
Vol.:(0123456789)

Wireless Personal Communications (2020) 111:1505–1524
https://doi.org/10.1007/s11277-019-06934-6

1 3

Optimal Load Balancing Linked Increased Algorithm
for Multipath TCP

Rajnish Kumar Chaturvedi1 · Satish Chand1

Published online: 16 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The most commonly used mechanism for establishing a connection between two commu-
nicating entities is transmission control protocol (TCP) that provides a reliable connection.
Due to the latest developments in communication technologies, one can use multiple con-
nections in a network using Wi-Fi, LTE/HSPA, etc. Since the single path TCP (SPTCP)
provides a single connection at a time, it cannot take the benefit of multiple connections.
The multipath TCP (MPTCP) can this problem by dividing a flow into multiple subflows;
each may use a different network connection. Thus, it has a great capability to achieve
high throughput in comparison to the SPTCP. The existing MPTCP congestion control
algorithms have different issues like TCP-friendliness, responsiveness, and load balanc-
ing. To address these issues, this paper proposes a new MPTCP congestion control algo-
rithm, named as optimal load balancing linked increased algorithm (OLBLIA), that con-
siders the congestion window corresponding to a path that is least congested. The window
corresponding to the least congested path is increased with maximum size (i.e., nearly
equal to the congestion window of SPTCP in the best path) that makes it more respon-
sive and friendlier towards the SPTCP. Experimentally and analytically it is shown that
the proposed OLBLIA resolves the above mentioned issues and outperforms the existing
MPTCP’s congestion control algorithms.

Keywords Congestion pricing · Congestion control · MPTCP · Throughput · Load
balancing

1 Introduction

The end-user devices such as tablets, mobile phones, IoT (Internet-of-Things) devices, etc.
have multiple interfaces (e.g. Wi-Fi, 4G/5G) that are supposed to provide various real-time
next-generation services, like live data streaming, autonomous driving, etc. [1–3]. In order

 * Rajnish Kumar Chaturvedi
 chaturvedi040@gmail.com

 Satish Chand
 schand86@hotmail.com

1 School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi,
Delhi 110067, India

http://orcid.org/0000-0001-5789-8200
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-019-06934-6&domain=pdf

1506 R. K. Chaturvedi, S. Chand

1 3

to use real-time facilities, the underlying network should be more robust and have higher
bandwidth and lower latency. The multipath TCP (MPTCP) [4] is a better mechanism to
support these services by utilizing all available interfaces simultaneously and aggregating
their bandwidth in a seamless manner [5–7]. It provides higher throughput and makes the
network robust [8, 9]. Other major application of MPTCP can be in datacenter networks
that have large number of switches and servers (nodes), which provide multiple paths
between the nodes [10, 11]. The MPTCP is the protocol utilizes these paths simultaneously
and aggregates their bandwidth in a seamless manner [12].

The multipath TCP may be considered as an extension of the normal TCP (i.e., single-
path TCP (SPTCP) like TCP Reno) [13, 14]. The Internet Engineering Task Force (IETF)
has an MPTCP working group that has standardized it [15]. The MPTCP breaks a TCP
connection into multiple sub-connections according to available networks/interfaces to
the user. It considers a sub connection corresponding to each interface as an individual
path and each path has its round-trip-time (RTT) and congestion window (CW) [16, 17].
The CW of each path is decided by an MPTCP congestion control algorithm. An MPTCP
congestion control algorithm follows the same phases as the SPTCP to update the CW of
each path: in the slow-start phase, the CW increases exponentially and in the congestion
avoidance phase linearly. According to Raiciu et al. [18], an MPTCP congestion control
algorithm should fulfill three basic goals: (1) Do not harm, (2) Improve throughput, and
(3) Balance congestion. The combined effect of these goals makes the MPTCP as TCP-
friendly, less aggressive towards SPTCP, and more responsible [13, 19].

According to the working mechanisms of MPTCP congestion control algorithms, they
may be categorized into three groups: uncoupled Congestion Control, semicoupled conges-
tion control, and coupled congestion control algorithms.

• Uncoupled congestion control (UCC) algorithms The basic idea in these types of algo-
rithm is that each subflow is treated as individual TCP connection and the CW of each
subflow is changed without having any information about other paths. This solution is
however not satisfactory because it has various types of problems like aggressiveness,
fairness, etc.

• Semi-coupled congestion control (SCC) algorithms The basic idea of the semicoupled
congestion control algorithms is to increase the CW of each subflow of the same source
by a common factor at the same time. However, these types of algorithms have the
problem of load balancing [20].

• Coupled congestion control (CCC) algorithms The basic idea in these types of algo-
rithms is that each subflow has information about other subflows while deciding its CW
that takes care of the congestion in other subflows. By doing this, load balancing is
automatically taken care of and the MPTCP is less aggressive towards the normal TCP
(SPTCP).

The existing research shows that the coupled congestion control (CCC) algorithms out-
perform the uncoupled congestion control (UCC) algorithms and semi-coupled congestion
control (SCC) algorithms. Thus, the CCC algorithms are best-suited for MPTCP. There
have been discussed some algorithms in literature; the important ones include the balanced
linked adaptation (BALIA) [21], opportunistic linked increase algorithm (OLIA) [22], and
linked increase algorithm (LIA) [18]. The LIA does not provide efficient load balancing
[20]. In the congestion avoidance phase, for each ACK of a subflow, the LIA increases its
CW by either the maximum of the incremental term of the Kelly and Voice or the inverse
of the CW [23]. For packet loss scenario, the CW is halved. The process of increasing the

1507Optimal Load Balancing Linked Increased Algorithm for Multipath…

1 3

CW for each ACK in the subflows of MPTCP results in performance degradation of the
SPTCP, which shares the corresponding MPTCP subflows. This results in forced trade-
off between the load balancing and responsiveness; further making it unfriendly for the
SPTCP.

The OLIA [22] addresses the problem of load balancing, but like the LIA, it also suffers
from the problem of unresponsiveness [19, 20]. The OLIA can be considered as an alterna-
tive to the coupled algorithm discussed in [24] for friendliness. For a subflow the CW in
OLIA is increased by considering the incremental term of the Kelly and Voice [23]. The
incremental term of the Kelly and Voice forming the responsiveness factor in the OLIA
is the reason for unresponsiveness during the network changes. The timely reaction to
the changes in network conditions can be characterized by responsiveness for an MPTCP
algorithm.

The BALIA, a generalization of the LIA and OLIA algorithms, considers the TCP-
friendliness, windows oscillation, and responsiveness. The fluctuations in the window size
around the equilibrium point are characterized as the windows oscillation. In BALIA, a
responsiveness factor (normalized factor) is multiplied with the incremental term of the
Kelly and Voice. This is how the CW of a subflow in BALIA is increased for each ACK.
In the packet loss scenario, the CW of a subflow is nearly halved [21]. The responsiveness
factor increases the CW considerably for low data rate subflows. The low data rate in a sub-
flow exists due to the bandwidth sharing with other TCP connections. This may result in
high packet drop rate and the SPTCP can suffer from the aggressiveness and unfriendliness.

