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Abstract
Polar codes have been applied to the construction of bit-interleaved polar coded modulation 
schemes in recent years. Bit-interleaved polar coded modulation schemes consist of the con-
catenation of multi-order modulation and polar codes. The structure of polar codes has some 
similar features to bit-interleaved coded modulation schemes. This similar features motivate 
us to transform the concatenated transmission schemes into a universal equivalent channel 
model, which consists of independent parallel channels, through considering polar cod-
ing and modulation synthetically in practical applications. We also propose a general polar 
codes constructing algorithm to design the constituent polar codes for the equivalent chan-
nel model. Then we employ a bijective mapper to accomplish the modulation i.e., binary 
address mapping, from coded bits to signals in constellation with Gray labeling or set parti-
tion labeling rule in different order modulations. We analyze and compare the performance 
of the equivalent channel model with different order modulations under different decoding 
algorithms. Simulation results show that the performance of our proposed schemes outper-
forms that of low-density parity-check codes in WiMAX standard and Turbo codes.
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1  Introduction

In 1982, Ungreboeck proposed that coding and modulation can be jointly considered as an 
entity to improve the performance of communication system in his paper on trellis-coded 
modulation [1]. Then this concept was developed into a lot of versions in coded and modu-
lation application fields. In [2], Zehavi proposed a theory of replacing the symbol-wise 
interleaver in Ungreboeck’s method with a bit-wise interleaver that implements binary 
encoding and decoding independently at both sides of channels through decomposing 
the non-binary input channel into binary channels. The result shown that as a suboptimal 
(assuming independent between each bit channel) scheme, bit-interleaved coded modula-
tion (BICM) could offer significant advantages at high signal to noise ratio (SNR) region 
with low computational complexity. At the same time, the encoding and modulation pro-
cedures of BICM can be designed simply and independently as they are detached by a bit-
wise interleaver [3]. With those remarkable advantages, BICM has been a popular scheme 
in modern communication systems.

Polar codes are famous for their channel coding properties of low complexity and 
binary capacity achieving [4], where the capacity-achieving property is an asymptotic char-
acter of polar codes with infinite coding length,which is applied into binary-input discrete 
memoryless symmetric (B-DMS) channels. As the performance of successive cancellation 
(SC) decoding is disappointing for short length of polar codes, Tal and Vardy proposed the 
list decoding algorithm for polar codes, i.e., successive cancellation list (SCL) decoding 
algorithm, to improve the performance of polar codes with moderate coding length. SCL 
decoding algorithm can completely achieve the maximum likelihood (ML) performance 
of polar codes at the practical insight [5], which attract more interest in channel coding 
fields and make polar codes competitive with the state-of-the-art codes i.e., LDPC [6] and 
Turbo codes [7]. Meanwhile, since iterative belief propagation decoding algorithm has par-
allel executing property inherently, this decoding has also attracted a lot focus on hardware 
implement [8–10].

In the following years, polar codes had been widely applied in coded modulation com-
munication system, especially, the modulation of 2m-order digital modulation system [11, 
12], which would not increase spectral efficiency of binary polar coded modulation in some 
degree. With the proposition of polar coded modulation, BICM has attracted a lot focus 
again. In [13], authors focused on the polar coded BICM and designed a kind of interleaver 
which outperformed others with the employed mappings.

Except for those competitive performance, since polar codes can offer the flexibility for 
practical application in accommodating multilevel coding rates and various transmission 
channels, polar codes have been selected as official coding scheme for the control channel 
in the fifth generation (5G) enhanced mobile broadband (eMBB) scenario [14, 15]. How-
ever, there are few works on the performance analysis and design of synthetically consider-
ing multilevel modulation and polar codes under SC and SCL decoding algorithms for an 
equivalent channel model with a general polar codes construction in BIPCM system.

In this paper, we aim at offering a general equivalent channel model of BICM with 
multi-order modulation and universal flexible polar coding construction to optimize the 
information transmission problem of non-binary discrete, memoryless channels. The main 
contributions can be listed in the following several parts:

•	 Through observing a group of BIPCM schemes and the structure features of polar 
codes, we find that BIPCM can be transformed to an equivalent channel model consist-
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ing of several independent parallel channels by considering modulation and polar cod-
ing synthetically. We analyze the channel equivalent characters and analytically prove 
that the equivalent channels are capacity-achieving.

•	 We propose a general polar codes constructing algorithm and design component polar 
codes for the equivalent channel model applying the proposed code constructing algo-
rithm to independent parallel channels.

•	 We use general bijective mapping rules to map coded bits to signal points deriving from 
various order modulation constellations over the equivalent channel model. Detail sim-
ulation results shown the error-correcting performance of different synthetic schemes 
consisting of multi-order modulation with various decoding algorithms.

We analyze the time and space complexities of those BIPCM schemes. We use simula-
tion results to compare the performance of different schemes consisting of concatenations 
of polar codes with multi-order modulation with SC, SCL, and log likelihood ratio based 
(LLR-based) SCL decoding algorithms through AWGN channels.

The construction of this paper consists of the following sections: In Sect. 2, the prelimi-
nary of the overall system schemes is introduced, which includes symbol notation, polar 
codes definition and mapping rules. In Sect.  3, system models of BIPCM and a general 
equivalent channel model are built, then we analyze and derive the capacities of both type 
channel models and design the equivalent BIPCM applying the general code constructing 
algorithm under coding rate constraint. And then we analyze the detail decoding processes 
of SC, SCL, and LLR-based SCL decoding algorithms, meanwhile, compare the time com-
plexity and space complexity of those decoding algorithms. In Sect. 4, numerical results 
illustrate that the error-correcting performance of schemes over the equivalent channel 
model with SCL decoding algorithm outperforms that of LDPC in WiMAX standard and 
Turbo codes. In addition, we compare the reliability performance of the propose scheme 
with that of several other schemes under different order modulation. In Sect. 5, we show 
the summation of this paper.

