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Abstract
Multi-modality medical image fusion aims at integrating information from medical images 
with different modalities to aid in the diagnosis process. Most research work in this area 
ends with the fusion stage only. This paper, on the contrary, tries to present a complete 
diagnosis system based on multi-modality image fusion. This system works on MR and CT 
images. It begins with the registration step using Scale-Invariant Feature Transform reg-
istration algorithm. After that, histogram matching is performed to allow accurate fusion 
of the medical images. Two methods of the fusion are utilized and compared, wavelet and 
curvelet fusion. An interpolation stage is included to enhance the resolution of the obtained 
image after fusion. Finally, a deep learning approach is adopted for classification of images 
as normal or abnormal. Simulation results reveal good success of the proposed automated 
diagnosis system based on the fusion and interpolation results.

Keywords  Image fusion · MR · CT · Registration · Interpolation · Classification · Deep 
learning

1  Introduction

Medical imaging has become a very powerful and efficient tool that can be used in the 
diagnosis of several diseases. There are several technologies to extract medical images 
such as X-ray imaging, mammography, Computed Tomography (CT), Computerized Axial 
Tomography (CAT), Magnetic Resonance Imaging (MRI), ultrasonic imaging, Positron 
Emission Tomography (PET), and confocal microscopy imaging. These imaging tech-
nologies have different principles for generating images, and hence different artifacts and 
limitations [1, 2]. In some scenarios, there is a need to integrate information from different 
medical images obtained with different modalities for the same object to help in a bet-
ter diagnosis. The most popular example of this is the fusion of MR and CT images. To 
achieve a successful fusion process, there is a need first to understand the nature of both 
modalities of images.
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CT imaging is based on X-rays by collecting several angular-projection X-ray images. 
Cross section slices can be generated from these images using different reconstruction 
algorithms. Some artifacts such as ringing, high attenuation around edges, ghosting, and 
stitching may appear in CT images. These artifacts need to be removed with efficient image 
processing algorithms [1, 2]. On the other hand, the idea of MRI differs from that of X-ray 
imaging. Here, no radiation is used. This technique just depends on a strong magnetic field, 
which causes hydrogen atoms to emit radio-wave pulses that can be used for imaging. Con-
centration of hydrogen atoms is reflected in the obtained MRI images, and hence tissues 
can be discriminated based on the amount of water in each of them. Several artifacts may 
appear in MRI images such as zebra stripes, inhomogeneity, shading, and aliasing [1, 2].

Multi-modality image fusion is used to merge information from multiple images 
obtained with different imaging techniques. The most common types of images that are 
incorporated in the fusion process include MR and CT images. These images need first 
to be registered for accurate fusion results. Different approaches have been presented for 
this objective. Ali et al. presented an approach for MR and CT image fusion based on both 
wavelet transform and curvelet transform [3, 4]. Unfortunately, this approach did not con-
sider the histogram matching issue, and hence quality of the obtained fusion images is not 
good. Moreover, Ali et  al. developed their work for resolution enhancement of medical 
images by incorporating inverse interpolation techniques such as maximum entropy inter-
polation, LMMSE interpolation, and regularized interpolation [5]. This work presented 
images of better resolution, but unfortunately did not consider the histogram matching 
issue. The main shortcoming of this work is that it was not extended to the diagnosis pro-
cess. It stopped at the fusion and interpolation stages only. To be more feasible, there is a 
need to go to the further classification stage.

Some other attempts have been presented in the literature to combine the process of 
multi-modality image fusion with optimization to enhance the quality of the obtained 
fusion results subject to certain constraints [6, 7]. These attempts considered optimization 
techniques like the modified central force optimization in maximizing the visual quality of 
the obtained results. The attempts in [6, 7] considered the histogram matching issue and 
gave good fusion results. Unfortunately, these techniques did not consider the resolution 
enhancement scenario. They did not also consider the automated diagnosis process needed 
after obtaining the fusion results.

The work in this paper differs from the work presented by Ali et al. in that it considers 
the histogram matching as a very major stage to match the intensity levels of the CT image 
to those of the MR image for better fusion results. Moreover, the proposed work in this 
paper presents a full diagnosis system by introducing a classification stage for the fusion 
results based on a suggested deep learning model. Simulation results presented in the paper 
prove the feasibility and success of the proposed automated medical diagnosis system to 
differentiate between fusion results with tumors and fusion results without tumors.