In next section, the proposed work is introduced that addresses the above mentioned
problems of aggressiveness, responsiveness, TCP-friendliness, and load balancing.

2 Proposed Work: Optimal Load Balancing Linked Increased Algorithm

The MPTCP may be considered as an extension of the SPTCP that uses multiple networks
for data transmission. As discussed in previous section, the existing MPTCP congestion
control algorithms have many issues like load balancing, unresponsiveness, and friendli-
ness. In order to mitigate these problems, a new MPTCP congestion control algorithm,
named as Optimal Load Balancing Linked Increased Algorithm (OLBLIA), is proposed
that addresses three basic goals, i.e., Balance Congestion, Do not Harm, and Improve
throughput. Further, the OLBLIA provides better responsiveness, less aggressiveness
towards SPTCP, high TCP-friendliness, and adequate load balancing. The proposed
OLBLIA MPTCP algorithm adjusts its CW of each subflow during the congestion avoid-
ance phase as follows:

• Increase window size wr for each ACK of subflow r by

• Decrease window size wr for each packet loss of subflow r by

(1)wr = wr +

⎧⎪⎨⎪⎩

wr

rtt2
r�∑

p∈R

wp

rttp

�2
α2
r

⎫⎪⎬⎪⎭

(2)wr = wr −
wr

2

1508 R. K. Chaturvedi, S. Chand

1 3

where αr =
∑

p∈R xp

max{xp}
 , and xp =

wp

rttp
.

The increment term in (1) is the product of two terms. The first term is wr

rtt2
r

��∑
p∈R

wp

rttp

�2

 ,

which is the Kelly and Voice’s increment term, that is used to make the algorithm to fulfill
“Do not harm” condition. The second term is α2

r
 that makes it TCP-friendly and more

responsive towards the SPTCP.
The symbols used in this paper are listed in Table 1.
The first term of the increment term in (1) can be written as

since
(
1 +

w1

rtt1
+

w2

rtt2
+⋯+

wn

rttn
wr

rttr

)2

≥ 1 , it can be written as follows:

Equation (4) shows that the first term in the increment term in (1) never takes more value
than the inverse of CW of that subflow, i.e. 1

wr

 . This 1
wr

 is the incremental term of the SPTCP
(TCP-Reno) for each ACK. This proves that the first term in the increment term in (1)
makes the proposed algorithm to less aggressive towards the SPTCP.

The second term in the increment term in (1) is α2
r
 and the value of α is always greater

than one. For the best path, increment term in (1) is very close to the SPTCP for each
ACK. The increment term in (1) can be written as follows:

(3)

wr

rtt2
r�∑

p∈R

wp

rttp

�2
=

wr

rtt2
r�

w1

rtt1
+

w2

rtt2
+⋯ +

wr

rttr
+⋯ +

wn

rttn

�2

=

wr

rtt2
r�

1 +

w1

rtt1
+

w2

rtt2
+⋯+

wn

rttn
wr

rttr

�2

∗
w2

r

rtt2
r

=
1�

1 +

w1

rtt1
+

w2

rtt2
+⋯+

wn

rttn
wr

rttr

�2

∗ wr

(4)
1(

1 +

w1

rtt1
+

w2

rtt2
+⋯+

wn

rttn
wr

rttr

)2

∗ wr

≤
1

wr

Table 1 Symbols used in paper Symbols Description

s Source
R Set of routes
r Subflow
rttr Round-trip-time of subflow r
wr Congestion window of subflow r
xr Data rate of subflow r
α
r

Responsiveness factor

1509Optimal Load Balancing Linked Increased Algorithm for Multipath…

1 3

Assuming the RTT for each subflow nearly the same, Eq. (5) can be written as follows:

We consider two cases to find the upper and lower bounds of CW in the proposed
mechanism:

(a) Case 1 Among all subflows, the CW for rth subflow wr is maximum. Eq. (6) can be
written as follows:

As evident from (7), for each ACK, the proposed algorithm ensures that the increment
in CW of a subflow is equal to the inverse of the CW of the subflow that has maximum
data rate. Thus, it never takes more bandwidth than the SPTCP in case of the best path.

(b) Case 2 Among all sublows, CW of rth subflow wr is minimum. Eq. (6) can be written
as follows:

From (8), it can be seen that the increment term in (1) is upper-bounded by the inverse
of the CW of that subflow. Thus, the proposed algorithm satisfies “Do not harm” condition,
as shown in (7) and (8).

In (1), α helps managing the change in the current CW for load balancing during the
congestion avoidance phase. It helps in distributing more load via the best path and mini-
mum load via the worst path. So, it tries to provide the data load in each subflow up to its
optimum capacity, without affecting the performance of other SPTCP flows shared with
MPTCP’s subflows.

(5)

wr

rtt2
r�∑

p∈R

wp

rttp

�2
α2
r
=

wr

rtt2
r�∑

p∈R xp

�2
α2
r

=

wr

rtt2
r�∑

p∈R xp

�2
∗

� ∑
p∈R xp

max
�
xp
�
�2

=
wr

rtt2
r
∗
�
max

�
xp
��2

=
wr

rtt2
r
∗
�
max

�
wp

rttp

��2

(6)

wr

rtt2
r�∑

p∈R

wp

rttp

�2
α2
r
=

wr�
max

�
wp

��2

(7)

wr

rtt2
r�∑

p∈R

wp

rttp

�2
α2
r
=

1

wr

(8)

wr

rtt2
r�∑

p∈R

wp

rttp

�2
α2
r
=

wr�
max

�
wp

��2 ≤
1

wr

1510 R. K. Chaturvedi, S. Chand

1 3

The fundamental concept of the proposed algorithm is that the CW of each subflow of a
multipath TCP is increased according to the available bandwidth of the link shared by that
subflow. It increases in the least amount the CW of a subflow corresponding to the lowest
data flow rate (most congested path) and increases in the maximum amount the CW cor-
responding to the subflow that has maximum data flow rate (least congested path). Thus,
it reduces the flappiness (during the availability of multiple good paths, randomly flipping
the traffic among the paths is termed as flappiness). When it detects that the congested path
becomes free by getting the more available bandwidth, it increases the data rate by increas-
ing the window size with a higher rate of that flow. Thus, it overcomes the congested flow
very quickly and becomes more responsive. In next subsection, a model is discussed to
understand the proposed mechanism in better way.

