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Abstract
In wireless communication channels, the signals arriving at the receiver may be of stochas-
tic nature or be superpositioned due to non-uniform scattering and shadowing. For the ease 
of computation, we generally assume the mean ergodic property of communication chan-
nels which is error prone. The well known lognormal model fails to capture the extreme 
tail fluctuations in the presence of shadowing. In this setting, we exploit the importance of 
Tsallis non-extensive parameter ‘q’ to characterize various fading channels. The q-lognor-
mal distribution captures the tail phenomena due to presence of non-extensive parameter 
‘q’. In this paper, we provide an excellent agreement between the generated synthetic signal 
and the proposed q-Lognormal distribution for different values of parameter ‘q’. This paper 
also presents the analytical expression for the superstatistics Weibull/q-lognormal model 
to capture both fading and shadowing effects. It is observed that the Weibull/q-Lognormal 
model provides a better fit to the generated signal for q = 1.8 in comparison to the well 
known Weibull/Lognormal model. Finally, we provide an excellent agreement between the 
derived measures viz., amount of fading, outage probability, average channel capacity with 
extensive Monte-Carlo simulation scheme.
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1  Introduction

In realistic scenarios, the performance measures in wireless communication systems are 
strongly affected by multipath fading and shadowing effects [1–3] as the received signals 
may be of stochastic nature or be superpositioned. The shadowing effect in wireless com-
munication is characterized through various distributions viz., Lognormal, Gamma and 
Inverse Gaussian [1, 3] whereas the multipath behavior is described using various models 
viz., Rician, Nakagami-m and Weibull distribution [1, 4]. These combined effects of fad-
ing and shadowing can be captured using composite fading/shadowed fading models and is 
portrayed well in the literature [5–7].

In wireless radio systems, the Weibull distribution has been proven to be of great impor-
tance towards capturing the effects of both indoor and outdoor fading phenomena [8, 9] 
in contrast to the available multipath fading models. The priority of the Weibull model in 
evaluating the performance measures of various communication systems have been por-
trayed in [10, 11]. However, it is pertinent to capture both the effects of fading and shad-
owing. These effects are portrayed by different mixture models viz., Rayleigh-Lognormal, 
Rician-Lognormal, Nakagami-Lognormal [1] and the Weibull-Lognormal (WL) distribu-
tion [12, 13]. The widely used lognormal distribution to characterize the shadowing effects 
however, fails to efficiently capture the tail fluctuations. In addition, the explicit solutions 
of these lognormal based mixture models are not analytically tractable and usually prone to 
errors under extreme fluctuations.

In this paper, we follow Beck-Cohen’s superstatistics framework [14], the superposi-
tion of two statistics that can characterize the composite shadowed fading channels. First 
statistics involves the Weibull distribution [1, 4] to describe fast fading channels. The sec-
ond statistics i.e., the q-lognormal distribution is obtained by employing maximum Tsal-
lis entropy framework [15–18] to characterize a wide range of slow fading channels for 
different values of the non-extensive parameter q. The dynamic range of non-extensive 
parameter ‘q’ characterizes the phenomenon of a variety of complex systems viz., physics, 
economics, bioinformatics, geography and communication systems [19]. The values of q 
mimics many existing well known models i.e., for q → 1 , the q-lognormal model converges 
to the lognormal model and for q → 1.5 , the q-Gaussian model captures the Student-t dis-
tribution with three degrees of freedom [15]. One important behavior (i.e., bimodality) of 
q-lognormal distribution is also observed for the value of q ≥ 2.7 . The specific values of q 
(i.e., for q = 1.4 and q = 1.5 ), the proposed model provides an excellent agreement with the 
generated synthetic data i.e., there is a proper balance between underfitting and overfitting.

The Tsallis entropy is maximized under the normalization constraint, first and second 
moment constraints of signal to noise ratio (SNR). The Lagrangian is constructed for the 
same and is further optimized using the Euler–Lagrange equation to obtain the proposed 
q-lognormal distribution. The unconditional proposed superstatistics Weibull/q-Lognormal 
model is obtained by conditioning the Weibull distribution over the q-lognormal distribu-
tion and is of fundamental significance due to the presence of non extensive parameter 
q over the mean ergodic behavior of communication channels. The parameter ‘q’ in the 
proposed model can capture the entire range of tail fluctuations for 1 < q < 3 . Hence, it is 
worthwhile to characterize the wide range of wireless communication channels and corre-
lated fading phenomena using the superstatistics Weibull/q-Lognormal model.

The closed form solution for the probability density function (PDF) corresponding to SNR 
is evaluated by using Holtzman technique [20]. The performance measures viz., amount of 
fading and outage probability are approximated and the analytical solution for these measures 
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has been obtained. In conjunction to this, an important performance metric i.e., the average 
channel capacity is approximated using Meijer’s G-function in terms of Fox’s H representation 
[21]. Furthermore, the obtained measures are also validated through extensive Monte-Carlo 
simulation schemes, and since the error complexity of Monte-Carlo simulation is O

(
N−1∕2

)
 , 

to get an accurate and tight result, we average over O(108) simulation paths.
The rest of the paper proceeds as follows. In Sect. 2, we derive the q-Lognormal PDF using 

maximum Tsallis entropy framework to characterize slow fading channels. The significance 
of the q-Lognormal distribution is portrayed in Sect. 3. In Sect. 4, the analytical model for 
the generalized superstatistics Weibull/q-Lognormal is computed. The next Sect. 5, outlines 
the various performance metrics of the composite fading channel viz., the amount of fad-
ing, average channel capacity, outage probability ( Pout ) and the results are validated using 
Monte–Carlo simulation scheme. Finally, we conclude this paper in Sect. 6.