2 � Proposed Automated Diagnosis System

The proposed automated diagnosis system consists of five stages as shown in Fig. 1. These 
stages are registration, histogram matching, image fusion, image interpolation, and deep learn-
ing for classification. The first stage is the registration stage. This stage is performed to cali-
brate the coordinates of both MR and CT images to allow an accurate fusion process. The reg-
istration process can be performed using SIFT algorithm [8–11]. The SIFT algorithm is used 
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to extract feature points across scales and represent these feature points with feature vectors 
containing angle histogram bins. The registration is performed by rotating one of the images 
with fixed step sizes and comparing the feature vectors between the reference image and each 
rotated image [8–11].

3 � Registration of MR and CT Images

To extract the feature vector from an image, the first step is to convolve the image at hand with 
multiple Gaussian kernels with different scales [8–11]:

where � , and G(x, y, �) are the scale and the Gaussian kernel with scale � , and I(x, y) is the 
original image. The Gaussian kernel is defined as follows [8–11]:

(1)L(x, y, �) = G(x, y, �) ∗ I(x, y)

(2)G(x, y, �) =
1

2��2
e−(x

2+y2)∕2�2

Fig. 1   The proposed approach
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Laplacian operator is applied to the different scales. In a simplified manner, the Dif-
ference of Gaussina (DoG) is used as an alternative strategy as illustrated in Fig. 2 for 
the determination of the keypoints. A comparison process is performed between pix-
els at similar coordinates to select the feature points across scales. The extrema points 
across scales are selected for further feature extraction processes. The DoG is a good 
alternative to the LoG as the Laplacian is eliminated for simplification [8–11].

After keypoint selection, both magnitude and phase of the gradiant at this keypoint 
are estimated as follows [8–11]:

where L(x, y) is the gradient at (x, y) . A 16 × 16 window around each keypoint is selected 
and divided into four sub-windows as shown in Fig. 3. An angle histogram of gradients is 
estimated in each sub-window with four bins, and each bin represents 45°. This leads to a 
feature vector of 128 points representing each feature point.

The registration process is performed by taking the MR image as a reference image 
and extracting the feature points and feature vectors from that image. The feature points 
and feature vectors are also extracted from the CT image and matched to those of the 
MR image. The matching is based on the minimum distance criterion. To accommodate 
for rotation effects, a group of rotations of the CT image with step angles are performed 
and followed by a matching process after each rotation. The feature comparison is per-
formed for each rotation angle and the decision of registration is taken based on the 
minimum distance criterion.

(3)m(x, y) =

√
(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2

(4)�(x, y) = tan−1
(
L(x, y + 1) − L(x, y − 1)

L(x + 1, y) − L(x − 1, y)

)

Fig. 2   Implementation of the DoG



1037Automated Medical Diagnosis System Based on Multi-modality…

1 3

4 � Histogram Matching

Histogram matching is a process that aims to adapt the histogram of an image to that 
of another one for the objective of enhancement of a poor-visual-quality image as in 
the case of infrared image enhancement [12, 13], or the objective of image fusion. It 
has become a must in mutlti-modality image fusion, because the intensity levels of the 
multi-modality images differ so much. In the scenario at hand of fusion of MR and CT 
images, the CT image is taken as the reference image f(k,l) as it has a larger dynamic 
range, and the MR image intensities g(m, n) are adjusted based on this reference image. 
The steps of the histogram matching algorithm adopted in this paper is similar to that 
adopted by Ashiba et al. for infrared image enhancement and its steps are summarized 
below [12].

1.	 Estimate the mean of the MR image.

where M and N are the dimensions of the MR image.
2.	 Estimate the mean of the CT image.

where K and L are the dimensions of the CT image.
3.	 Estimate the standard deviation of the MR image.

(5)ĝ =
(

1

MN

) M∑
m=1

N∑
n=1

g(m, n)

(6)f̂ =
(

1

KL

) K∑
k=1

L∑
l=1

f (k, l)

(7)𝜎1 =

√√√√ 1

MN

M∑
m=1

N∑
n=1

(g(m, n) − ĝ)2

Fig. 3   Keypoint description
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4.	 Estimate the standard deviation of the CT image.