2.1 Proposed Model

Consider a network with a set of links L =
{
l1, l2,… , ln

}
 and ci as the finite capacity of link

li . The links in L are shared by a set of sources S =
{
s1, s2,… , sm

}
 . Each source s ∈ S is a

fixed collection of subflows/paths Rs ⊆ R , where R = {r|r ∈ Rs, s ∈ S} denotes the collec-
tion of all subflows. Each subflow r ∈ Rs uses a set of links Lr ⊆ L . let Alr be a N × R rout-
ing matrix defined as follows:

Let source s ∈ S maintain a congestion window wr and data transmission rate
xr = wr∕rttr , for subflow r ∈ Rs at some particular time, where rttr denotes the RTT of
subflow r . Let pr be the congestion price at that time associated with link l . Denote the
aggregate price on subflow r as qr =

∑
l∈L Alrpl and the aggregate traffic rate on link l as

yr =
∑

r∈R Alrxr . For subflow r ∈ RS , xr , wr , qr represent the corresponding state variables
and for source s ∈ S , xs , ws , qs represent the corresponding state variables such that xs = xr ,
ws = wr , qs = qr , for r ∈ Rs , s ∈ S.

In the MPTCP model, let each source transmit the data by different subflows at trans-
mission rate xr using subflow r . For each successful ACK, the CW is increased by Ir

(
ws

)

and, for each loss, the CW is decreased by Dr

(
ws

)
 on subflow r, where ws represents the

vector of window sizes on different subflows of the source s . For each increment/decre-
ment, the maximum loss based the MPTCP algorithm is given by following:

• For each ACK on subflow r , wr = wr + Ir
(
ws

)
.

• For each packet loss on subflow r , wr = wr + Dr

(
ws

)
.

Source s transmits xr packets per unit time on subflow r and receives positive/negative
ACK at almost same rate, assuming every packet is acknowledged. The source s receives
xr
(
1 − qr

)
 as the number of positive ACKs per unit time on subflow r and each positive

ACK increases the CW by Ir
(
ws

)
 . It receives xrqr as the number of negative ACKs per unit

time on subflow r and each negative ACK decreases its CW by Dr

(
ws

)
 . According to Low

[25], for each RTT, the net change in CW, �wr , on subflow r is roughly given by

Alr =

{
1, if l ∈ r

0, otherwise

�wr =
(
Ir
(
ws

)(
1−qr

)
− Dr

(
ws

)
qr
)
wr

1511Optimal Load Balancing Linked Increased Algorithm for Multipath…

1 3

The above equation estimates the change in CW that helps the proposed algorithm to
tradeoff among load balancing, TCP-friendliness, and responsiveness. Next section intro-
duces maximization of the utility function to show that the proposed algorithm has optimal
solution.

2.2 Utility Maximization

An utility function is associated to each subflow of the MPTCP source, which needs be
maximized, in order to provide the high throughput. It can be represented as a constrained
maximization problem, as given below.

where xs is data rate vector of source flow s ∈ S and Us ∶ ℝ
|s|
+ → ℝ is a concave function.

The solution of problem P will provide the optimum source rate xs =
(
xr, r ∈ Rs, s ∈ S

)
 .

According to the duality model of TCP [22], if a utility function Us associated with source
flow s of an SPTCP (s = 1) and it is strictly concave, then the problem given in (9)–(10)
will give a unique and optimal value of its data rate xs . We now prove that our proposed
OLBLIA algorithm has a unique and optimal data rate for each subflow r ∈ Rs and s ∈ S.

Define the Lagrangian of P given in (9)–(10) as follows:

By the duality theory [26], (x∗, p∗) is primal–dual optimal if and only if x* is primal feasi-
ble, p* is dual feasible, and the complementary slackness condition holds as given below:

the primal problem is

where

and its Lagrangian dual is

(9)P ∶ max
xs

∑
s∈S

Us(xs)

(10)Subject to yl ≤ cl l ∈ L

L(x, p) =
∑
s∈S

Us(xs) −
∑
l∈L

pl(yl − cl)

=
∑
s∈S

Us(xs) −
∑
l∈L

plyl +
∑
l∈L

plcl

=
∑
s∈S

Us(xs) −
∑
l∈L

pl

∑
r∈Rs

Alrxr +
∑
l∈L

plcl

=
∑
s∈S

(
Us

(
xs
)
−
∑
r∈Rs

qrxr

)
+
∑
l∈L

plcl

x∗ = argmax
xs≥0

L
(
xs, p

∗
)

max
xs≥0

L
(
xs, p

∗
)
=
∑
s∈S

max
xs≥0

(
Us

(
xs
)
− xs

∑
r∈Rs

q∗
r

)
+
∑
l∈L

p∗
l
cl

xs =
∑
r∈Rs

xr, and q∗
r
=
∑
l∈L

p∗
l
Alr

1512 R. K. Chaturvedi, S. Chand

1 3

the KKT condition at optimality (x∗, p∗) , x∗
s
> 0 , gives

For x∗
s
= 0 , it gives

Equations (11) and (12) give the following:

The above equality will hold for x∗
s
> 0 . Since L(x, p∗) is concave in x , this is the neces-

sary and sufficient KKT condition [25] for x∗ to maximize L(x, p∗) over x ≥ 0 . Thus, we
have shown that x∗ is the optimal point of L(x, p∗) . In other words, L(x, p∗) provides the
maximum value for x = x∗.

2.3 TCP‑Friendliness

The scenario where the bottleneck link of network capacity c is shared by both SPTCP flow
and MPTCP subflow, and no MPTCP subflow takes bandwidth more than an SPTCP sub-
flow (c.f. Fig. 1). Such MPTCP flow is said to be TCP-friendly [14, 27]. Since the capacity
of the bottleneck link is c , it means that all other links of the network have capacity strictly
more than c . The links have fixed capacities but possibly different RTTs. Let a test net-
work have two flows with window sizes as w1 and w2 , respectively; initially with condition
w1 ≥ w2 . Let �w1 and �w2 be the changes in w1 and w2 , respectively. For fair allocation of
bandwidth at equilibrium, the following condition should hold:

min
pl≥0

∑
s∈S

max
xs≥0

(
Us

(
xs
)
− xs

∑
r∈Rs

qr

)
+
∑
l∈L

plcl

(11)U
�

s

(
x∗
s

)
= q∗

r

(12)U
�

s

(
x∗
s

)
≤ q∗

r

�L

�xs
(x∗, p∗) ≤ 0

Fig. 1 SPTCP flows and MPTCP flows share the bottleneck link L

1513Optimal Load Balancing Linked Increased Algorithm for Multipath…

1 3

since w1 ≥ w2 , Eq. (13) gives �w1 ≤ �w2.

Thus, we have

Equation (14) tells that if two flows are friendlier to each other, then the changes in
their respective windows should be such that both get nearly the same throughput in stable
state. More details can be seen in [14, 28]. Here, it has been discussed for two flows by
considering a single algorithm, which can be SPTCP or MPTCP. Thus, if both the flows
pass through a single link, then, for friendliness, both the flows sould have nearly the same
throughput at equilibrium.

