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Abstract
In this study the scattered-filed computation using the combined method of ray tracing and 
diffraction (CMRD) is revisited but with an extension to the backscattering computation. 
The concept of the equivalent phase object is considered as the key part in the developed 
CMRD method, and is analyzed mathematically with accurately derived expressions for its 
amplitude and phase function. A formulated CMRD method for the backscattering compu-
tation is developed in this work, which is then used in the forward modeling and numeri-
cal computations for ultra-wideband pulse propagation and backscattering from a perfectly 
conducting circular cylinder. The numerical simulation indicates that reasonable and good 
agreements can be achieved for comparisons between our CMRD method and exact eigen-
function expansion approach. It is expected that the theoretical model and method of back-
scattering calculation using CMRD can be applied to the image processing and target iden-
tification with measurements of backward-scattered electromagnetic and acoustic waves.

Keywords Phase object · Ray tracing · Diffraction · Backscattering · Electromagnetic 
propagation

1 Introduction

The development of theoretical method and algorithm for computing backscattering of 
time-harmonic electromagnetic or acoustic waves by objects of simple as well as nonsim-
ple shapes is still a challenging issue in the field of imaging and target identification using 
backscattering measurements and related areas, which has attracted a lot of attention in 
the past because of its importance in a variety of different applications [1–5]. Even the 
exact solution of the scattered field by a simple shape such as a sphere or a cylinder can be 
expressed as an eigenfunction expansion [6], using such expansions in practice is often lim-
ited due to difficulties with the computation of the eigenfunctions. Thus, there have been 
some approaches with approximate methods and models for backscattering computation. 
Ruppin used the extended boundary condition for calculating the scattered field by a finite 
dielectric cylinder for a plane electromagnetic wave [1]. Zhu and Bjorno [3] developed a 
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parabolic equation model for computing backscattering in a cylindrical coordinate system. 
In the work of Jech et al. [4] the authors presented comparisons among the exact analyti-
cal models, approximate analytical models, and numerical models for computing acoustic 
backscattering by simple shapes. Mitri’s [7] method used the partial-wave series solution 
for the linear scattering by an infinite circular cylinder. Follett et al. [8] used finite element 
method for backscattering computation of sound by a solid aluminium cylinder, which was 
compared with experimental data in their study.

The scattered-filed computation using the combined method of ray tracing and diffrac-
tion (CMRD) was formulated and discussed a numbers of years ago by one of the authors 
(BC) and a co-author in a paper published in Applied Optics  [9]. In the study presented 
in this paper, the scattered-filed computation using CMRD is revisited but with an exten-
sion to the backscattering computation and a more applied view. This paper will mainly 
contain two parts: (1) We first present the theoretical analyses and discussions of the for-
mulated CMRD method for the backscattering computation. (2) We then apply the CMRD 
method in the forward modeling and numerical computations for ultra-wideband (UWB) 
pulse propagation and backscattering from a perfectly conducting circular cylinder. The 
theoretical model and algorithm developed in this work might be important and useful for 
computations related to UWB propagation, imaging, and target identification problems.

In the field of electromagnetic (EM) wave propagation and imaging, there has been a 
need for investigating an accurate and efficient method for backscattering computation. In 
our study, we will our method with the “exact-solution” approach (i.e. the eigenfunction-
expansion method), which indicates that our method is efficient and reasonably accurate. 
Our method and model have not been reported and addressed in any previous publications 
by other researchers in the field of backscattering computation associated with EM wave 
propagation, imaging, and target identification, and related applications.

2  CMRD‑Based Theory for Backscattering Computation

In this section we present the detailed theoretical analyses and formulations for the back-
scattering computation using the combined method of ray tracing and diffraction. For sim-
plicity, our attention in this paper will mainly focus on the two-dimensional (2-D) problem 
associated with backscattering by circular cylinders, including the formulated discussions 
in this section and the designed numerical simulations of backscattering from a perfectly 
conducting circular cylinder in next section. Note that the resulted model and formulations 
can be extended for solving the three-dimensional problems.

2.1  CMRD Theory of 2‑D Problem

For a 2-D problem, we assume that a plane or cylindrical scalar wave field ui , generated 
by the source S, is normally incident on a scatterer with axis normal to the x–z plane as 
shown in Fig. 1. The refractive indices of the scatterer and the surrounding medium are 
n2 = n�

2
+ in��2 and n1 , respectively. n2 is usually a complex number, and n′′

2
 represents the 

absorption. Let the z axis of the coordinate system pass through the source and the scat-
terer, and the total backward-scattered field is observed at P(x, z).