5.	 Estimate the correction factor.

6.	 Estimate the corrected mean of the MR image.

7.	 Estimate the histogram matched MR image.

An example of the adjustment of an MR image histogram to that of a CT image histogram 
is shown in Fig. 4. It is clear that after histogram matching, the intensities of the MR image 
become brighter to accommodate for the intensities of the CT image.

5 � Fusion of MR and CT Images 

Fusion of MR and CT images is performed in this paper with either wavelet or curvelet fusion. 
They are implemented and compared.

(8)𝜎2 =

√√√√ 1

KL

K∑
k=1

L∑
l=1

(
f (k, l) − f̂

)2

(9)C =
�2

�1

(10)fc = f̂ − C.ĝ

(11)gh(m, n) = fc + C.g(m, n)

Fig. 4   The results of histogram 
matching of an MR image to a 
CT image
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5.1 � Wavelet Fusion of MR and CT Images

Wavelet transform is utilized as a tool for the fusion of the MR and CT images after the histo-
gram matching step as shown in Fig. 5. The wavelet transform is applied on both images and 
the fusion rule is applied on the wavelet coefficients as follows [3–5]:

where DWT refers to the wavelet transform in two dimensions, IDWT refers to the inverse 
wavelet transform, and ∅ is the fusion rule.

The fusion rule adopted in this paper is the maximum fusion rule, because with this 
rule, it is guaranteed that any sort of blurring in any of the images to be fused is eliminated. 
The wavelet transform is reported to give good fusion results, but it has a problem with the 
fusion of curved edges. So, the curvelet transform is a good candidate for this task.

5.2 � Curvelet Fusion of MR and CT Images

The curvelet fusion of MR and CT images is based on the curvelet transform of both 
images. The curvelet transform is implemented on overlapping tiles of the images to 
approximate curved lines as short straight lines after applying the Additive Wavelet Trans-
form (AWT) as shown in Fig. 6. Rigdelet transform is applied on each tile, and then maxi-
mum fusion rule is implemented in the fusion process [3–5].

First of all, the additive wavelet transform is applied on both MR and CT images. The 
steps of the AWT are shown in Fig. 7. It is implemented through cascaded filtering stages 
and difference operations to get the detail planes and finally an approximation plane.

(12)If (x, y) = IDWT
[
�
{
DWT

(
I1
(
n1, n2

))
⋅ DWT

(
I2
(
n1, n2

))}]

Inputs            Wavelet transform Transformed fused image      Fused image

Fusion 
Rule

  

Image 
1 

Image 
2 

 

 

Fig. 5   Wavelet fusion of MR and CT images

Fig. 6   Cuvelet transform of an image
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Given an image P, it is possible to construct the sequence of approximations as follows 
[3–5]:

where n is an integer. In constructing the above sequence, successive convolutions with the 
kernel H are performed,

The wavelet planes are calculated as the differences between two consecutive approxima-
tions Pl−1 and Pl, i.e. [3–5].

Therefore, the curvelet reconstruction formula is given by [3–5]:

This step is performed after the fusion of the corresponding detail components of the MR 
and CT tiles, while keeping the approximation of the MR image as it is rich in details.

The ridgelet transform is applied to the tiles of the images prior to the fusion process. 
Assume a tile f

(
x1, x2

)
 , the ridgelet transform of that tile is given by [3–5]:

where �p,q,�

(
x1, x2

)
= a

−
1

2�

(
x1 cos �+x2 sin �−b

a

)
 is the ridgelet basis function, a > 0 and � ∈ [0, 

2π] [3–5].
The ridgelet transform is closely related to the Radon transform defined as,

(13)f1(P) = P1, f2
(
P1

)
= P2, f3

(
P2

)
= P3,… , fn

(
Pn−1

)
= Pn,

(14)H =
1

256

⎛
⎜⎜⎜⎜⎝

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

⎞⎟⎟⎟⎟⎠

(15)Δl = Pl−1 − Pl

(16)P =

n−1∑
l=1

Δl + Pn

(17)Rf (p, q, �) =

∞

∫
−∞

∞

∫
−∞

�p,q,�

(
x1, x2

)
f
(
x1, x2

)
dx1dx2

(18)Rf (�, t) =

∞

∫
−∞

∞

∫
−∞

f (x1, x2)�
(
x1 cos � + x2 sin � − t

)
dx1dx2

Fig. 7   Steps of the AWT of an image
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This relation is given by [3–5]:

The main advantage of this relation is that the projection slice theorem of radon transform 
is combined with ridgelet transform to transform line singularities to point singularities.