We now discuss the friendliness for two MPTCP algorithms. Let M1 and M2 be two
MPTCP algorithms, which are executed on the same test network at different times. When
M1 shares the test network with SPTCP, assuming its aggregate throughput as X1 over the
available paths in equilibrium, the SPTCP attains its maximum possible throughput as (
T − X1

)
 . When M2 shares the test network with the same SPTCP, assuming its aggregate

throughput as X2 , over the available paths in equilibrium. Here, T is the total throughput of
the test network (i.e., T = X1 + X2). For X1 ≥ X2 , we say that M1 is friendlier than M2.

2.4 Responsiveness

In a system, the term responsiveness is defined as how fast the system converges to the equi-
librium locally [14]. Here, we use the test networks, as shown in Figs. 1, 2, and 3, in which
the MPTCP users share the link with SPTCP users. To demonstrate the dynamic performance
(responsiveness) of each algorithm, assume that the SPTCP flows are alive for a limited period
(say, 60–80 s), while the MPTCP subflows are alive for longer period (say, 0–200 s). Let M1
and M2 be two MPTCP algorithms that are executed on the same test network separately. We

(13)w1 + �w1 = w2 + �w2

(14)
�w1

w1

≤
�w2

w2

Fig. 2 MPTCP flows pass through the links L
1
 and L

2
 both and SPTCP flows pass through link L

2
 only

1514 R. K. Chaturvedi, S. Chand

1 3

say M1 is more responsive than M2 if M1 gets a stable stage more frequently than M2 , or how
often M1 recovers its flows, which are shared with the SPTCP (when SPTCP releases the link).
The algorithm M1 is more responsible than M2 if the following condition holds:

where δI1
(
ws

)
 and δI2

(
ws

)
 are aggregate increments in CW of source s by M1 and M2 algo-

rithms, respectively. δD1

(
ws

)
 and δD2

(
ws

)
 are the aggregate decrements in CW of source s

by M1 and M2 algorithms, respectively.
The aggregate increment and aggregate decrement are calculated by the increment factor

and decrement factor of each subflow of source s only. The algorithm M1 is more responsible
than M2 when at least one of the three following conditions holds.

(a) The aggregate increment value of M1 is more than that of M2 and the aggregate decre-
ment value of M1 is less than that of M2.

(b) The aggregate decrement value of M1 is less than that of M2 , while the aggregate incre-
ment values of M1 and M2 are nearly the same.

(c) The aggregate increment value of M1 is more than that of M2 , while the aggregate
decrement values of M1 and M2 are nearly the same.

After discussing the utility maximization, friendliness, and responsiveness of the proposed
OLBLIA algorithm, we now discuss its experimental results.

3 Experimental Results

This section presents the simulation setup, followed by a detailed discussion of the experi-
mental results. In order to assess how well the proposed algorithm performs, we compare
it with BALIA, LIA, and OLIA MPTCP algorithms. In literature, it has been shown that

(15)
δI1

(
ws

)

δD1

(
ws

) ≥
δI2

(
ws

)

δD2

(
ws

)

Fig. 3 Both SPTCP flows and MPTCP flows pass through both links L
1
 and L

2

1515Optimal Load Balancing Linked Increased Algorithm for Multipath…

1 3

BALIA, OLIA, and LIA algorithms outperform other existing algorithms such as uncou-
pled and semicoupled algorithms. Therefore, we will compare the performance of our
algorithm with that of these algorithms.

3.1 Simulation Setup

Here, three different scenarios are created based on sharing of the links to evaluate the per-
formance of the proposed OLBLIA algorithm. For simulation setup, we used ns3 [29]. In
first scenario, there is a single link shared between the MPTCP users and SPTCP users, as
shown in Fig. 1. In second scenario, there are two links out of which one link is allocated
to MPTCP users only and other link is shared among the MPTCP and SPTCP users, as
shown in Fig. 2. In third scenario, both links are shared among the MPTCP and SPTCP
users, as shown in Fig. 3.

Figure 1 depicts scenario one, where the SPTCP users and MPTCP users transfer the
data via the same link (L) that has maximum bandwidth C , with round-trip-time τ. Here,
the total number of subflows the MPTCP users and SPTCP users are N1 and N2 respec-
tively. The MPTCP users can send the data having one or multiple subflows through link L ,
which may or may not be shared with the SPTCP.

Figure 2 depicts scenario two, where the link L1 (maximum bandwidth C1 and round-
trip-time �1) is dedicated to only MPTCP users. The second link L2 (maximum bandwidth
C2 with round-trip-time �2) is used to transfer the data of the SPTCP users and MPTCP
users. For MPTCP users, X1 number of subflows out of N1 subflows coresponds to the link
L1 and the remaining X2 number of subflows to the link L2 . For SPTCP users, the total N2
flows (one flow per TCP user) correspond to the link L2.

Figure 3 depicts third scenario, where both links L1 and L2 are shared among the
MPTCP and SPTCP users to transfer the data. For MPTCP users, X1 number of subflows
out of N1 corresponds to the link L1 and the remaining X2 number of subflows corresponds
to the link L2 . For SPTCP users, Y1 number of subflows out of N2 flows corresponds to the
link L1 and the rest Y2 number of subflows corresponds to the link L2.

The simulations are performed under above discussed scenarios by varying the number
of nodes (for SPTCP flows and MPTCP subflows ranging from 1, 2,… , 25), link capacity,
and RTT. The link capacity in simulation is considered as 10 Mbps with a RTT of 5 ms
for each subflow/flow. The queue size is 100 packets at each node monitored by the RED
active queue management algorithm. The simulations are performed for 0–200 s for each
case of each scenario. We discuss the performance of the proposed OLBLIA algorithm and
compare it with that of the existing MPTCP algorithms: BALIA, OLIA, and LIA, in terms
of the throughput, responsiveness, and friendliness.

3.2 Throughput

The rate of successful messages delivery in a network over a communication channel is
defined as the throughput. It can be measured in bits per second (bit/s or bps) or in data
packets per time slot or data packets per second (p/s or pps). The proposed OLBLIA algo-
rithm is used to compute the throughput for measuring the network performance by vary-
ing the number of subflows. We also compute the throughput of BALIA, OLIA, and LIA
algorithms for comparison purpose.

In first and second scenarios each, three cases are considered and in third scenario two
cases as shown in Table 2.

1516 R. K. Chaturvedi, S. Chand

1 3

Case 1 of first scenario has one MPTCP subflow and one SPTCP flow. In this case, the
OLBLIA algorithm provides the same throughput as the BALIA, OLIA, and LIA algo-
rithms, which is same as that of the SPTCP (i.e., 4.87 Mbps). Here, it can be seen that none
of MPTCP algorithm i.e., proposed OLBLIA, LIA. OLIA and BALIA algorithms is not
aggressive towards the SPTCP because their throughputs are bounded by the throughput of
the SPTCP, i.e., 4.87 Mbps. Thus, they are not unfriendly towards SPTCP.