2 � Preliminary

Let  ≜ {1, 2,… ,N} denote an integer set. The cardinality of set  is represented by 
|| = N . Boldface upper case letters represent matrix while boldface lower case letters 
denote vectors. Lower case letters without boldface represent the constant parameters. 
Upper case letters without boldface denote set or channel depending on the practical appli-

cative scenarios. We set �qp = [up, up+1 … , uq], (0 ≤ p < q) . Set � ≜
[
1 0

1 1

]
 to denote the 

underlying kernel matrix of polar codes. Matrix dimension denotes by (m, n).

2.1 � Polar Codes

Let the quad tuple (N,K,, �c ) present polar codes, where N denotes the length of polar 
codes, K represents the length of information bits in polar codes, subsets  ⊂  denote the 
index sets of information bit channels which are used to transmit information bits and with 
cardinality || = K . Vectors �c denote the frozen bit sequences. The index sets of frozen bit 
sequences denote by c with cardinality |c| = N − K . In general, we set N to be a power of 
2. The number of bit layers of polar codes denotes by n = log2(N) . The generator matrix of 
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polar codes define by � = �N�⊗n , where �N presents bit reversal permutation matrix. The 
given information sequences denote by � = �K

1
 with the informational index sets  in vector 

�N
1
 . The polar codes are generated by �N

1
= �N

1
⋅� . Binary field denotes by 2.

2.2 � General Mapping

In order to generate more reliable and robust Euclidean space codes for the given 2m-order sig-
nal constellation, each signal point is assigned a label consisting of m coded bits. Especially, 
we assume that M = 2m denotes the order of constellation and each label presented by m-bit 
digitals. In this paper, we apply a bijective mapping function x = f (�m

1
) to map binary address 

index vector vm
1
= (v1,… , vm−1, vm), vi ∈ {0, 1}, 1 ≤ i ≤ m , into a responding signal point 

of input alphabet x ∈  . Generally, the mapping comes from the procedure of partitioning the 
signal set  into several subsets in succession [16].

Labeling rule transforms a channel with 2m-ary input into m parallel bit channels, which 
simplifies the processes of encoding and decoding for non-binary channel, i.e., binary encod-
ing and decoding replace that of non-binary channel directly. We just consider two kinds of 
labeling rules: Gray labeling and set partition labeling. Since Gray labeling could maximize 
the capacity of BICM transmission scheme [3], we give priority to employ Gray mapping in 
this paper.

In [17], authors pointed out that natural binary labeling can be transformed to binary reflec-
tive Gray labeling using linear transformation which also suits for the reversed direction of one 
dimensional constellations. To make the best use of set partitioning (SP) and Gray labeling 
rule, we have:

The index of each constellation point can be represented by a given number bits. For 
example, a given 2m-order ASK (2m–ASK) constellation is characterized by a binary (M,m) 
matrix �SP,m where m bits have the dual representation for the row indices among the set 
{0,… , 2m − 1} . Specially, the right-most column denotes the most significant bits.

In [17], authors shown that set partitioning and Gray labeling rules could interconvert with 
each other. In other words, set partitioning labeling could translate into a binary Gray labeling 
over a 2m − ASK constellation by multiplying an m ordered binary square matrix �m.

(1)�SP,3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �Gray,3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

1 1 0

0 1 0

0 1 1

1 1 1

1 0 1

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)�m =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 ⋯ 0 0

1 1 0 ⋯ 0 0

0 1 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 ⋯ 1 0

0 0 0 ⋯ 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
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So the general linear mapping is derived by:

3 � Bit‑Interleaved Polar Coded Modulation

Figure  1 depicts the overall operation on the input information vector �K
1
 , where 

�K
1
= [u1,… , ui,… , uK] , ui ∈ {0, 1} denotes the input information vector at the transmitter. 

The generator matrix of encoder is GN. Let the notation W ∶  →  denote a DMC with 
input random variable X ∈  where  is alphabet set with size of 2m, and output random vari-
able Y ∈  with finite size alphabet set  and || < ∞.

The mutual information between input X and output Y denotes by I(X;Y). Additionally, 
x and y denote the realizations of input random variable X and output random variable Y, 
respectively. For AWGN channel, the original channel W can be modeled by

where parameter N ∼  (0, �2) denotes Gaussian random variable. We set input X with the 
probability mass function (PMF) pX(x) of the input symbols x ∈ .

Such a channel with discrete outputs can be represented by the conditional transition PMF 
pY|X(y|x) . The mutual information of this channel is defined by

where pY (y) =
∑

x∈ pX(x)pY�X(y�x) . Specially, there is no analytic methods to compute 
I(X;Y) , and the results can be achieved by applying numerical integration methods.

Channel with continuous output alphabet  with infinite size could be represented by a 
probability density function (pdf) fY|X(y|x) . The mutual information of this channels can be 
defined by

As we all know, mutual information of a symmetric DMC maximize by assuming input 
random variable X selected with uniform distribution over input alphabets  . Then the mutual 
information can be further written as

(3)�Gray,m = �SP,m ⋅ �m

(4)Y = X + N

(5)I(X;Y) =
∑
x∈

∑
y∈

pX(x)pY|X(y|x) log2
pY|X(y|x)
pY (y)

(6)I(X;Y) = �
+∞

−∞

∑
x∈

pX(x)fY|X(y|x) log2
fY|X(y|x)
fY (y)

dy

(7)
I(X;Y) = �

+∞

−∞

1

||
∑
x∈

fY|X(y|x) log2
fY|X(y|x)
fY (y)

dy

= I(W)

1ˆ
Ku1

Ku

B

n

x y
1
Nv

W

1
NL

π 1π −

Fig. 1   BIPCM architecture
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For the fact that the capacity of a symmetric DMC with uniform input is equal to its mutual 
information, we obtain the capacity of such a channel:

Similarly, non-binary discrete memoryless channels can be partitioned into several sym-
metric binary discrete memoryless channels [12]. If we define a binary input symmetric 
discrete memoryless channel B ∶  �

→  � , where  � = {0, 1} . The m copies of B denote 
by Bm i.e., vector channel Bm = {B × B ×⋯ × B} , which expresses the operating proce-
dure from the output of encoder to the input of decoder. The vector channel can be parti-
tioned into m ordered bit levels [18] � ∶ Bm

→

{
B(1),B(2),… ,B(m)

}
 with set partition (SP) 

or binary reflected Gray labeling rules.