6 � Image Interpolation

After obtaining the fused image, it is required to increase the resolution of this image for better 
diagnosis. To achieve this objective, several interpolation techniques can be investigated. Prior 
to going to the interpolation problem, there is a need to understand the relation between the 
available fusion result and the required high-resolution image. This relation can be defined as 
follows [14–16]:

where g, f, D, and v are the obtained fusion result in lexicographic format, the required 
high-resolution image in lexicographic format, the decimation matrix, and the noise vector, 
respectively.

The matrix D is defined as:

where ⊗ represents the Kronecker product, and the M × N matrix �1 represents the 1-D fil-
tering and down-sampling by a factor R. For N = 2M, �1 is given by [14–16]:

The model of filtering and down-sampling is illustrated in Fig.  8. The objective of the 
image interpolation process is the estimation of the vector � given the vector � . Several algo-
rithms can be used to achieve this objective.

6.1 � Cubic Spline Image Interpolation

The signal synthesis approach to solve the interpolation problem is to use the following equa-
tion based on Fig. 9 [14–16]:

(19)Rf (p, q, �) =
∞∫

−∞
Rf (�, t)a

−
1

2

(
t − b

a

)
dt

(20)� = �� + �

(21)� = �1 ⊗ �1

(22)�1 =
1

2

⎡
⎢⎢⎢⎣

1 1 0 0 … 0 0

0 0 1 1 … 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 … 1 1

⎤⎥⎥⎥⎦

(23)f̂ (x) =

∞∑
k=−∞

c(xk)𝛽(x − xk)

Horizontal 
LPF

2 Ver�cal 
LPF

2

f(n1,n2)

N N HR 
image

g(m1,m2)

(N/2) (N/2)  
LR image

Fig. 8   Down-sampling process from the N×N HR image to the (N/2) × N/2) LR image
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A good approximation to solve the interpolation equation is to use a spline of order n as 
follows [14–16]:

where Z is a finite neighborhood around x.
The B-spline function �n(x) is obtained by (n + 1) fold convolutions of �0 given by [14–16]:

The most popular spline interpolation basis function is the cubic basis function defined as 
[14–16]:

Solving Eq. (20) with the aid of Fig. 10, we get the following closed-form expression for 
the cubic spline interpolation formula. 

The cubic spline basis function is non-interpolating, and thus the coefficients in Eq. (27) 
need to be estimated prior to the interpolation process. The estimation process can be imple-
mented using a digital filtering approach [17–19].

To begin the digital filtering algorithm required for the determination of the spline coef-
ficients as shown in Fig. 11, we define the B-spline kernel bn

m
 , which is obtained by sampling 

the B-spline basis function of degree n expanded by a factor m [17–19].

(24)f̂ (x) =
∑
k∈Z

c(xk)𝛽
n(x − xk)

(25)𝛽0(x) =

⎧
⎪⎨⎪⎩

1 −
1

2
< x <

1

2
1

2
�x� = 1

2

0 Otherwise

(26)𝛽3(x) =

⎧
⎪⎨⎪⎩

2

3
− �x�2 + �x�3

2
0 ≤ �x� < 1

(2−�x�)3
6

1 ≤ �x� < 2

0 2 ≤ �x�

(27)

f̂ (x) = c(xk−1)
[
(3 + s)3 − 4(2 + s)3 + 6(1 + s)3 − 4s3

]
∕6

+ c(xk)
[
(2 + s)3 − 4(1 + s)3 + 6s3

]
∕6 + c(xk+1)

[
(1 + s)3 − 4s3

]
∕6 + c(xk+2)s

3∕6

Fig. 9   1-D signal interpolation. The pixel at position x is estimated using its neighborhood pixels and the 
distance s 

Fig. 10   Estimation of the cubic spline interpolation coefficients
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The z-transform of the B-spline kernel is given by:

The main objective is to estimate the coefficients c(xk) to achieve a perfect fit at the inte-
gers, which means that [17–19]:

Using convolution notation [17–19]:

Hence, the coefficients are given by [17–19]:

Since bn
1
 is a symmetric FIR filter, the direct B-Spline filter 

(
bn
1

)−1 is an all-pole filter that 
can be implemented using a cascade of first order causal and non-causal recursive filters 
[17–19].