Case 2 of first scenario has 10 MPTCP subflows and 5 SPTCP flows. Here, none of the
MPTCP algorithms should have throughput more than 10/3, i.e., 6.67 Mbps. If any MPTCP
algorithm has throughput more than 6.67 Mbps, then that algorithm will become aggres-
sive towards the SPTCP. The OLBLIA, BALIA, OLIA, and LIA algorithms have through-
puts as 6.56, 7.33, 7.29 and 7.32 Mbps, as shown in Table 2. Thus, the existing algorithms
i.e., BALIA, OLIA, and LIA are aggressive towards the SPTCP. These algorithms in turn
degrade the performance of the SPTCP, which is against the TCP-friendliness.

Case 3 of first scenario has 20 MPTCP subflows and 5 SPTCP flows. The OLBLIA,
BALIA, OLIA, and LIA algorithms have throughputs as 7.98, 7.52, 7.53, and 7.52 Mbps;
however, none of the MPTCP algorithms should have throughput more than 10 * 20/25,
i.e., 8 Mbps, otherwise that algorithm will become aggressive towards SPTCP. Here,

Table 2 Throughput (in Mbps) of OLBLIA, BALIA, OLIA, and LIA algorithms [RTT (τ) as 5 ms, capacity
of each link as 10 Mbps]

Case LIA OLIA BALIA Proposed OLBLIA

Scenario 1
1 MPTCP (1) 4.87 4.87 4.87 4.87

SPTCP (1) 4.87 4.87 4.87 4.87
2 MPTCP(10) 7.32 7.29 7.33 6.56

SPTCP (5) 2.62 2.64 2.61 3.42
3 MPTCP (20) 7.52 7.53 7.52 7.98

SPTCP (5) 2.26 2.25 2.26 1.97
Scenario 2
1 MPTCP(10)

{X1 = 5, X2 = 5}
15.12 (9.78, 5.34) 14.55 (9.27, 5.28) 15.18 (9.79, 5.39) 14.69 (9.74, 4.95)

SPTCP (5) 4.59 4.65 4.54 4.94
2 MPTCP (20)

{X1 = 15, X2 = 5}
14.96 (9.80, 5.16) 14.40 (9.32, 5.08) 15.03 (9.85, 5.18) 14.89 (9.96, 4.93)

SPTCP (5) 4.34 4.42 4.36 4.94
3 MPTCP (25)

{X1 = 20, X2 = 5}
12.00 (9.95, 2.05) 11.96 (9.91, 2.05) 11.99 (9.95, 2.04) 13.19 (9.95, 3.24)

SPTCP (10) 7.93 7.92 7.94 6.64
Scenario 3
1 MPTCP(10)

{X1 = 5, X2 = 5}
10.66 (5.32, 5.34) 10.39 (5.18, 5.21) 10.42 (5.22, 5.20) 9.86 (4.92, 4.94)

SPTCP (10)
{Y1 = 5, Y2 = 5}

9.30 (4.69, 4.61) 9.46 (4.72, 4.74) 9.06 (4.32, 4.74) 9.85 (4.93, 4.92)

2 MPTCP (25)
{X1 = 15, X2 = 10}

14.00 (7.02, 6.98) 13.86 (6.94, 6.92) 14.08 (7.07, 7.01) 14.06 (7.47, 6.59)

SPTCP (10)
{Y1 = 5, Y2 = 5}

5.51 (2.63, 2.88) 5.48 (2.62, 2.86) 5.45 (2.61, 2.84) 5.70 (2.41, 3.29)

1517Optimal Load Balancing Linked Increased Algorithm for Multipath…

1 3

all algorithms have throughput less than 8 Mbps, i.e., none of the MPTCP algorithms is
aggressive towards the SPTCP. But, in this case, the OLBLIA provides better throughput
than the BALIA, OLIA, and LIA algorithms and hence it utilizes the MPTCP subflows bet-
ter than the existing algorithms, i.e., BALIA, OLIA, and LIA.

We now consider second scenario that also has three cases.
In case 1 of second scenario, there are 10 MPTCP subflows and 5 SPTCP flows in

which X1 = 5 subflows of the MPTCP user pass through the link L1 and the rest X2 = 5
subflows pass through the link L2 . Here, the throughput of any MPTCP algorithm for link
L2 should not be more than 5 Mbps, which is same as that of SPTCP. The throughputs of
MPTCP subflows through link L2 using the proposed OLBLIA, LIA. OLIA and BALIA
algorithms are 4.95, 5.34, 5.28, and 5.39 Mbps, respectively, as shown in Table 2. Here, it
can be seen that the existing algorithms i.e., LIA. OLIA and BALIA algorithms are aggres-
sive towards the SPTCP because their throughputs are more than that of the SPTCP, i.e.,
5 Mbps. So, these algorithms degrade the performance of SPTCP, which is against the
TCP-friendliness. For our OLBLIA algorithm, the throughput of MPTCP is 4.95 Mbps,
which is very close to 5 Mbps. Further, the throughput of the SPTCP should be as close
as possible to 5 Mbps. However, the throughput of the SPTCP for the LIA, OLIA, and
BALIA algorithms are 4.59, 4.65, and 4.54 Mbps, respectively; whereas, the throughput of
the SPTCP for our proposed OLBLIA is 4.94 Mbps. Thus, our algorithm performs better
than the existing algorithms in this case also.

In case 2 of second scenario, there are 20 MPTCP subflows and 5 SPTCP flows in
which X1 = 15 subflows of the MPTCP user pass through the link L1 and the rest X2 = 5
subflows pass through the link L2 . Here also, the throughput of any MPTCP algorithm for
link L2 should not be more than 5 Mbps, which is same as that of SPTCP. The throughputs
of MPTCP subflows through link L2 using the proposed OLBLIA, LIA. OLIA and BALIA
algorithms are 4.93, 5.16, 5.08 and 5.18 Mbps, respectively, as shown in Table 2. Here, it
can be seen that the existing algorithms i.e., LIA. OLIA and BALIA algorithms are aggres-
sive towards the SPTCP because their throughputs are more than that of the SPTCP, i.e.,
5 Mbps. So, these algorithms degrade the performance of SPTCP, which is against the
TCP-friendliness. For our OLBLIA algorithm, the throughput of MPTCP is 4.93 Mbps,
which is very close to 5 Mbps. Further, the throughput of the SPTCP should be as close
as possible to 5 Mbps. However, the throughput of the SPTCP for the LIA, OLIA, and
BALIA algorithms are 4.34, 4.42, and 4.36 Mbps, respectively; whereas, the throughput of
the SPTCP for our proposed OLBLIA is 4.94 Mbps. Thus, our algorithm performs better
than the existing algorithms.