3.1 � Encoding and Decoding of BIPCM

First, at the transmitter, input information vector is encoded by standard polar codes 
encoder, i.e., information vector �K

1
 multiplies the generator matrix GN of encoder which 

generates polar codes �N
1

 with code length N (N = 2n) . Polar codes are interleaved by a 
bitwise interleaver, which was designed in [13]. Then those interleaved bit streams are 
separated into plenty of subsequences of m bits each. Moreover, each m bits are mapped 
into signal points in  , || = 2m with the labeling mapping � ∶ {0, 1}m → X , e.g. the gen-
eral mapping. The linear mapping characterization can denote by matrix operations, i.e., 
Eqs.  (1–3). Labeling positions � = (b1 ⋯ bj ⋯ bm) of symbol x transmit the polar codes 
through the corresponding bit channel B(j), j ∈ {1, 2,… ,m} independently.

At the receiver, we use  j

b
=
{
x ∈  ∶ bj(x) = b

}
 to denote the sets of constellation 

points with a binary labeling value bj ∈ {0, 1} at the j-th labeling position. Moreover, we 
apply the general mapping to accomplish the mapping from coded bits to indices of signal 
points with Gray or set partition labeling in corresponding constellation i.e., modulation. 
Then we obtain symbol sequences after modulation. Next, the symbol sequences are sent 
into AWGN channel W. During this transmission, the symbol sequences are always cor-
rupted by noise e.g. AWGN. Generally, receiver should take some measures to eliminate 
those noise or interference. After symbol sequences are transmitted over wireless chan-
nels, the demodulator calculates the probabilities of labeling positions bj(x) basing on the 
received symbols. In generally, the probabilities will be converted to log-likelihood ratios 
(LLRs) under the assumption that the transmitted prior value is 0 or 1. Finally, those LLRs 
values are de-interleaved and sent to decoders which implement several decoding algo-
rithms and output the estimates of information sequence �̂K

1
.

3.2 � Equivalent Channel Model

According to the mutual information definition, the capacity of equivalent channels of 
BIPCM can be achieved by the proof in [19, 20]. Considering the coding construction of 
polar codes and BICM system, we transform the BIPCM model into m independent paral-
lel equivalent binary input channels � = {B(1),… ,B(m)} in Fig. 2.

Let coded bit sequence �mN
1

 be interleaved by bit-wise interleaver � ∶ i → i� where index 
i = (j − 1) ⋅ N + k and i� = k ⋅ 2m + j , i.e., i� = �(i) for all 1 ≤ j ≤ m, 1 ≤ k ≤ N . The inter-
leaved bit streams are separated into groups of subsequence with m bits each.

(8)C(W) = max
pX (x)

I(X;Y) = I(W)
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Binary labeling mapping � ∶ {0, 1}m →  , accomplishes the mapping operations step by 
step. Each label position bj(x)j ∈ {1, 2,… ,m} is corresponding to the bit-wise index of sym-
bol x which distributes uniformly over the subset of modulation constellation with the fixed 
label position j, i.e., bj(x) denotes a realization of Bernoulli random variable with probability 
1/2 in the j-th equivalent channel B(j).

where vector � = (y1, y2,… , yN) denote the received symbol sequences which are also the 
input vector of demodulator in Fig. 1.

Meanwhile, we set vector � = (x1,… , xN) as the output symbol vector of modular. Demod-
ular demodulates the received symbol sequence by the following “argmax” rule:

where notation q(�, �) denotes the decoding metric, which is defined by the product of 
symbol metrics q(�, �) = �N

k=1
q(xk, yk) . The decoder is equal to a function of denotation 

from output alphabet  to the sequence space which estimates the transmitted sequence �̂ 
in (11).

The nature model of the symbol decoding metrics is defined by:

where q(xk, yk) denotes symbol probability of equivalent channels W with input symbol 
xk and output symbol yk. Notation pj(bj(xk),yk) denotes the crossover probability of the j-
th label position bj(xk) in symbol xk with the given received symbol yk. Especially, we do 
not consider the mutual information between joint label positions in one symbol. Term 
pj(yk|bj(xk)) denotes the prior probability of received symbol yk corresponding to bj(xk) at 
the j-th label position. The form pj(bj(xk)) denotes the distribution probability of bj(xk).

(9)�mN
1

= {llr1(v1),… , llri(vi),… , llrmN(vmN)}

(10)llri(vi) = loge
B(�, v̂i−1

1
|vi = 0)

B(�, v̂i−1
1

|vi = 1)

(11)�̂ = argmax
�

q(�, �)

(12)q(xk, yk) =

m∏
j=1

pj
(
bj(xk), yk

)

(13)
pj(bj(xk), yk) =

∑
x�∈Xb

j
(xk)

p(yk|x�)

(14)pj(yk|bj(xk)) = pj(bj(xk), yk) ⋅ pj(bj(xk))

Fig. 2   Block graph of the equiva-
lent channel model of the vector 
channels Bm in Fig. 1

(1)B

(2)B

( )mB

1
mNv 1

mNl

..

.
..
.

..