For the case of cubic spline interpolation, we have [17–19]:

This gives:

where z1 = −2 +
√
3.

The above equation can be implemented with two cascaded stages as illustrated in Fig. 10.

N is the length of the data sequence used.
The initial conditions for the two stages can be calculated as follows [17–19]:

(28)bn
m
(xk) = �n(x∕m)|x=xk

(29)Bn
m
(z) =

∑
xk∈Z

bn
m
(xk)z

−k

(30)
∑
xl∈Z

c(xl)�
n(x − xl)

||x=xk = f (xk)

(31)f (xk) =
(
bn
1
∗ c

)
(xk)

(32)c(xk) =
(
bn
1

)−1
∗ f (xk)

(33)B3
1
(z) =

z + 4 + z−1

6

(34)
[
B3
1
(z)

]−1
= 6

[
1

1 − z1z
−1

][
−z1

1 − z1z

]

(35)c+(xk) = f (xk) + z1c
+(xk−1) (k = 1,… ,N − 1)

(36)c(xk) = z1
(
c(xk+1) − c+(xk)

)
, (k = N − 2,… , 0)

(37)c+(0) =

N−1∑
k=0

f (xk)z
k
1

1
1 )(zBn m )(zBn

m

f(xk) c(xk) )( k
n
m xf

Fig. 11   Block diagram of B-spline image interpolation
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The block diagram of the image interpolation by an up-sampling factor m is illustrated 
in Fig.  11 in an all-digital implementation. We denote the interpolated image as f n

m
(xk) , 

which can be obtained using the following equation [17–19]:

The digital filter Bn
m
(z) is a symmetric FIR filter. The expression for Bn

m
(z) is given as 

follows [17–19]:

where � = (m − 1)(n + 1)∕2.

6.2 � Inverse Interpolation

The treatment of the interpolation as an inverse problem depends on the inversion of 
Eq. (20). Several models can be used for this objective such as the Linear Minimum Men 
Square Error (LMMSE), the maximum entropy, and the regularized models. In order to set 
the LMMSE solution, we need to solve [14–16]:

with

where �̂ is the estimate of the required HR image.
If we assume that:

The operator � is derived subject to minimizing Eq. (41) to give [14–16]:

We have Tr(�) = Tr(�t) . Since the trace is linear, it can be interchanged with the expec-
tation operator.

Equation (44) can be simplified with the assumptions:

(38)c(xN−1) =
z1(

1 − z2
1

)(c+(xN−1) + z1c
+(xN−2)

)

(39)f n
m
(xk) =

∞∑
l=−∞

c
(
xl
)
bn
m
(xk − mxl)

(40)Bn
m
(z) =

z�

mn

(
1 − z−m

1 − z−1

)n+1

Bn
1
(z)

(41)min
f̂

E
[
�t�

]
= E

[
Tr(��t)

]

(42)� = � − �̂

(43)�̂ = ��

(44)

min
�̂

E
[
Tr(��t)

]
= E

[
Tr
{
(� − ��)(� − ��)t

}]

= E
[
Tr
{
� � t − �(��� t + �� t) − (� � t�t + ��t)�t + �(��� t�t + �� t�t + ���t + ��t)�t

}]

(45)E
[
��t

]
= E

[
�t�

]
= [�]
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The autocorrelation matrices for the image and noise can be defined as:

and

The matrix �� is a diagonal matrix whose main diagonal elements are equal to the noise 
variance in the noisy LR image.