In case 3 of second scenario, there are 25 MPTCP subflows and 10 SPTCP flows in
which X1 = 20 subflows of the MPTCP user pass through the link L1 and the rest X2 = 5
subflows pass through the link L2 . Here, the throughput of any MPTCP algorithm for link
L2 should not be more than 10 * 5/15 = 3.33 Mbps. The throughputs of MPTCP subflows
through link L2 using the proposed OLBLIA, LIA. OLIA and BALIA algorithms are 3.24,
2.05, 2.05, and 2.04 Mbps, respectively, as shown in Table 2. Here, it can be seen that the
existing algorithms i.e., LIA. OLIA and BALIA algorithms are under-utilize the MPTCP
subflows; whereas, the proposed OLBLIA utilizes them in a better way. Further, the
throughput of the SPTCP users should be as close as possible to 10 * 10/15 = 6.66 Mbps.
However, the throughput of the SPTCP for the LIA, OLIA, and BALIA algorithms are
7.93, 7.92, and 7.94 Mbps, respectively; whereas, the throughput of the SPTCP for our
proposed OLBLIA is 6.64 Mbps. Thus, our algorithm performs better than the existing
algorithms.

We now discuss third scenario that has two cases.

1518 R. K. Chaturvedi, S. Chand

1 3

In case 1 of third scenario, there are 10 MPTCP subflows and 10 SPTCP flows in which
X1 = 5 subflows of the MPTCP user and Y1 = 5 flows of the SPTCP users pass through the
link L1 and the rest X2 = 5 subflows of MPTCP user and Y2 = 5 flows of the SPTCP users
pass through the link L2 . Here, the throughput of any MPTCP algorithm for each link L1
and L2 should not be more than 10 * 5/10 = 5 Mbps. The throughputs of the MPTCP sub-
flows through link L1 using the proposed OLBLIA, LIA. OLIA and BALIA algorithms are
4.92, 5.32, 5.18, and 5.22 Mbps, respectively, and through the link L2 are 4.94, 5.34, 5.21,
and 5.20, respectively, as shown in Table 2. Here, it can be seen that the existing algorithms
i.e., LIA. OLIA and BALIA algorithms are aggressive towards the SPTCP because their
throughputs are more than 5 Mbps. So, these algorithms degrade the performance of the
SPTCP, which is against the TCP-friendliness. For our OLBLIA algorithm, the throughput
of MPTCP through the links L1 and L2 are 4.92 and 4.94 Mbps, respectively, which are
very close to 5.0 Mbps. Further, the throughput of the SPTCP should be as close as possi-
ble to 10 * 5/10 = 5.0 Mbps for each of the links L1 and L2 . However, the throughput of the
SPTCP for the OLBLIA, LIA, OLIA, and BALIA algorithms through the link L1 are 4.93,
4.69, 4.72, and 4.32 Mbps, respectively, and through the link L2 are 4.92, 4.61, 4.72, and
4.74 Mbps, respectively. Thus, our algorithm performs better than the existing algorithms,
i.e., LIA, OLIA, and BALIA.

In case 2 of third scenario, there are 25 MPTCP subflows and 10 SPTCP flows in
which X1 = 15 subflows of the MPTCP user and Y1 = 5 flows of the SPTCP users pass
through the link L1 and the rest X2 = 10 subflows of the MPTCP user and Y2 = 5 flows of
the SPTCP users pass through the link L2 . Here, the throughput of any MPTCP algorithm
for link L1 should not be more than 10 * 15/20 = 7.5 Mbps and, for link L2 it should not be
more than 10 * 10/15 = 6.66 Mbps. The throughputs of the MPTCP subflows through the
link L1 using the proposed OLBLIA, LIA, OLIA, and BALIA algorithms are 7.47, 7.02,
6.94, and 7.07 Mbps, respectively, as shown in Table 2. Here, it can be seen that the exist-
ing algorithms i.e., LIA. OLIA and BALIA algorithms under-utilize the MPTCP subflows;
whereas, our OLBLIA algorithm utilizes in a better way. The throughputs of the MPTCP
subflows through the link L2 using the proposed OLBLIA, LIA. OLIA and BALIA algo-
rithms are 6.59, 6.98, 6.92, and 7.01, respectively. Here, it can be seen that the existing
algorithms i.e., LIA. OLIA and BALIA algorithms are aggressive towards the SPTCP
because their throughputs are more than the 6.66 Mbps. So, these algorithms degrade the
performance of the SPTCP, which is against the TCP-friendliness. For our OLBLIA algo-
rithm, the throughput of the MPTCP is 6.59 Mbps, which is very close to 6.66 Mbps. Fur-
ther, the throughput of the SPTCP should be as close as possible to 10 * 5/20 = 2.5 Mbps
for link L1 and 10 * 5/15 = 3.33 Mbps for link L2 . However, the throughput of the SPTCP
for the OLBLIA, LIA, OLIA, and BALIA algorithms through the link L1 are 2.41, 2.63,
2.62, and 2.61 Mbps, respectively, and through the link L2 are 3.29, 2.88, 2.86, and 2.84
Mbps, respectively. Thus, our algorithm performs better than the existing algorithms.

3.3 TCP‑Friendliness

Here we discuss the friendliness of our proposed OLBLIA algorithm and compare its per-
formance with that of the BALIA, OLIA, and LIA algorithms that involves the number of
MPTCP subflows and SPTCP flows. It is assumed that all MPTCP subflows and SPTCP
subflows are long-lived. In case 1 of first scenario (which has one MPTCP subflow and
one SPTCP flow, sharing the common link L), the OLBLIA algorithm does not take more
bandwidth than the SPTCP although it gives the throughput equal to that of SPTCP (i.e.,

1519Optimal Load Balancing Linked Increased Algorithm for Multipath…

1 3

4.87 Mbps) as shown in Table 2. Thus, the OLBLIA shows good friendliness towards the
SPTCP. In other scenarios including the rest all cases, the proposed OLBLIA algorithm
shows better TCP-friendliness (as discussed in subsection B) than the BALIA, OLIA, and
LIA as depicted in Table 2.

The friendliness behavior of the OLBLIA, BALIA, OLIA, and LIA algorithms for
case 1 of second scenario is shown graphically in Fig. 4a–h. Figures 4a, c, e, g show the
throughputs of the MPTCP subflows and SPTCP flows passing through different links and
the corresponding average throughputs are shown in Fig. 4b, d, f, h. Here, the ‘MPTCP
throughput’ refers to the overall throughput of the MPTCP user by including the through-
puts of all the MPTCP subflows through each link, while the ‘MPTCP Link L1’, ‘MPTCP
Link L2’, and ‘SPTCP throughput’ are the throughputs of all the MPTCP subflows passing
through the links L1 , link L2 , and all SPTCP flows passing through the link L2 , respectively.

It can be seen from Fig. 4 that the throughput of ‘MPTCP Link L2’ and ‘SPTCP
throughput’ are much closer for the OLBLIA than that of the BALIA, OLIA, and LIA. It is
because the number of SPTCP flows and the number of MPTCP subflows passing through
the link L2 are equal, and the OLBLIA balances the data load by distributing the data
through the MPTCP subflows that passes through the link L2 so that they do not take more
bandwidth than the SPTCP flows (which can be atmost equal to the SPTCP flows). On the
other hand, the BALIA, OLIA, and LIA algorithms are not as friendly as the OLBLIA
because they take more bandwidth than the SPTCP flows. Thus, the proposed OLBLIA
is more TCP-Friendly than the LIA, OLIA, and BALIA algorithms. We have carried out
several experiments by varying different parameters and got the results of similar nature
as shown in Table 2. Therefore, due to the similar trend in the results in almost all the sce-
narios, we have not shown all of them graphically.