.
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The capacity of channel W can be rewritten by:

where I(W) denotes the mutual information of channel W with input alphabet  and output 
alphabet  . Through chain rule of mutual information [21], we obtain the inequality rela-
tion (a) in (15).

At receiver, demodulator receives the symbol sequences, and then employs equations in 
Eqs. (13, 14) and (16, 17) to calculate the probabilities pj(bj(xk),yk) of each labeling position 
without considering the mutual information between bit levels in each received symbol. The 
log likelihood ratios of the prior probability of label position bj(xk) with the input symbol xk 
and output symbol yk. According to equality (10), the following formula holds:

where llr(yk|bj(xk)) will feed back to the input of de-interleaver. Then we implement the 
interleaving operation for all llr(yk|bj(xk)). Thus, we have the following relation:

where �(i) = k ⋅ 2m + j . After the de-interleaved operation, we obtain the LLRs sequence 
�mN
1

.
Then demodulator calculates the decoding metrics, which are sent to de-interleaver forming 

a length mN LLRs sequence �mN
1

 . Finally, the estimates �N
1
 of input message can be retrieved 

by decoders. The process of decoding is described in detail in the following section.

3.3 � Design of BIPCM Basing on Equivalent Channel Model

Firstly, we need to generate an efficient code construction. In general, we could apply channel 
polarization (Bhattacharyya parameter estimation), Monte Carlo method and Gaussian appro-
priation (GA) to choose the index set  of information bit channels. Let (N,K(j),(j), �(j)c ) 
denote the constituent polar codes for the j-th bit level of the equivalent channel model in 
Fig. 2.

We set B to denote the underlying channel for each bit level (also called equivalent channel) 
with � = {B(1),… ,B(m)} . We assume that the k-th bit channel at �-th decoding layer among 
the component polar codes with code length N for the j-th bit level of the equivalent model 
denotes by B(j)

k,�
 . Bhattacharyya parameter denotes by Z(B(j)

k,�
) = Z

(j)

k,�
 . The recursive calcula-

tion relational expressions are given as following:

(15)

I(W) = I(X;Y)

a≤
m�
j=1

I(B(j))

=

m�
j=1

N�
k=1

�
xk∈

�
yk∈

pj(bj(xk))pj(yk�bj(xk))

× log2

pj(yk�bj(xk))∑1

bj(xk)=0
pj(yk�bj(xk))

(16)llr
(
yk|bj(xk)

)
= log

pj(yk|bj(xk) = 0)

pj(yk|bj(xk) = 1)

(17)llr�(i)(v�(i)) = llr(yk|bj(xk))
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for j = {1,… ,m}k = {1,… ,N} , and 0 ≤ � ≤ n, n = log2 N . Especially, b(j)
k
= bj(xk) 

denotes the binary value of the j-th label position in the k-th received symbol, and 
Z0 = Z(B(j)).

Through polarization operation, the cumulative symmetric capacities and reliability are 
remained in following relational formulas [4]:

The fraction of the left side of formula (19) tends to I(B(j)) with probability 1, when the 
component code length N → ∞ . On the contrary, when the length of the component polar 
codes is finite, the following relation holds

Especially, Eq. (19) holds for the independence among different bit levels of the equiva-
lent channel model in Fig. 2.

In BIPCM, let R(j) denote the code rate of ordered bit channel B(j) in bit vector channels 
� = {B(1),… ,B(m)} . We assume that channel W in Fig. 1 depicts the underlying 2m-ary dis-
crete memoryless channel. Then source bits of BIPCM scheme are encoded by component 
binary polar encoders with code rate R(j) for the j-th bit level. The total code rate is defined 
by

where j ∈ {1, 2,… ,m} denotes the index of bit levels. In this process, each R(j) is employed 
with respect to the capacity I(B(j)) of the j-th duplicated bit channel B(j) of the underlying 
channel B.

The set (j) of indices of information bit channels is chosen based on the following rule 
with constraint condition (22):

(18)

⎧
⎪⎨⎪⎩

Z
(j)

k−1,�
≤ 2Z

(j)

⌊k∕2⌋,�−1 − (Z
(j)

⌊k∕2⌋,�−1)
2, b

(j)

k
= 0

Z
(j)

k,�
= (Z

(j)

⌊k∕2⌋,�−1)
2, b

(j)

k
= 1

(19)lim
N→∞

1

N

N∑
k=1

I(B
(j)

k
) = I(B(j))

(20)1

N

N∑
k=1

Z(B
(j)

k
) ≤ Z(B(j))

(21)1

N

N∑
k=1

I(B
(j)

k
) ≤ I(B(j))

(22)RBICM =

m∑
j=1

R(j)

(23)R(j) =
||(j)||
N

(24)R(j) ≤ I(B(j))
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Instead of exactly analyzing the term I(B(j)

k
) , we approximate every bit capacity among all 

of the bit channels 
∑m

j=1

∑
k∈∪c I(B

(j)

k
) by channel polarization with recursively comput-

ing the Bhattacharyya parameters to estimate the capacities or bit error rate (BER) of all 
the bit channels. Then we pick out the indices of K best bit channels satisfying the con-
straint conditions on different design requirements (19), (20), (24) to constitute the infor-
mation bit index set A(j).

According to Arikan’s Proposition 2 [4], we denote the probabilities of block error for 
DMC channel W employing polar codes (N,K,, �c ) by Pe(N,K,, �c ) with the follow-
ing definitions:

where the block error probabilities satisfy the following constraint:

In order to obtain Bhattacharyya parameter values, firstly, we calculate the capacity I(B(j)) 
of each channel employing formula (15), then define the corresponding Bhattacharyya 
parameter using Z0 = 1 − I(B(j)) . When channel B(j) belongs to binary erasure channel 
(BEC), Bhattacharyya parameter of this channel is equal to its erasure probability. Then the 
reliability parameter of polar codes (N,K,, �c ) could be chosen by the following rule:

In this paper, under the joint rate constraint in (22), we generate code construction cor-
responding to m independent parallel channels in Fig. 2. In other words, the best strategy 
for assigning individual rates for m independent parallel component polar codes is equal to 
pick out the information bit sets with the minimum summary results of formula (29).