Note that the concept of the equivalent phase object (EPO)  [9] plays a key role in the 
CMRD method for backscattering computation. CMRD basically consists of two steps. In the 
first step, we replace the scatterer by an EPO, situated in the plane z = b and occupying an 
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area A . We then use ray tracing to determine the distance b and the area A of the EPO, as well 
as the amplitude function a(x�) and phase function �(x�) of the field at the EPO. Note that x′ is 
the the variable of integration. The general procedure of ray tracing depends on the absolute 
value of the refractive-index difference |n2 − n1| , and on the size of the imaginary part of the 
refractive index n2 of the scatterer. The approximate result of the propagating field in the plane 
z = b can be obtained using ray tracing and the Kirchhoff approximation

where ui(x�, b) is the incident field in the plane at z = b , and the amplitude function a(x�) 
and phase function �(x�) are to be determined from ray tracing. The superscript B of 
uB(x�, b) in Eq. (1) is used to denote the backward propagating field component in the plane 
z = b , i.e. the field component propagating into the half-space z < b . Knowing the back-
ward propagating field component in the plane z = b , we can use Rayleigh-Sommerfeld’s 
first diffraction formula to obtain the field at the observation point P(x, z) in the half-space 
z < b . Thus we have

where uB(x�, b) is given in Eq. (1), and the impulse response h(x − x�, z − b) is given by

where G(x − x�, z − b) is the Green’s function for 2-D wave propagation in the homogene-
ous medium of refractive index n1 surrounding the scatterer. Thus we have

(1)uB(x�, b) =

{
0 for x� ∉ A

ui(x�, z = b)a(x�)ei�(x
�) for x� ∈ A

,

(2)u(x, z) = ∫
A

uB(x�, b)h(x − x�, z − b)dx�,

(3)h(x − x�, z − b) = 2
�

�z
G(x − x�, z − b),

(4)G(x − x�, z − b) = −
i

4
H

(1)

0
(k1R),

Fig. 1  2-D backscattering geometry
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where H(1)

0
(k1R) is the zeroth-order Hankel function of the first kind, and R is the distance 

from an integration point (x�, z = b) to the observation point P(x, z), i.e.

Thus, the backward-scattered field at observation point P(x, z) is given by

Carrying out the differentiation in Eq.  (3) and assuming that k1R ≫ 1 so that we can 
replace the Hankel function by its lowest-order asymptotic expansion, we obtain for the 
impulse response [10]

For the special case in which the incident field is a plane wave, we have

so that Eq. (6) becomes

Note that the integrals in Eq.  (9) can be computed accurately and efficiently using the 
Stamnes–Spjelkavik–Pedersen method for single integrals [10, 11].

2.2  EPOs for a Plane Wave Incident on a Circular Cylinder

As we mentioned above, the scatterer in Fig. 1 is now assumed to be a circular cylinder. 
Generally speaking, the backward-scattered field from the cylinder mainly contains the 
contributions from the following two parts: (1) The first equivalent phase object (EPO-1) 
represents that the wave is directly reflected backward at the interface between the sur-
rounding medium and the cylinder. (2) The second equivalent phase object (EPO-2) repre-
sents that the wave is first refracted into the cylinder, then reflected at the other side of the 
cylinder, and finally refracted out of the cylinder in the backward direction. Note that for a 
ray that is reflected more than one time inside the cylinder and refracted out of the cylin-
der in the backward direction, its contribution is much less than that of EPO-1 and EPO-2 
and will not be considered for backscattering computation. For both EPO-1 and EPO-2, 
we need to use ray tracing to determine the EOP position b and the size parameter w, as 
well as the amplitude function a(x�) , and the phase function �(x�) of the field at each EPO. 
The subscripts 1 and 2 used in b, w, a(x�) , and �(x�) below stand for EPO-1 and EPO-2, 
respectively.

2.2.1  EPO‑1

Consider a plane wave normally incident on a circular cylinder with a radius of a. As show 
in Fig. 2, when a ray incident upon the cylinder at � = ±

�

4
 , the direction of the reflected ray 

(5)R =
√
(x − x�)2 + (z − b)2.