This leads to the minimization problem:

Differentiating Eq. (48) with respect to � and setting the result equal to zero, the opera-
tor T is given by:

Thus, the LMMSE estimate of the HR image will be given by [14–16]:

To solve the problem of estimating the autocorrelation of the HR image, the matrix �� 
in Eq. (50) can be written in the form [14–16]:

where

�i and �
j
 are the ith and jth column partitions of the lexicographically-ordered vector � . Usu-

ally, pixels in an image have no predictable correlation beyond a correlation distance d. If 
we assume that d = 0, then the matrix �� can be dealt with as a diagonal matrix in the form 
[14–16]:

If the pixels of each column are uncorrelated except for each pixel with itself, each 
matrix �i, i can be dealt with as a diagonal matrix for i = 0,1,…, N−1 as follows [14–16]:

(46)E
[
� � t

]
= ��

(47)E
[
��t

]
= ��

(48)min
�̂

E
[
Tr(��t)

]
= Tr

{
�� − ����� + �����

t�t + ����
t
}

(49)� = ���
t(����

t + ��)
−�

(50)�̂ = ���
t(����

t + ��)
−��

(51)�� =

⎡
⎢⎢⎢⎣

�0,0 �0,1 ⋯ �0,N−1

�1,0 �1,1 ⋯ ⋮

⋮ ⋱ ⋱ ⋮

�N−1,0 ⋯ ⋯ �N−1,N−1

⎤⎥⎥⎥⎦

(52)�i,j = E
[
�i�

t
j

]

(53)�� =

⎡
⎢⎢⎢⎣

�0,0 � ⋯ �

� �1,1 ⋱ ⋮

⋮ ⋱ ⋱ �

� ⋯ � �N−1,N−1

⎤⎥⎥⎥⎦

(54)�i,i =

⎡
⎢⎢⎢⎣

Rf (i, 0) 0 ⋯ 0

0 Rf (i, 1) ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0 Rf (i,N − 1)

⎤⎥⎥⎥⎦
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The diagonal elements of the matrix �i, i can be estimated from a polynomial-based 
interpolated version of the available LR image.

For an image f’(n1,n2), the autocorrelation at the spatial location (n1,n2) can be estimated 
from the following relation [14–16]:

where Rf (n1, n2) is the autocorrelation at spatial position (n1, n2) and w is an arbitrary win-
dow length for the auto-correlation estimation.

The image f �(n1, n2) may be taken as the cubic spline interpolated image. Thus, the 
matrix �� can be approximated by a diagonal sparse matrix.

Another inverse solution is to adopt the maximum entropy concept to obtain the HR 
image. The required HR image is assumed to be treated as light quanta associated with 
each pixel value. Thus, the entropy of the required HR image is defined as follows [14–16]:

where He is the entropy and fi is the sampled signal.
This equation can be written in the vector form as follows [14–16]:

For image interpolation, to maximize the entropy subject to the constraint that 
‖� − ��‖2 = ‖�‖2 , the following cost function must be minimized [14–16]:

where � is a Lagrangian multiplier.
Differentiating both sides of the above equation with respect to f and equating the result 

to zero:

Solving for the estimated HR image:

Thus:

Expanding the above equation using Taylor expansion and neglecting all but the first two 
terms, and since 𝐠 − 𝐃𝐟  must be a small quantity, the following form is obtained:

Solving for �̂ leads to [14–16]:

where � = −1∕(2� ln(2)).

(55)Rf (n1, n2) ≅
1

w2

w∑
k=1

w∑
l=1

f �(k, l)f �(n1 + k, n2 + l)

(56)He = −

N2∑
i=1

fi log2(fi)

(57)He = −� t log2(� )

(58)� (� ) = � t log2(� ) − �
�‖� − ��‖2 − ‖�‖2�

(59)
𝜕𝛹 (𝐟 )

𝜕𝐟
= 0 =

1

ln(2)

{
𝟏 + ln(𝐟 )

}
+ 𝜆

[
2𝐃t

(
𝐠 − 𝐃𝐟

)]

(60)ln(𝐟 ) = −𝟏 − 𝜆 ln(2)
[
2𝐃t

(
𝐠 − 𝐃𝐟

)]

(61)𝐟 = exp
[
−𝟏 − 𝜆 ln(2)

[
2𝐃t

(
𝐠 − 𝐃𝐟

)]]