3.4 � General Polar Codes Constructing Algorithm

The above part mainly introduces the Bhattacharyya parameters as the upper bounds of 
block error rate (BLER) of component polar codes to design the BIPCM schemes over the 
equivalent channels. In fact, there exist several other measures to estimate the quality of polar-
ized channels e.g. Monte Carlo method, Gaussian approximation and so on. To simplify the 
description, we describe the design progress of polar codes construction with all those meas-
ures in the following general polar codes constructing algorithm.

(25)max

m∑
j=1

∑
k∈A(j)

I(B
(j)

k
)

(26)Pe(N,K,,�c ) = Pr

{
ûi ≠ ui|�̂i−11

= �i−1
1

, i ∈ , ui ∈ F2

}

(27) =

m∑
j=1

A(j)

(28)Pe(N,K,,�c ) ≤
m∑
j=1

∑
k∈(j)

Z
(j)

k

(29)min

m∑
j=1

∑
k∈A(j)

Z
(j)

k
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Algorithm 1: Polar codes construction for BIPCM

Input: Reliability parameters ( )( )j
kBξ of polarized channels ( )j

kB
for 1, 2, , ; 1, ,k N j m= = and the total rate R m<

Output: Information bit sets of constituent polar codes over 

different levels ( )jA and ( )

1

m
j

j
NR

=

=   ∑A

Initialize ( )jA with zero for any 1, ,j m=

If ( )

1

m
j

j
NR

=

<   ∑A implement

( )
( )

( )

, :
( , ) arg max

j

j
k

j k k
index j k Bξ ′

′ ′∉
←

A
; 

( ) ( ) { }j j k←A A ; 
End if
Return ( )jA

In this algorithm, the reliability parameters �(B(j)

k
) can be Bhattacharyya parameters, 

BER, and BLER of polarized channels. The BER and BLER can be estimated by Monte 
Carlo method or Gaussian approximation.

Complexity of BIPCM. Assuming that all of component polar codes have the same 
block length N. The equivalent independent channel model has m levels (correspond-
ing to 2m-order modulation). The list size of SCL decoding algorithm denotes by L. 
The complexities of encoding and decoding of BICM can be defined by the following 
formulas.

The time complexities of encoding and decoding of BIPCM

where ∇T ,E denotes the time complexity of encoding of BIPCM; ∇SC
T ,D

 denotes the time 
complexity of SC decoder; ∇SCL

T ,D
 denotes the time complexity of SCL decoder.

The space complexities of encoding and decoding of BIPCM denote by the following 
relations:

where ∇S,E denotes the space complexity of encoding of BIPCM; ∇SC
S,D

 denotes the space 
complexity of SC decoder; ∇SCL

S,D
 denotes the space complexity of SCL decoder.

We assume that our operation system can implement the infinite precious arithmetic in 
unit cost.

(30)∇T ,E = O(mN logN)

(31)∇SC
T ,D

= O(mN logN)

(32)∇SCL
T ,D

= O(mLN logN)

(33)ΔS,E = O(N logN)

(34)ΔSC
S,D

= O(N logN)

(35)ΔSCL
S,D

= O(LN logN)
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3.5 � Decoding Processes of Different Decoding Algorithms

Considering the construction of polar codes, we can regard all component polar codes for m 
equivalent channels as a sequence of mN independent uses of the B-DMC.

Since polar codes belong to a class of recursive concatenated codes, we can calculate those 
polarized probabilities of bit channels recursively. Decoding process also can be implemented 
by the similar recursive features in reverse direction.

Successive Cancellation Decoding: In this section we research the process of 
decoding in Fig.  1. We denote the layer orders of the total coded bit sequence by 
�, 1 ≤ � ≤ �, � = log2(mN) . There exist � = 2� bit channels in the �-th layer. The �-th bit 
channel denotes by W �(�)

�
, 1 ≤ � ≤ � in the �-th layer. Then the transmission probability can 

be defined by following recursive forms [22]:

For the �-th bit channel, the SC decoder outputs the decisions employing the following 
decision rule:

To improve the reliability and decrease the implementation complexity of the proposed 
schemes, we achieve the soft decision messages LLRs by combing the decoding messages in 
each layer employing following recursive calculations:

where LLR(�)

�
(��−1

1
|��

1
) = ln

W
(�)

�
{u�−1

1
,u�=0|��1 }

W
(�)

�
{u�−1

1
,u�=1|��1 }

 . The decision rule for index � ∈ A over LLRs 

of the � − th layer reads

when � = 0 , the fractions of the right hand sides of two recursive Eqs. (39), (40) are ini-
tialized with the initial LLRs �mN

1
= {llr1(v1),… , llri(vi),… , llrmN(vmN)} of the equivalent 
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(41)û𝜏 =

{
0 LLR𝜏

𝜃
(�𝜏−1

1
|�mN

1
) > 0

0 otherwise



1297Performance Analysis of Bit‑Interleaved Polar Coded Modulation﻿	

1 3

labeling position sequence �mN
1

 for the received symbol sequence �N
1

 . While reaching the 
last layer i.e., �=� , decoders start to estimate elements of input information vector �K

1
 . This 

successive cancellation decoding process has time complexity O(mN logN) referring to 
(31). If the values of LLRs are quantized by QSC bits, space complexity (34) of SC decod-
ing can be derived as [23]:

However, when the length of polar codes is finite, Arikan’s SC decoding is sub-optimal 
compared with ML decoding of polar codes. Then we turn to the asymptotic ML decoding 
performance algorithm, i.e., SCL decoding algorithm.