(6)uBS(x, z) = ∫
A

ui(x�, b)a(x�)ei�(x
�)h(x − x�, z − b)dx�.

(7)h(x − x�, z − b) =
1

√
i�1

z

R3∕2
eik1R.

(8)ui(x�, b) = eik1(s
i
x
x�+si

z
b),

(9)uBS(x, z) =
1

√
i�1

∫
A

a(x�)ei�(x
�) z

R3∕2
eik1(R+s

i
x
x�+si

z
b)dx�.
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will be parallel to the vertical axis. Therefore, for the rays with angle of incidence in the range 
[ − �

4
 , + �

4
 ] will be reflected in the backward direction, which is the physical origin of EPO-1. In 

Fig. 1, the EPO-1 (i.e. the line W1W
′
1
 ) is situated at x = b1 and is of the width 2w1 along the x′

-axis. The position parameter b1 and half width w1 are given by

where a is the radius of the cylinder. Consider now ray SA, we extend the reflected ray 
backward until it intersects EPO-1 at point A�(x�, 0) . Then for an incident ray of height 
x = a sin � (i.e. the coordinate of A), the coordinate x′ of A′ can be obtained using geo-
metrical relations

where � is the angle of incidence as indicated in Fig. 2.
The phase f1(x�) of reflected ray AA′ at A�(x�, 0) is determined by

with

The phase �1(x
�) of EPO-1 should satisfy the following two conditions: (1) �1(x

�) = 0 
at the edge of EPO-1 for all values of refractive indices n1 and n2 . (2) �1(x

�) = 0 when 
n1 = n2 . Thus, �1(x

�) can be expressed as

b1 = − a cos
(
�

4

)
, w1 = a sin

(
�

4

)
,

(10)x�(�) = a
�
sin � +

1
√
2
tan(2�) − cos � tan(2�)

�
,

(11)f1(x
�) = kn1(SA − AA�),

SA = a(1 − cos �),

AA� =
a(cos � − 1∕

√
2)

cos 2�
.

Fig. 2  Geometry of EPO-1
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The amplitude a1(x�) at EPO-1 can be given by

where R1(x
�) is the Fresnel reflection coefficient, and

2.2.2  EPO‑2

In this part we assume for convenience that n2 > n1 . To determine the position parameter b2 
and half width w2 of EPO-2, we introduce the maximum angle of incidence �m . From Fig. 3 
we see that for an incident ray A1A2 with the angle of incidence �m , the ray is refracted inside 
the cylinder along ray A2A3 , then travels inside along ray A3A4 , and then is refracted out of the 
cylinder along A4A5 , which is parallel to the vertical axis. Obviously, a ray with an angle of 
incidence 𝛼 < 𝛼m will be refracted out of the cylinder in the backward direction. According to 
the Snell’s law and geometrical relation, the maximum angle of incidence �m can be calculated 
using

Extending A4A5 backward until it meets the extension of A1A2 at W2 . Thus the line W2W
′
2
 is 

the EPO-2 with width of 2w2 . From Fig. 3, the length of A2A0 can be easily found from the 
ΔOA2A0

(12)
�1(x

�) = f1(x
�) − kn1(a − �b1�)

= − kn1a
(cos � − 1∕

√
2)(cos 2� + 1)

cos 2�
.

(13)a1(x
�) = a0

1
(x�)|R1(x

�)|,

(14)a0
1
(x�) =

||||
dx

dx�

||||
=
||||

a cos �

dx�(�)∕d�

||||
.

(15)sin �m −
n2

n1
sin

(�m
2

+
�

8

)
= 0

A2A0 = a cos �m.

Fig. 3  Geometry for calculating 
the position b

2
 and the half width 

w
2
 of EPO-2
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In ΔOA2A4 , the angle ∠OA2A4 = 2�m − �∕2 , and A2A4 is given by

where �m is given by Snell’s law n1 sin �m = n2 sin �m . In ΔA2A
�
2
A4 , there is a relation 

∠A�
2
A2A4 = 2�m − �m , then

Therefore, the position of EPO-2 can be obtained using the relation b2 = A�
2
A4 − A2A0 , i.e.