(62)𝐟 ≅ −𝜆 ln(2)
[
2𝐃t

(
𝐠 − 𝐃𝐟

)]

(63)�̂ ≅
(
�t� + 𝜂�

)−1
�t�



1047Automated Medical Diagnosis System Based on Multi-modality…

1 3

The operation �t� stands for decimation followed by interpolation. Thus, if � deci-
mates by a factor r, applying �t� causes all positions (1+ n1r,1+ n2r) for integer (n1, n2) to 
stay unchanged, whereas the remaining pixels are replaced by zeros. Thus, �t� stands for a 
masking operation, which is represented by a diagonal matrix. The effect of the term �� is 
to remove the ill-posedness nature of the inverse problem. The problem now is reduced to 
an inversion of a diagonal matrix.

Another solution is based on the regularization theory by modifying the cost function to 
be [14–16]:

where � is the 2-D regularization operator and � is the regularization parameter.
This minimization is performed by taking the derivative of the cost function yielding:

Solving for �̂ that provides the minimum of the cost function yields [14–16]:

The regularization term in Eq. (66) allows matrix inversion even in the presence of sin-
gularities. This equation can be implemented on a block-by-block basis using overlapping 
blocks. The operator Q can be represented with the Laplacian illustrated in Fig. 12.

7 � Deep Learning Classification

The deep learning classification is the last task in the proposed automated diagnosis sys-
tem for tumor detection. Deep learning is a type for machine learning in which a model 
learns to perform classification tasks directly from images. Features are learnt automati-
cally from the obtained HR fusion results by a convolutional neural network (CNN) and 
presented to a classifier. The CNN is a neural network for image recognition. It includes 
the feature extractor in the training process [20–23]. It consists of convolutional layers fol-
lowed by activation functions, pooling layers, dropout layers and fully-connected layers. 

(64)𝛹 (𝐟 ) =
‖‖‖𝐠 − 𝐃𝐟

‖‖‖
2

+ 𝜆
‖‖‖𝐐𝐟

‖‖‖
2

(65)
𝜕𝛹 (𝐟 )

𝜕𝐟
= 𝟎 = 2𝐃t(𝐠 − 𝐃𝐟 ) − 2𝜆𝐐𝐭𝐐𝐟

(66)�̂ = (�t� + 𝜆���)−1�t�

Fig. 12   The 2-D Laplacian 
operator

-1-1

-1

-1

4 n1

n2
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The inclusion of a dropout layer adds a regularization technique for reducing over fitting 
[20–23].

7.1 � Convolutional Layer (CNV)

The convolutional layer contains filters that are used to perform a two-dimensional (2D) con-
volution on the input image. The resulting features of the convolutional layer vary depending 
on which convolution filter is used. This concept is very well suited to the HR fusion results 
as it is able to capture any slight change in the image local activity levels. Figure 13 shows a 
block diagram of the convolutional layer.

7.2 � Pooling Layer (PL)

The pooling layer is another type of feature extraction neural networks. The pooling layer 
decreases the size of the obtained HR image. It combines neighboring pixels of a certain area 
of the HR image into a single representative value. The used value is the maximum or mean 
value of the pixels. The max-pooling layer is used in the proposed technique. Figure 14 shows 
an example of the maximum pooling layer.

7.3 � Rectified Linear Unit (ReLU)

It allows faster and more effective training by mapping negative values to zero and maintain-
ing positive values. The ReLU layer applies a linear activation function to the neuron output as 
shown in Eq. (67).

7.4 � Fully‑Connected (FC) Layer

This layer reduces the size of input data to the size of classes that the CNN is trained for by 
combining the outputs of the CNV layer with different weights. Each neuron at the output of 
the CNV layer will be connected to all other neurons after being weighted properly. Similar 
to the CNV layer, weights of the taps in the FC layer are found though the backpropagation 
algorithm.

(67)f (x) = max (0, x).

Fig. 13   Convolutional layer
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7.5 � Classification Layer

This is the final layer of the CNN that converts the output of the FC layer to a probability of 
each object being in a certain class. Typically, soft-max type of algorithms is used in this layer 
to provide the classification output as shown in Eq. (68).