SCL decoding algorithm: Instead of making hard decision on the input of channel 
W

� (⌊�∕2⌋)
�−1

 , we consider W � (�)

�
 and W � (�+1)

�
 in a decoding tree simultaneously. However, with 

the increase of decoding level, the number of decoding paths is increasing exponentially. 
SCL decoding algorithm offers a lower complexity decoding scheme which just consid-
ers the first L largest decoding paths and prunes the remaining paths. The paths are com-
posed of likelihood ratios W � (�)

�
(�

�

1
, ��−1

1
|u� = 0)∕W

� (�)

�
(�

�

1
, ��−1

1
|u� = 1) . Here, L denotes 

the number of decision paths, i.e., the list size of SCL decoding algorithm. A rule of thumb 
is that the larger the decision path number L is, the better the reliability of polar codes 
with SCL decoding. However, SCL decoding algorithm has O(LmN logN) time complex-
ity. The increase of list size will result to the increment of time complexity linearly. With 
the increase of index � , the likelihood ratio of the index will tend to infinite small, which 
can result in numerical underflow.

	 I.	 In each SC decoding layer, we uniform N probabilities illustrating this decoding algo-
rithm, since there are N probabilities for each layer of log N layers. The complexity 
of normalized unit is O(N log N).

		    In order to avoid numerical underflow, we use the relationships in (39) and (40) to 
calculate the posterior probabilities for bit channels [24], build and span the decision 
decoding tree.

	 II.	 Another way to avoid underflow: During the update process of the term W � (�)

�
 , we 

regard the maximum term max{W
� (r)

�
(�Z

1
|��+1

1
)|r ∈ } as a normalized factor to 

scale the residual likelihood values in the �-th layer. Additionally, in case of reducing 
the complexity of normalized steps, we can perform the computations in logarithm 
region.

	 III.	 In [24], authors proposed a method (LLR-based SCL decoding algorithm) of calcu-
lating path metrics corresponding to (39) and (40): making use of the posterior soft 
decisions on LLR(g)

�
, g ∈ {1,… , �}

(42)ΔSC = (2mN + 1) ⋅ QSC + mN − 1
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where PM�
l
 denotes the �-th path metric at the l-th decision path among the L largest paths. 

Notation LLR(g)
� [l] denotes the g-th LLRs of the information bits in the �-th layer at the l-th 

decision path. Term ûg[l] denotes the estimate of the g-th bit at the l-th decision path.
The path metrics PM(�)

l
 are updated successively by decoders by:

where we have the setting for function � with

where a, b, and c represent PM(�−1)

l
, LLR(�)

�
[l] , and û𝜏 [l] respectively.

The method in [24] is one kind of hard-friendly algorithm can boost the throughput of 
per unit area. Time complexity is still O(LmN logN) . If we assume that path metrics are 
quantized by QPM bits, the memory requirement of this decoding can be calculated as [24]:

Either SCL decoding algorithm or LLR-based SCL decoding algorithm, can improve the 
error-correcting performance of BIPCM schemes employing aided cyclic redundancy 
check (CRC), which just costs negligible compute complexity and little loss of coding 
rates.

4 � Performance Evaluation

In this section, we use MATLAB 2016b simulation platform and win7 64bit operation 
system to complete the performance evaluation of groups of bit-interleaved polar coded 
modulation schemes.

Before using Monte Carlo simulation to polarize bit channels and search for good bit 
channels which have the lowest bit error ratios. We assume that the transmission codewords 
consist of all zero only. During each iteration in all BIPCM schemes with different decod-
ing algorithms, we just apply SC decoding algorithms to estimate the sent massages (all 
zero). When achieving BER of each bit channel, we sort those results and pick out the indi-
ces of the given number most reliability channels to compose the information sets. Unfor-
tunately, the computation complexity of Monte-Carlo code construction is O(M ⋅ N logN) , 
M denotes the iterative number. So, in order to achieve the frozen bit index sets accurately, 
we need huge training data and cost vast runtime.

In this section, we simulate several bit-interleaved polar coded modulation schemes 
employing BPSK, 4-ASK (ASK4), 8-ASK (ASK8) and 16-ASK(ASK16) with Gray labe-
ling for constant code length N = 2048, R = 0.5 under SC, simple successive cancellation 
list (SSCL), and SCL decoding algorithms. Hereafter, we use the shorthand SSCL to rep-
resent the SCL decoding algorithm with only one single decoding path, since the number 
of decoding paths of SCL decoding algorithm can range from 1 to the length of compo-
nent polar codes. Specially, the schemes with ASK8 modulation cannot be labeled by Gray 
labeling rule, we employ a quasi-Gray labeling, since the labeling cannot minimizing the 
number of signals [25] i.e., Gray labeling condition cannot be met. In different BIPCM 
schemes, we want to maximize the code performance (referring to 22), so we fix different 

(45)PM
(𝜏)

l
= 𝜑

(
PM

(𝜏−1)

l
, LLR(𝜏)

𝜓
[l], û𝜏 [l]

)

� ∶ R2 × {0, 1} → R

(46)�(a, b, c) = a + ln
(
1 + e−(1−2c)b

)

(47)ΔPM = ((mN − 1) ⋅ L + mN) ⋅ QSC+L ⋅ QPM + (2mN − 1) ⋅ L
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target signal to noise ratios and the number of iteration as 1 × 105 for Monte-Carlo code 
construction.

We apply algorithm 1 to seek index sets of the information bit channels: Bhattacharyya 
parameters, Monte Carlo method and Gaussian approximation are used to estimate the per-
formance of polarized channels and construct the index sets of information and frozen bit 
channels with the construction (29).