The half size of EPO-2 can be given by

To determine x�(�) for EPO-2, we may consider an incident ray SA with the angle of inci-
dence � refracted into the cylinder with the angle of refraction � as indicated in Fig. 4. The 
refracted ray propagates in the cylinder along AA1 , which is reflected inside the cylinder 
along A1A2 , and then refracted out of the cylinder along A2P . Extending A2P backward till 
it hits EPO-2 at A′ . Line up A2B vertically, which intersects the z-axis at B. From Fig. 4, we 
have �1 = ∠BA2O = � − 4� + �∕2 , and �2 = ∠A2A

�B� = 4� − 2� . In ΔOA2B,

Then A�B� = b2 + OB . In ΔA2A
�B�,

Thus, for an incident ray SA, the ray refracted out of the cylinder in backward direc-
tion can be considered as emitting from point A′ at EPO-2 along the line A′A2P . The 
coordinate of A′ can be determined using x�(�) = A2B − A2B

� . We then have

A2A4 = 2a sin(2�m),

A�
2
A4 = 2a sin(2�m) sin(2�m − �m).

(16)b2 = 2a sin(2�m) sin(2�m − �m) − a cos �m.

(17)w2 = a sin �m.

OB = a sin �1 = a cos(4� − �),

A2B = a cos �1 = a sin(4� − �).

A2B
� = A�B� tan �2 =

(
b2 + a cos(4� − �)

)
tan(4� − 2�).

Fig. 4  Geometry for calculat-
ing the amplitude a

2
(x�) and the 

phase �
2
(x�) of EPO-2
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The phase f2(x�) at A�(x�, 0) is then given by

where

Taking SS′ as the reference line of phase, �2(x
�) can be given by

where f2(x�) is referred to Eq. (19). To determine the amplitude a2(x�) , we need to take one 
reflection and two refractions that the ray undergone into account. Thus we have

where

and the refraction factor T(x�) is given by

Here � is the absorption coefficient and s is the distance s = AA1 + A1A2 along the ray 
inside the cylinder.

For TE wave, the Fresnel reflection and refraction coefficients are given by, respectively,

3  Numerical simulation and discussions

We now apply the formulated CMRD method to the forward modeling and numerical com-
putations for ultra-wideband pulse propagation and backscattering from a perfectly con-
ducting 2-D circular cylinder. In the study of target identification and image processing, a 

(18)x�(�) = a sin(4� − �) −
(
b2 + a cos(4� − �)

)
tan(4� − 2�).

(19)f2(x
�) = k(n1SA + n2AA1 + n2A1A2 − n1A2A

�),

SA = a(1 − cos �),

AA1 =A1A2 = 2a cos �,

A2A
� =

A�B�

cos �2
=

b2 + a cos(4� − �)

cos(4� − 2�)
.

(20)�2(x
�) = f2(x

�) − kn1(a + b2),

(21)a2(x
�) = exp(−�s)a0

2
(x�)|R(x�)|T(x�),

(22)a0
2
(x�) =

||||
dx

dx�

||||
=
||||

a cos �

dx�(�)∕d�

||||
,

(23)T(x�) = tA(x
�)tB(x

�).

(24)R(x�) =
n2 cos � − n1 cos �

n2 cos � + n1 cos �
,

(25)tA(x
�) =

2n1 cos �

n1 cos � + n2 cos �
,

(26)tB(x
�) =

2n2 cos �

n1 cos � + n2 cos �
.
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2-D circular cylinder can be used to model various targets, such as human being or some 
kind of building structure. Therefore, the investigation on the scattering off the 2-D circular 
cylinder can not only help understand the physical mechanisms of the interaction between 
the signal and the target but also is important to the target identification.

Though UWB radar is becoming an appealing technology for detecting and locating 
the target within the opaque structures, there is still a need for researchers to investigate 
and develop new models and computation algorithms of UWB signal propagation, espe-
cially for the backward propagation and backscattering computation. A deterministic 
method based on the geometric theory of diffraction (GTD) has been used for modeling 
and computing UWB signal propagation [12, 13]. Note that the theory for GTD approach 
is basically much different from that of CMRD. The finite-difference time-domain (FDTD) 
approach is considered as useful tool for the computation of UWB backscattering [14, 15]. 
Since the computing algorithm based on FDTD method needs sufficient time and enough 
space cells to get relatively accurate solutions, such a method significantly increases the 
computing load that may bring limitations in practice. Therefore, our approach based 
on CMRD may provide an accurate and efficient method for the computation of UWB 
backscattering.

