmentation step, the IRFs are estimated iteratively through the calculation of 
the main parameters for every iteration, namely the damping ratio �i and the heart sound 
frequency fi . The remaining parameters, time of occurrence �i,n and the phase �i,n , will be 
estimated precisely in the second stage.

Figure  8 reports the resulting sparse signal, i.e., the detected valves closing impacts. 
Usually, it is hard to visually distinguish between M1 and T1 or A2 and P2. However, the 
proposed technique has no problem in detecting the two valves closure instants in s1 and 
s2 despite the small time space between them. It should be noted that the difficulty for this 
process increases as the space between impacts decreases.

In order to evaluate the robustness and the precision of the proposed method, we per-
formed Monte Carlo (MC) simulations, with over 100 MC runs for each LSNR value, on 
signals with almost different configurations. In fact, in this simulation the objective is to 
assess the performance of the proposed strategy under different situations. For this rea-
son, we generate at each iteration random model parameters values except for the impact 
positions. As the amplitude and the phase are already random, we need only to alter the 
component frequencies fi and the damping ratio �i . In this simulation, the component fre-
quencies follows a normal distribution N(fi, 2.25) and the damping ration follows a normal 
distribution N(�i, 0.0005) , where fi and �i are provided in Table 1. The remaining model 
parameters values are the same as the last simulation displayed in Table 1 with different 
LSNR values.

The averaged histogram reported in Fig. 9 shows the distribution of the detected impacts 
instants in regard to the actual one for several LSNR values. We note from the same figure 
that the correct detections for s1 and s2 are important for T1 and A2 in comparison to M1 

(5)LSNR(dB) = 10 log10

(
P limited-signal

Pnoise

)

Plimited-signal =
1

n2 − n1

n2∑

i=n1

(signal(i))2

Fig. 8   The restored heart valves 
closure impacts instants regard-
ing the actual ones
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and P2. This can be explained by the relatively strong amplitudes of T1 versus M1 for s1 
and of A2 versus P2 for s2 . Thus, T1 (resp A2) is the first component to be selected by the 
greedy algorithm. Given that the sparse approximation is based on dictionaries built from 
approximated IRFs, which do not correspond to the actual IRFs. The update of the residue 
induces some errors which interfere in the detection of the remaining impacts namely M1 
for s1 and P2 for s2.

Moreover, the behavior of the strategy regarding noise is globally the same with a slight 
increase in the number of false detections, especially for LSNR = 8 dB. However, the his-
togram does not completely inform us about the estimation quality of the time split in the 
sense that the same time split can be obtained from either two correct detections of M1 and 
T1 (resp. A2 and P2) or two false detections with the same translation.

To assess the effect of the LSNR on the estimation of the correct time split, a second 
MC simulation measuring the MSE of the time difference between impacts for different 
LSNR values is performed. In this simulation, we keep the same PCG model parameters 
listed in Table 1 while the LSNR changes inside the intervalle [6–24] dB. Furthermore, the 
MSE is averaged over 50 MC iterations. As represented in Fig. 10 the proposed strategy is 
robust under normal LSNR values. However, the error increases rapidly when the LSNR is 
below 10 dB.

Another simulation was performed in order to evaluate the different limitations 
of our strategy. As commonly known, the frequency difference Δf  and the time dif-
ference Δ� between the heart sounds component are small. This represents a major 
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Fig. 9   Averaged histogram of the restored impacts regarding the actual ones over one cardiac cycle: a for s
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challenge for our proposed strategy. In this simulations, the aim is to evaluate how 
the strategy performs in different situations, especially when Δf  and Δ� are small. 
Δf = |fT1 − fM1| = |fA2 − fP2| and Δ� = �T1,n − �M1,n = �P2,n − �A2,n , where fM1 , fA2 , 
�M1,n , and �A2,n are listed in Table 1 as the remaining model parameters.

Figure 11 shows the Normalized Mean Square Error (NMSE) distribution of the time 
difference for different values of Δf  and Δ� . In order to make the simulation easily pre-
sentable we choose to set the number of MC iterations at 50.