Figure 3 descripts the distribution of capacities I(W �(i)

mN
) of all polarized bit channels with 

code length 256, 512, and 1024 of polar codes respectively. In other words, it depicts the 
polarization effect of the binary erasure channels with erasure probability � = 0.32 accord-
ing to natural channel indices ranging from 256 to 1024. With the increase of polar codes 
length, the proportion of channels whose capacities fall into the middle region between 
0 and 1, is becoming fewer and fewer. On the contrary, the proportion of channels with 
capacities 0 or 1 is more than that falling into middle region between 0 and 1. This polari-
zation phenomenon belongs to the well-known channel polarization [4].

Figure 4 descripts the capacities sorted increasingly for bit channels with normalized 
indices. With the increase of polar codes length, the slopes of curves become steeper and 
steeper. In other words, the rate of polarization approaches optimality with the increment 
of polar codes length. This is also corresponding to Fig. 3. Both of Figs. 3 and 4 show that 
increasing the length of polar codes can improve the reliability of polar codes with the cost 
of complexities of encoding and decoding.

Figure 5 depicts the capacity comparison of each bit level of 16-ASK modulation. The 
solid curves denote the capacities of different levels in polar codes and 16-ASK modula-
tion. The dot and dash curves denote the capacities of BIPCM schemes. The rates of com-
ponent polar codes for different levels are randomly distributed in this figure. Apparently, 
Fig. 5 shows that the assignment is not optimal to design component codes. One should 
select the rates of different levels according to (24).

We assume that the transmission information messages consist of all zero and employ 
algorithm  1 with BER deriving from Monte Carlo method for bit channels of polar 

Fig. 3   Capacities of bit channels with natural indices
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codes (2048, 1024,, �c ) . We obtain the information bit sets  and frozen bit sets c . 
Unfortunately, the coding construction with Monte Carlo method has the time complex-
ity O(� ⋅ N logN) which increases linearly with the iterative number � . So we need to 
consider the trade-off between reliability and complexity of polar codes synthetically.

Fig. 4   Distributions of capacities over bit channels with the increase of polar codes length

Fig. 5   Capacities of different mapping levels for 16-ASK modulation and 4 levels of polarized channels
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Figure 6 describes the rate distributions of component polar codes for different levels 
of 16-ASK modulation in BIPCM. We set the length of component polar codes to be 
equal to 1024 and overall code rate to be equal to 0.5. The rates are derived from the 
ratios of the size of information bit sets for component polar codes to the total length 
of polar codes referring to (22) and (23) employing Monte Carlo code construction. 
This curves come from the natural set partition mapping rule. The right-most column 
presents the least significance column corresponding to �SP,3 in (1). The code rate for 
level 1 is lowest, because its Euclidean distance of the corresponding subsets of con-
stellation partition is comparative minimum which results in the worst error correction 
performance. On the contrary, level 4 has the best reliability for the protection of large 
subset distance. At the highest SNR region, the code rates tend to identical value, which 
show that code rates would be uniformly distributed on each bit level with increasing 
the signal transition power.

Another method of approaching BLER of BIPCM is Gaussian approximation [26] 
which applies the LLRs mean of each polarized channels and approximates the BLER of 
the corresponding channels [27]. And then, algorithm 1 employs those BLER to construct 
the information set  through selecting the K best sub-channels among N channels.

Figure  7 depicts the rates distributions of constituent polar codes for 4 levels of 
16-ASK modulation over the equivalent channel model. The polar codes have the over-
all code length 2048 and code rate 0.5. Figure 7 shows us the rate distributions for each 
component code over 4 levels of modulation referring to (22) and (23). From Fig.  7, 
we observe that level 1 has the lowest code rate and level 4 own the highest code rate 
over the whole SNR region. The curve tracks of level 1 and level 4 are related with the 
partition procedure of the 16-ASK modulation constellation which is similar to Fig. 6. 
In addition, we can find that at the lowest and highest SNR regions, the distributions 
of code rates for each bit level become most separated. Then, we always apply Monte 
Carlo code construction to simulate the random process of channel polarization consid-
ering the stable property of Monte Carlo theory with large training set.

Fig. 6   Code rates of component polar codes for different levels of 16-ASK modulation over the equivalent 
channel model under Monte Carlo coding construction
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We design the component polar codes for the equivalent channel model applying algo-
rithm 1 which employs BER deriving from Monte Carlo simulation with iteration 1 × 105 
over BPSK, 4-ASK (ASK4), 8-ASK (ASK8) and 16-ASK (ASK16) with Gray labeling, 
and polar codes with code length N = 2048, R = 0.5 under SC, SSCL, and SCL decoding 
algorithms respectively. Among different BIPCM schemes, to maximize the overall sum-
mary capacities referring to (25), we fix several different target SNR for different modula-
tion schemes [13].

Figure 8 depicts that the error-correcting performance of polar codes, LDPC, and Turbo 
codes over BICM with BPSK modulation. All kinds of codes have coding rate 0.5. Espe-
cially, Turbo codes employ generator polynomials g(d) = [1, (1 + d + d2)

/
(1 + d)] . The 

length of polar codes is 2048 and that of LDPC is 2304, which belongs the fixed construc-
tion of WiMAX standard. The error-correcting performance of SCL with L = 16 outper-
forms other schemes and has 0.25  dB gain comparing with LDPC at BLER level 10−3, 
1.5 dB for Turbo codes. The convergent feature of LDPC with min-sum decoding algo-
rithms is better than polar codes with SCL decoding algorithm at SNR region being more 
than 2.2 dB. The reliability of scheme with SCL decoding algorithm (L = 1) is similar to 
that of SC decoding algorithm. Turbo codes with max and linear log maximum posterior 
probability have the worst convergent property. However, at high SNR region, the conver-
gence of SC decoding algorithm also becomes worse and worse.