3.1  Description of the input UWB pulse

For a general UWB signal propagation, the signal sent by the transmitter can be described 
as a Gaussian monocycle that is mathematically similar to the first derivative of a Gaussian 
pulse, i.e.

where the pulse is centered at t = 0 , the constant E0 determines the peak amplitude, and � 
is the pulse width parameter. Taking the Fourier transform of the Gaussian monocycle, we 
have

where � = 2�f  , and f is signal frequency. The Gaussian monocycle pulse shape in time 
domain and its magnitude spectrum are plotted in Figs. 5a, b. Note that the maximum mag-
nitudes of the monopulse and spectrum are normalized to unity and 0 dB , respectively.

3.2  Backscattering from a 2‑D Circular Cylinder Behind a Wall

We now consider a plane wave of UWB pulse is incident on the target of a perfectly 
conducting 2-D circular cylinder through a wall, as shown in Fig. 6. According to the 
electromagnetic theory and the CMRD theory discussed above, for a scatterer being a 
perfectly conducting 2-D circular cylinder, there will be no contribution from EPO-2. If 
the wall is removed, it becomes a free-space problem. For the backward-scattered signal 
from a 2-D circular cylinder calculated or measured in frequency domain, the inverse 
Fourier transform can be employed to obtain the data in time domain. Therefore, we can 
computed the backward-scattered signals using Eq.  (9) together with Eqs.  (10), (12), 

(27)p(t) =
2E0t

�2
exp

[
−
( t
�

)2
]
,

(28)P(�) =
√
�E0�� exp

�
−

�2

4
�2

�
,
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(13), and (14). In addition, the complex reflection coefficient R1(x
�) used in Eq. (13) for 

TM and TE wave has the following forms, respectively,

and

where �i is the local incident angle, and �1 and �2 are the dielectric constants of the sur-
rounding medium (air) and the conducting cylinder, respectively.

(29)RTM
1

(x�) =
cos 𝛼i −

√
𝜖2

𝜖1
− sin2 𝛼i

cos 𝛼i +
√

𝜖2

𝜖1
− sin2 𝛼i

,

(30)RTE
1
(x�) =

− cos 𝛼i +
√

𝜖1

𝜖2

√
1 −

( 𝜖1

𝜖2

)
sin2 𝛼i

cos 𝛼i +
√

𝜖1

𝜖2

√
1 −

( 𝜖1

𝜖2

)
sin2 𝛼i

,

Fig. 5  Gaussian monocycle pulse shape in time domain and its Fourier transform. a Pulse waveform of 
Gaussian monocycle. b Frequency spectrum of Gaussian monocycle

Fig. 6  Diagram of the backscattering of UWB pulse from a 2-D circular cylinder behind a wall
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When a homogeneous, single-layered wall exists between the signal transmitter and the 
target as indicated in Fig. 6, the UWB signal propagating through the wall will simply be 
calculated using geometrical optics. Based on Eq. (9), we have

where f is the UWB signal frequency indicated in Fig. 5b, kw and dw are the wavenumber 
and thickness of the wall, exp(−2ikwdw) is the phase delay factor. tw1 and tw2 are the trans-
mission coefficients for the UWB signal normally incident on the wall, i.e.

where nw is the refractive index of the wall.

3.3  Numerical Results and Discussions

The first purpose of the numerical calculations carried out in this section is to valid the 
CMRD-based computation method developed in this paper. For this purpose, the back-
scattering of UWB pulse from a 2D perfectly conducting circular cylinder in free space 
is computed using the developed method, which is compared to that obtained from the 
exact eigenfunction expansion method for an impulsive TE and TM plane wave with unit 
amplitude, respectively. The second purpose comes from the intention of imaging process-
ing and target identification using backscattering measurements of UWB signals, which 
leads to that we carry out the computations of the backscattering of UWB pulse from a 2D 
perfectly conducting circular cylinder behind different walls together with comparisons and 
discussions.

3.3.1  Numerical Results for the Cylinder in Free Space

The incident pulse is a Gaussian monocycle. The values of other parameters are assumed 
to be as follows: the peak amplitude of the pulse equals unity, frequency bandwidth of 
the pulse is f = 1.0−3.5 GHz, and the refractive index of the surrounding medium (air) is 
n1 = 1 . Note that the observation point P is at (x, z) = (0,−L) and the radius of the circular 
cylinder a will be varied for different computations. The scattered signal from a perfectly 
conducting 2-D circular cylinder is calculated using Eq. (31), for an impulsive TE or TM 
plane wave with unit amplitude, while the same case calculation is also carried out using 
the eigenfunction expansion method [6]. The numerical results and comparisons are shown 
in Figs. 7a–d.