3.4 Responsiveness

Here, we discuss the responsiveness of the proposed OLBLIA and compare it with that
of the BALIA, OLIA, and LIA algorithms. The process involves varying the numbers of
MPTCP subflows and SPTCP flows, using the dynamic environment by starting the SPTCP
flows at 60th second and terminating at 80th second, and the MPTCP subflows starting
from the beginning (i.e., 0th second) and continuing till end of the simulation (i.e., 200th
second). The OLBLIA algorithm has better responsiveness than the BALIA, OLIA, and
LIA algorithms for all three scenarios discussed in subsection A, as depicted in Table 3.

In scenario 1, 20 MPTCP subflows and 5 SPTCP flows have been considered, and all
the MPTCP subflows and SPTCP flows pass through a common link. The OLBLIA pro-
vides much better convergence time than the BALIA, OLIA, and LIA algorithms as their
respective convergence times are 1, 19, 24, and 25 s. In scenario 2, 10 MPTCP subflows
and 5 SPTCP flows have been considered in which X1 = 5 MPTCP subflows pass through
the link L1 and X2 = 5 MPTCP subflows pass through the link L2 , while all the SPTCP
flows pass through the link L2 . Here also, the OLBLIA provides better convergence time
than the BALIA, OLIA, and LIA algorithms as their respective convergence times are 15,
25, 110, and 28 s. In scenario 3, 10 MPTCP subflows and 10 SPTCP flows have been con-
sidered in which X1 = 5 subflows of the MPTCP user and Y1 = 5 flows of the SPTCP users
pass through the link L1 and the rest X2 = 5 subflows of MPTCP user and Y2 = 5 flows of
the SPTCP users pass through the link L2 . In this case also, the OLBLIA provides better
convergence time than the BALIA, OLIA, and LIA algorithms as their respective conver-
gence times are 10, 32, 64, and 31 s. Since the proposed OLBLIA algorithm has better

1520 R. K. Chaturvedi, S. Chand

1 3

convergence time than the BALIA, OLIA, and LIA algorithms in all scenarios, it provides
better responsiveness.

The simulations have been carried out for responsiveness by considering a large number
of cases in each of the three scenarios by varying the number of MPTCP subflows, SPTCP

Fig. 4 Comparison of TCP-friendliness in terms of: a throughput using OLBLIA, b average throughput
using OLBLIA, c throughput using LIA, d average throughput using LIA, e throughput using OLIA, f aver-
age throughput using OLIA, g throughput using BALIA, and h average throughput using BALIA

Table 3 Responsiveness (SPTCP
starts at 60th second and stops at
80th second)

LIA OLIA BALIA Proposed
OLBLIA

Convergence time
Scenario 1 25 24 19 1
Scenario 2 28 110 25 15
Scenario 3 31 64 32 10

1521Optimal Load Balancing Linked Increased Algorithm for Multipath…

1 3

flows, RTT and link capacity, as given in Table 2. In almost all cases, similar types of the
results have been obtained. Therefore, we have not shown all the results due to their repeti-
tive nature.

The responsiveness of the OLBLIA algorithm along with that of the BALIA, OLIA, and
LIA algorithms for scenario 2 are shown graphically in Fig. 5. Figure 5a, c, e, g show the
throughput of the MPTCP subflows and SPTCP flows through different links; and Fig. 5b,
d, f, h show the total throughput of all the MPTCP subflows and SPTCP flows using the
OLBLIA, LIA, OLIA, and BALIA, respectively. The ‘Total throughput’ shows the over-
all throughput of the network by including the throughput of all the MPTCP subflows
and SPTCP flows through each link, while the ‘MPTCP Link L1’, ‘MPTCP Link L2’, and
‘SPTCP throughput’ are the throughputs of all the MPTCP subflows passing through link
L1 , link L2 , and all SPTCP flows passing through the link L2 , respectively. As evident from
Fig. 5, the OLBLIA algorithm gets its stable state very quickly (in 15 s) as compared to

Fig. 5 Comparison of responsiveness in terms of a throughput using OLBLIA, b total throughput using
OLBLIA, c throughput using LIA, d total throughput using LIA, e throughput using OLIA, f total through-
put using OLIA, g throughput using BALIA, and (h) total throughput using BALIA

1522 R. K. Chaturvedi, S. Chand

1 3

the LIA (in 28 s), OLIA (in 110 s), and BALIA (in 25 s) algorithms after terminating the
‘SPTCP flows’ (at 80th second). Thus, Fig. 5 and Table 3 show that the OLBLIA is more
responsive than the BALIA, OLIA, and LIA algorithms. Thus, the experimental results
demonstrate the effectiveness of our proposed OLBLIA in terms of throughput, respon-
siveness, TCP-friendliness and tradeoff among them, when compared with the BALIA,
OLIA, and LIA algorithm.

4 Conclusion

The paper has analyzed the existing congestion control algorithms of MPTCP, with the
intent of observing the current issues like load balancing, TCP-friendliness, responsive-
ness, and tradeoff among them. In order to overcome these issues, a new congestion control
algorithm for MPTCP, OLBLIA, has been discussed. Experimentally and analytically, it
has been shown that the OLBLIA outperforms the existing MPTCP algorithms. It allocates
more data to a less congested path and less data to a more congested path. It achieves high
throughput by reducing the loss of packets and provides better load balancing. It also tries
to utilize the freely available bandwidth of a path in a better way that makes it more respon-
sive. The overall performance of MPTCP increases without affecting the performance of
SPTCP. Further, it provides better responsiveness and more throughput, while maintaining
the TCP-friendliness.

Acknowledgements This work is supported by UPE-II, Jawaharlal Nehru University, Delhi. Authors like to
acknowledge the Council of Scientific & Industrial Research (CSIR) for providing the Fellowship through-
out this research.

References

 1. Robinson, Y. H., & Julie, E. G. (2019). SMR: A synchronized multipath re-broadcasting mecha-
nism for improving the quality of conversational video service. Wireless Personal Communications,
104(3), 1149–1173.

 2. Laghari, A. A., He, H., Shafiq, M., & Khan, A. (2018). Application of quality of experience in net-
worked services: Review, trend & perspectives. Systemic Practice and Action Research. https ://doi.
org/10.4108/eai.13-7-2018.16039 0.

 3. Chaturvedi, R. K., & Chand, S. (2018). MPTCP over datacenter networks. In 2018 second inter-
national conference on inventive communication and computational technologies (ICICCT) (pp.
894–898).