Figure  9 depicts the performance of BIPCM schemes with BPSK modulation under 
SC, SSCL and SCL decoding algorithms applying Gray labeling. At the same time, we 
fix code length as 2048 and coding rate as 0.5. At 1 × 105 BER levels, the scheme with 
SCL L = 4 decoding algorithm outperforms SSCL scheme about 0.7  dB, and has about 
0.8 dB performance gain than the scheme with SC decoding algorithm. The similar phe-
nomenon emerges at 1 × 10−3 BLER levels. Meanwhile, both groups of BER and BLER 
curves almost have identical trend, since the calculations of BER have a lot relations with 
BLER respectively. Simultaneously, the performance of BER and BLER with SSCL and 

Fig. 7   Rate distributions of information bit indices for component polar codes on 4 levels for 16-ASK mod-
ulation over the equivalent channel model
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SC decoding schemes has the similar tendency. But at higher SNR region, the convergent 
property of SSCL scheme is better than that with SC decoding.

Figure 10 depicts that polar coded ASK4 BICM scheme under three different decod-
ing algorithms. The error-correcting performance of scheme with SCL decoding algo-
rithm outperforms the others. By the comparison between Figs. 9 and 10, we find that the 

Fig. 8   Error-correcting performance of polar codes and LDPC over BICM schemes with BPSK modulation

Fig. 9   The BER and BLER performance of polar codes and BPSK modulation under SC, SSCL, and SCL 
decoding algorithms
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convergent property of SCL become better and better at the end of curves with the equiva-
lent partition of encoded bit sequence in Fig. 2. It can be seen that the scheme with SCL 
decoding L = 4 algorithm at BER 1 × 10−5 has 0.9 dB gain comparing with the other two 
BICM schemes employing SC and SSCL decoding algorithms. The BLER of the scheme 
with SCL decoding reaches 1 × 10−3 at SNR 4.5 dB with 0.5 dB gain more than the other 
two competitive schemes. The curves of the BICM schemes with SC and SSCL decoding 
algorithms are almost coincide. However, in the end of SC decoding algorithm, the speed 
of decrease becomes slower than SSCL decoding algorithm, i.e., the convergent character 
of SC algorithm is worse than SSCL algorithm.

Figure 11 shows that the BIPCM scheme with SCL improves about 0.9 dB and 0.7 dB 
gain comparing with the schemes with SSCL and SC decoding algorithms respectively at 
BER 1 × 10−5. It induces that in polar coded modulation schemes, the error correcting per-
formance of SSCL decoding algorithm does not keep better than SC decoding algorithm 
with the increase of modulated order at all time.

Figure  12 depicts that with the increase of modulating order, the reliability improve-
ments of the equivalent channel model with SCL decoding algorithm are still remarkable, 
achieve 0.5 dB and 0.6 dB gain outperforming the competitive schemes with SSCL decod-
ing and SC decoding, at BER 10−3 and BLER 10−5 individually. Nevertheless, there exist 
different fluctuations in some degree, in SCL decoding schemes and SC decoding schemes 
at high SNR region. Conversely, the profiles of BER and BLER curves of SSCL decoding 
schemes are more stable than that of other decoding algorithms.

By the observations on above figures, we find that the BER and BLER performance 
of the schemes with SCL decoding algorithm have the best convergent property. At the 
same time, the performance of SSCL decoding schemes has the comparative stable graphic 
tracks over the schemes with SC decoding algorithm.

Figure 13 depicts the BER and BLER performance comparisons of BIPCM schemes 
with multi-order modulation under SCL (L = 4) decoding algorithm. Since we employ 

Fig. 10   The BER and BLER comparisons among different decoding algorithms with code length N = 2048, 
code rate R = 0.5 in polar coded and ASK4 BICM scheme
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Monte Carlo method to construct the information sets which are used to translate 
information bits, we set distinct beginning points of simulation for different modula-
tion schemes to maximize the coding performance with respect to (25). We can see 
that under the same decoding algorithms, the BIPCM scheme with BPSK modula-
tion expresses the fastest decreasing speeds at both of BER and BLER regions. The 

Fig. 11   The BER and BLER comparisons among different decoding algorithms at code length N = 2048, 
code rate R = 0.5 under polar coded and ASK8 BICM scheme

Fig. 12   The BER and BLER compare between different decoding algorithms under ASK16 over BICM 
scheme
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convergent gaps among BPSK, ASK4, ASK8, ASK16 schemes widen with the increase 
of spectrum efficiency, i.e., the increase of modulation order. In the other word, in order 
to improve the spectrum efficiency under the same BER and BLER performance, we 
have to cost more power to process signals in a finite range.

5 � Conclusion

Through analyzing polar codes construction and the design of bit-interleaved coded 
modulation, we find that the construction of BIPCM is equal to an equivalent chan-
nel model which is composed of several independent parallel transmission channels 
through synthetically considering coding and modulation in practical applications. We 
propose a general code constructing algorithm to design the constituent polar codes for 
those equivalent parallel channels. And then, we employ a general bijective mapping 
to accomplish the bit address mapping from coded bits to signal points in constella-
tion with Gray labeling or set partition labeling rules under different polar decoding 
algorithms. At the receiver, de-modulators calculate the decoding metrics composed 
of LLRs of the received symbol sequences from AWGN channels. Decoders apply SC, 
SSCL and SCL decoding algorithms to estimate the translated information bits and 
recover the original messages. Simulation results show that the BIPCM schemes apply-
ing SCL decoding algorithm have the best error-correcting performance among all the 
decoding algorithms. The schemes with SSCL and SC decoding algorithms have the 
similar performance. However, at high SNR region, the schemes with SC decoding 
algorithm become more unstable than SSCL schemes. Further work will focus on non-
binary input discrete memoryless channels with component non-binary polar codes in 
BIPCM.

Fig. 13   The BER and BLER performance of polar coded multi-order modulation under SCL L = 4 decod-
ing algorithm
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