Figures  7a–d show that good agreements are achieved. It also indicates that there is 
a better achieved agreement for the cases that the radius of the cylinder a is smaller (see 
Figs. 7a, c), which can be predicted with the following explanations. It is well known that 
eigenfunction expansion method gives useful and accurate results only if ka is not too large 
compared to unity [6], while Kirchhoff diffraction theory results in more and more accurate 
solutions if ka ≥ 1 [10].

(31)

uBS(x, z, f ) =
1

√
i�1

t2
w1
t2
w2

exp(−2ikwdw)∫
w1

−w1

[a(x�)ei�(x
�) − 1]

z

R3∕2
eik1(R+s

i
x
x�+si

z
b)dx�,

tw1 =
2n1

n1 + nw
, tw2 =

2nw

n1 + nw
,
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3.3.2  Numerical Results for the Cylinder Behind a Wall

We now put a homogeneous, single-layered wall with thickness of dw in front of the 
2-D perfectly conducting circular cylinder as shown in Fig  6, and the position of the 
wall is z = −Dw . The observation point P is at (x, z) = (0,−L) . The input signal is a TM 
polarized Gaussian monocycle. Figures 8a, b present the plots of calculated backward-
scattered signals from the cylinder for brick and adobe walls with different dielectric 
constants.

Time delay can be seen from the results of Figs. 8a, b. From the computed numerical 
values of Fig. 8, the time difference in time delay between the brick and adobe walls is 
�t = 0.016 ns. We can also use �t = 2dw∕v to compute the time difference in time delay 
between the brick and adobe walls, which yields a result that �t = 0.014 ns. From this 
comparison, we can conclude that the results of numerical simulation give a good evalu-
ation of the time delay, which may be important for the design of the signal receiver. 
Beside the time delay, we also see from Fig. 8 that the curve shape and the amplitude of 
curve are quite different, which cannot be explained using geometrical optics. The sig-
nal obtained at P(x, z) basically represents the diffraction of the equivalent phase object 
of the perfectly conducting circular cylinder, as a function of few physical parameters, 
which shows the possibility of that the developed CMRD method above can be used to 

Fig. 7  Comparison of the backscattered signals from a perfectly conducting circular cylinder in free space: 
a L = 10 m, a = 0.2 m, TE polarized. b L = 10 m, a = 0.5 m, TE polarized. c L = 10 m, a = 0.2 m, TM 
polarized. d L = 10 m, a = 0.5 m, TM polarized
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retrieve the physical parameters, such as the refractive index, radius, and location of the 
cylinder, dielectric constant of the wall, and so on.

The numerical results of P(x, z) indicated in Figs. 7 and 8 are obtained efficiently and 
accurately using the developed computation algorithm based on CMRD method. Note 
that the computation or measurement of P(x, z) can be done for the positions of x ≠ 0.

4  Conclusions

We have presented theoretical analyses, formulated discussions, and numerical compu-
tations for the backscattering computation using the combined method of ray tracing 
and diffraction (CMRD). Especially, the concept of the equivalent phase object (EPO) is 
emphasized and considered as the most important part in the developed CMRD method, 
which is explained mathematically with accurately derived expressions for the ampli-
tude and the phase functions of the EPO. Numerical simulations are carried out with 
applying the formulated CMRD method to the forward modeling and backscattering 
computations for ultra-wideband pulse propagation and backscattering from a perfectly 
conducting 2-D circular cylinder. From numerical results, we can conclude that there 
are good agreements achieved with comparisons between our CMRD method and exact 
eigenfunction expansion approach. Numerical curves basically represent the diffrac-
tion of the equivalent phase object of the perfectly conducting circular cylinder, which 
shows the possibility of that the developed CMRD method in this study can be used to 
retrieve the physical parameters of the observed cylinder and background. It is expected 
that the theoretical model and method of backscattering calculation using CMRD can 
be applied to the image processing and target identification with backscattered measure-
ments of electromagnetic and acoustic waves.
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Fig. 8  The backscattered signal from a 2-D circular cylinder behind the wall in time domain with 
d
w
= 0.3 m, D

w
= 2.5 m, L = 10 m, and a = 0.2 m. a Brick wall; b adobe wall
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