The simulation results show how the proposed strategy behaves when the fi and �i,n 
varies. In fact, the strategy performance decrease as both parameters tend to smaller 
values and vice versa. According to the results, the performance of the strategy is lim-
ited only when Δf < 20 Hz and Δ𝜇 < 0.03  s. Consequently, the patient diagnosis will 
be more accurate at the end of inhalation as the normal time difference between heart 
valves closures is around 50–60 ms. Moreover, the difference between the two subfig-
ures suggests that the strategy performances depend also on other parameters as the two 
heart sounds have different kernel parameters. Unfortunately, a deep performance anal-
ysis of the strategy requires heavy simulations to evaluate how the strategy performs 
under different combinations of the model parameters values.

The simulation on synthetic signals has revealed the effectiveness and the perfor-
mance limitation of the proposed strategy in various situations and condition. How-
ever, to prove its robustness in real life, the approach needs to be evaluated on real PCG 
signals.

4.2 � Tests on Experimental Datasets

4.2.1 � Description of the Heart Sound Database

In this section, the proposed approach is tested on a database collected from a clinical 
trial in hospitals using the digital stethoscope DigiScope in order to validate its effec-
tiveness. This database contains two datasets published in the Classifying Heart Sounds 
Pascal Challenge competition [31]. The real-life PCG signal used in this simulation 
is in the Dataset-B. It includes 656 heart sound signals in WAV format recorded from 
children by using the Littmann Model 3100 electronic stethoscope with a sampling fre-
quency of 4000 Hz. Information regarding gender, age or condition of the subjects are 
not available.
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4.2.2 � Experimental Results

The real-life PCG signal selected for this simulation is listed as normal, where the two 
heart sounds s1 and s2 can be distinguished visually, Fig. 12. Furthermore, the studied sig-
nal is filtered by applying a low-pass filter (0–200 Hz) since heart sounds have a limited 
frequency range under 195 Hz.

Figure 13 reports the sparse signal obtained after applying the proposed strategy. The 
results of the detected valve closure instants in s1 and s2 are visually satisfying despite the 
cardiac cycle fluctuations. However, those results still need a clinical expert consultation. 
For the first heart sounds, the heart valves closure impacts were perfectly restored with 
their corresponding amplitude, where the mean and standard deviation of the time differ-
ence between M1 and T1 components are respectively equal to 0.0372 s and 0.0043 s. The 
validity of the result can be visually investigated. For the second heart sounds, the restora-
tion of some impacts is less accurate as it is more difficult to treat. However, the proposed 
approach manages to overcame the difficulties and restored several impacts. This allows us 
to measure the time difference between A2 and P2 components, where the mean and the 
standard deviation are respectively equal to 0.0192 s and 0.0035 s. According to the results 
the studied PCG signal can be classified as normal, although a clinical expert can say more. 
Finally, the simulation results of the experimental data confirm the validity and effective-
ness of the proposed sparsity-based approach in detecting valves closure instants for PCG 
signals.

Fig. 12   Real-life PCG signal
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5 � Conclusion

In this paper, we introduced a new greedy based two-stage strategy for detecting valves 
closure instants for normal PCG signals. The first stage of the proposed approach is dedi-
cated to identify the IRFs of both heart sounds s1 and s2 by estimating three main param-
eters using techniques such as EEMD and the synchronous mean envelope. In the second 
stage, with the IRFs based dictionary, the greedy algorithm OMP detects the valve closure 
instants in the second stage. Finally, simulation results, for both synthetic and real PCG 
signals, show interesting performance even under considerable noise, which is promising 
as it requires minimal equipment.

Future work will focus on refining the estimation of the different heart sounds by 
exploiting the cyclostationarity of the PCG signal. The improvement of IRFs approxima-
tion will allow better detection of valves closure instants since distances between heart 
sound components reveal essential information for the heart diagnostic. This approach 
would be beneficial for the developing countries and rural health management using only 
an electronic stethoscope connected to a smart-phone for diagnostics.
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