The proposed model consists of 3 CNV layers followed by 3 max pooling layers. 
Finally, a global average pooling is used. Figure 16 shows an exemplary architecture of the 
convolutional neural network. Images are input with size 224 × 224. Layers have numbers 
of filters of 16, 32 and 64 for layers 1, 2 and 3, respectively. Finally, a dense layer with size 
of 2 is used for the classification decision as shown in Figs. 15 and 16. 

8 � Performance Metrics

In this proposed approach, accuracy is used to estimate the strength of the CNN model. 
Accuracy is calculated as follows:

(68)P(y = j�x) = ex
twj

∑K

k=1
ex

twk

(69)Accuracy =
No. of predicted images with tumors

Total No. of HR images
× 100.

Fig. 14   Maximum pooling layer

Fig. 15   Block diagram of the proposed classification approach
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9 � Simulation Results

Simulation experiments are performed on a dataset of MR and CT images using python 3.5 
[24], Tensorflow [25] and Keras [26]. This simulation is carried out on about 370 images. 
These images are the results of image fusion and interpolation techniques. Figure 17 shows 
the CT and MR images on which the image fusion and interpolation techniques are per-
formed. Figures 18, 19, 20 and 21 show the images after fusion and interpolation processes 
for both normal and tumor states.    

Figures 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 and 33 show observations of accu-
racy and loss along the training epochs. Ten epochs and a batch size of ten have been set 
to train the deep learning model. Table 1 shows the deep learning model accuracy of all 
scenarios. These results show that image fusion based on wavelet transform combined 
with spline interpolation has the optimum accuracy of 90.9%. Table 1 gives a summary 
of accuracy levels in all scenarios.            

Fig. 16   Layers of the proposed deep learning classification model
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Fig. 17   CT and MR images of normal and tumor states

Fig. 18   Images after applying wavelet transform for image fusion with interpolation techniques (normal 
images)

Fig. 19   Images after applying curvelet transform for image fusion with interpolation techniques (normal 
images)

Fig. 20   Images after applying wavelet transform for image fusion with interpolation techniques (images 
with tumor)
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Fig. 21   Images after applying curvelet transform for image fusion with interpolation techniques (images 
with tumor)

Fig. 22   Accuracy of Scenario #1

Fig. 23   Loss of Scenario #1
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Fig. 24   Accuracy of Scenario #2

Fig. 25   Loss of Scenario #2

Fig. 26   Accuracy of Scenario #3
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Fig. 27   Loss of Scenario #3

Fig. 28   Accuracy of Scenario #4

Fig. 29   Loss of Scenario #4
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Fig. 30   Accuracy of Scenario #5

Fig. 31   Loss of Scenario #5

Fig. 32   Accuracy of Scenario #6
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The scenarios considered are:

Scenario #1: Wavelet fusion with cubic spline interpolation.
Scenario #2: Wavelet fusion with maximum entropy interpolation.
Scenario #3: Wavelet fusion with LMMSE interpolation.
Scenario #4: Curvelet fusion with cubic spline interpolation.
Scenario #5: Curvelet fusion with maximum entropy interpolation.
Scenario #6: Curvelet fusion with LMMSE interpolation.

10 � Conclusion

Automated medical image diagnosis is the main objective of medical imaging that has not 
yet been achieved. This objective is considered in this paper with a framework compris-
ing multi-modality image fusion, image interpolation, and deep learning classification. 
The issue of multi-modality image fusion has been considered with two different fusion 
algorithms: wavelet fusion and curvelet fusion. Different interpolation schemes have also 
presented and studied. Finally, the new trend of deep learning have been implemented for 
tumor detection. Accuracy levels of detection and automated classification up to 90% have 
been obtained. These results are promising in the field of automated medical diagnosis and 
can open the door towards more accurate classification results and efficient utilization of 
automated diagnosis in other medical applications.

Acknowledgements  This research was funded by the Deanship of Scientific Research at Princess Nourah 
bint Abdulrahman University through Fast-track Research Funding Program.

Fig. 33   Loss of Scenario #6

Table 1   Summary of accuracy 
levels of all scenarios

Image fusion Interpolation techniques

Spline (%) Entropy (%) MMSE (%)

Wavelet transform 90.9091 81.8182 83.3636
Curvelet transform 86 81 50
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