 4. Ford, A., Raiciu, C., Handley, M., & Bonaventure, O. (2012). TCP extensions for multipath opera-
tion with multiple addresses, draft-ietf-mptcp-multiaddressed-09. Internetdraft, IETF (March
2012).

 5. Scharf, M., & Ford, A. (2013). Multipath TCP (MPTCP) application interface considerations. RFC
6897, March.

 6. Liu, Y., Neri, A., Ruggeri, A., & Vegni, A. M. (2016). A MPTCP-based network architecture for
intelligent train control and traffic management operations. IEEE Transactions on Intelligent Trans-
portation Systems, 18(9), 2290–2302.

 7. Syariati, F. M., & Choi, K. W. (2019). Optimal concurrent multipath data transfer for band-
width aggregation in heterogeneous mobile networks. Wireless Personal Communications, 107,
1383–1400.

 8. De Schepper, T., Latré, S., & Famaey, J. (2019). Scalable load balancing and flow management in
dynamic heterogeneous wireless networks. Journal of Network and Systems Management. https ://
doi.org/10.1007/s1092 2-019-09502 -2.

https://doi.org/10.4108/eai.13-7-2018.160390
https://doi.org/10.4108/eai.13-7-2018.160390
https://doi.org/10.1007/s10922-019-09502-2
https://doi.org/10.1007/s10922-019-09502-2

1523Optimal Load Balancing Linked Increased Algorithm for Multipath…

1 3

 9. Chow, A. L., Yang, H., Xia, C. H., Kim, M., Liu, Z., & Lei, H. (2009). EMS: Encoded multipath
streaming for real-time live streaming applications. In 2009 17th IEEE international conference on
network protocols (pp. 233–243).

 10. Lu, Y. (2016). SED: An SDN-based explicit-deadline-aware TCP for cloud data center networks.
Tsinghua Science and Technology, 21(5), 491–499.

 11. Pang, J., Xu, G., & Fu, X. (2017). SDN-based data center networking with collaboration of mul-
tipath TCP and segment routing. IEEE Access, 5, 9764–9773.

 12. Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., & Handley, M. (2011). Improving
datacenter performance and robustness with multipath TCP. In ACM SIGCOMM computer commu-
nication review (Vol. 41, No. 4, pp. 266–277).

 13. Ha, S., Rhee, I., & Xu, L. (2008). CUBIC: A new TCP-friendly high-speed TCP variant. ACM
SIGOPS Operating Systems Review, 42(5), 64–74.

 14. Sastry, N. R., & Lam, S. S. (2005). CYRF: A theory of window-based unicast congestion control.
IEEE/ACM Transactions on Networking (TON), 13(2), 330–342.

 15. Ford, A., Raiciu, C., Handley, M., Barre, S., & Iyengar, J. (2011). Architectural guidelines for mul-
tipath TCP development. In IETF, RFC 6182.

 16. Hurtig, P., Grinnemo, K. J., Brunstrom, A., Ferlin, S., Alay, Ö., & Kuhn, N. (2018). Low-latency
scheduling in MPTCP. IEEE/ACM Transactions on Networking, 27(1), 302–315.

 17. Blanton, E., & Allman, M. (2009). TCP congestion control. IETF, Standards Track RFC 5681.
 18. Raiciu, C., Handley, M., & Wischik, D. (2011). RFC 6356, coupled congestion control for mul-

tipath transport protocols.
 19. Paasch, C., Khalili, R., & Bonaventure, O. (2013). On the benefits of applying experimental design

to improve multipath TCP. In Proceedings of the ninth ACM conference on emerging networking
experiments and technologies (pp. 393–398).

 20. Khalili, R., Gast, N., Popovic, M., & Le Boudec, J. Y. (2012). Performance issues with MPTCP.
draft-khalili-mptcpperformance-issues-04.

 21. Walid, A., Peng, Q., Hwang, J., & Low, S. (2016). Balanced linked adaptation conges-
tion control algorithm for MPTCP. Working Draft, IETF Secretariat, Internet-Draft
draft-walid-mptcp-congestion-control-04.

 22. Khalili, R., Gast, N., & Popovic, M. (2013). Opportunistic linked-increases congestion control
algorithm for MPTCP. draft-khalili-mptcp-congestion-control-02.

 23. Kelly, F., & Voice, T. (2005). Stability of end-to-end algorithms for joint routing and rate control.
ACM SIGCOMM Computer Communication Review, 35(2), 5–12.

 24. Khalili, R., Gast, N., Popovic, M., & Le Boudec, J. Y. (2013). MPTCP is not pareto-optimal: Per-
formance issues and a possible solution. IEEE/ACM Transactions on Networking (ToN), 21(5),
1651–1665.

 25. Low, S. H. (2003). A duality model of TCP and queue management algorithms. IEEE/ACM Trans-
actions on Networking (ToN), 11(4), 525–536.

 26. Bertsekas, D. P. (1997). Nonlinear programming. Journal of the Operational Research Society,
48(3), 332–334.

 27. Vo, P. L., Le, T. A., & Tran, N. H. (2019). mFAST: A multipath congestion control protocol for
high bandwidth-delay connection. Mobile Networks and Applications, 24(1), 115–123.

 28. Lee, J., Im, Y., & Lee, J. (2019). Modeling MPTCP performance. IEEE Communications Letters,
23(4), 616–619.

 29. Network Simulator (NS-3). http://www.nsnam .org. Accessed 2009.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://www.nsnam.org

1524 R. K. Chaturvedi, S. Chand

1 3

Rajnish Kumar Chaturvedi received the B.Tech and M.Tech. degrees
in Computer Science and Engineering from Dr. A.P.J. Abdul Kalam
Technical University (formerly UPTU), Lucknow, India, in 2014, and
is currently pursuing the Ph.D. degree in computer science at the Jawa-
harlal Nehru University, New Delhi, India. He has been with INMAS,
DRDO, New Delhi, India, as a research scholar. His current research
interests include congestion control in networking, multipath TCP, and
transport protocols.

Satish Chand did his M.Sc. in Mathematics from IIT Kanpur, M.Tech.
in Computer Science from IIT Kharagpur, Ph.D. in Computer Science
from Jawaharlal Nehru University, Delhi. Presently he is working as
Professor in the School of Computer and Systems Sciences, Jawaharlal
Nehru University Delhi, India. His areas of interest are image process-
ing, video processing, computer networks, sensor networks, etc.

	Optimal Load Balancing Linked Increased Algorithm for Multipath TCP
	Abstract
	1 Introduction
	2 Proposed Work: Optimal Load Balancing Linked Increased Algorithm
	2.1 Proposed Model
	2.2 Utility Maximization
	2.3 TCP-Friendliness
	2.4 Responsiveness

	3 Experimental Results
	3.1 Simulation Setup
	3.2 Throughput
	3.3 TCP-Friendliness
	3.4 Responsiveness

	4 Conclusion
	Acknowledgements
	References