2 � The q‑Lognormal Distribution

In this section, the analytical expression for the non-extensive q-Lognormal pdf is derived. Let 
Z denote the random variable of the received average SNR (z) i.e.,

The Tsallis entropy [15, 16] in terms of the parameter q is given by

The constant of normalization is given as

The first and second moment of SNR are defined as

and

where

(1)Z ≡ ln(z), z > 0.

(2)Sq(z) =
1 − ∫ +∞

−∞
[gq(z)]

qdz

q − 1
.

(3)

+∞

∫
−∞

gq(z)dz = 1.

(4)

+∞

∫
−∞

ges(z)zdz =�,

(5)

+∞

∫
−∞

ges(z)(z − �)2dz = �2,

(6)ges(z) = [gq(z)]
q∕∫ [gq(z)]

qdz
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is defined as the escort probability distribution [22, 23]. The uses of the escort probability 
distribution over the general probability distribution is described in [22]. The Lagrangian is 
constructed and is given by

where �1 , �2 and �3 are Lagrangian multipliers. Using Euler–Lagrange equation:

Equation 8 together with Eqs. 1 to 7, provides the maximum entropy q-Lognormal PDF for 
slow fading channels as:

where C is the normalization constant and is given by

When q → 1 , Eq. 9 exhibits the Lognormal model given as

3 � Significance of the q‑Lognormal Distribution

This section describes the impact of the proposed q-Lognormal distribution in characterizing 
the effects of the shadowing effects over the well known lognormal distribution. It is well 
known that all the slow fading channels are characterized by lognormal distribution [1, 12, 
24]. However, this assumption fails to capture the outliers in the fading signal. So, in this con-
text, we provide a new entropy based approach to capture the tail fluctuations observed in 
slow fading channels. The q-Lognormal model converges to lognormal distribution as q → 1. 
Fig.  1, illustrates the PDFs correspoding to the Lognormal and  q-Lognormal distribution 
when  q → 1. In Fig.2, we provide the q-Lognormal PDF for different values of non-extensive 
parameter  q, when  q = 1.1,  q = 1.9, and  q = 2.7. But, for q = 1 the model cannot character-
ize the tail fluctuations as shown in Fig. 3. However, the parameter ‘q’ in the proposed model 
can capture the entire range of tail fluctuations for 1 < q < 3 . The synthetic signal generated 
using MATLAB is well characterized by the proposed q-Lognormal model for q = 1.4 and 
q = 1.5 as shown in Figs. 4 and 5.  

(7)L(gq, z) =

⎛
⎜⎜⎜⎝

1−∫ +∞

−∞
[gq(z)]

qdz

q−1
+ �1

�
1 −

∞∫
−∞

gq(z)dz

�

+�2

�
� −

∞∫
−∞

zges(z)dz

�
+ �3

�
�2 −

∞∫
−∞

(z − �)2ges(z)dz

�
⎞
⎟⎟⎟⎠
,

(8)
�L

�gq
−

d

dz

(
�L

�g�
q

)
= 0.

(9)gq(z) =
1

Cz

(
1 −

1 − q

(3 − q)𝜎2
(ln(z) − 𝜇)2

) 1

1−q

, z > 0,

(10)C = 𝜎

√
(3 − q)𝜋

(q − 1)

𝛤

(
3−q

2q−2

)

𝛤

(
1

q−1

) , 1 < q < 3.

(11)g(z) =
1√
2𝜋𝜎z

e
−

(ln(z)−𝜇)2

2𝜎2 , z > 0.
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4 � Analytical Model

In wireless communication systems, it is observed that the Weibull distribution provides an 
envelope for multipath fading channels whereas the generalized q-Lognormal model can 
characterize the shadowing effects. In this context, we derive an analytical expression for the 
generalized superstatistics Weibull/q-Lognormal model to capture the simultaneous effects of 
both fading and shadowing phenomena.
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Fig. 2   q-Lognormal PDF for different values of non-extensive parameter q 

0 1 2 3 4 5 6 7 8 9 10

SNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PD

F

q-Lognormal

Lognormal

Fig. 1   Lognormal and q-Lognormal PDF for q → 1 , � = 0 , � = 1
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The conditional Weibull distribution is defined as [1, 25],

where z is the received average signal to noise ratio (SNR), � is the received SNR, 
A =

[
�

(
1 +

2

�

)]�∕2
 and � (.) represents the Gamma function. The channel condition 

improves as the multipath/fading parameter � → ∞.

(12)f (𝛾|z) = 𝛽A

z𝛽∕2
𝛾𝛽−1 exp

[
−A

(
𝛾2

z

)𝛽∕2
]
, 𝛾 > 0,
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Fig. 3   Plot of q-Lognormal distribution for q → 1 with generated signal data
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Fig. 4   Plot of q-Lognormal distribution for q = 1.4 with generated signal data
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4.1 � Superstatistics Weibull/q‑Lognormal Model

The superstatistics distribution is obtained by superimposing the Weibull distribution and the 
q-Lognormal distribution. The Weibull distribution is defined in Eq. 12 whereas the PDF of a 
q-Lognormal distribution is defined in Eq. 9.

The composite distribution can be defined as [5]:

Using Eq. 13 along with Eqs. 12 and 9, we have:

For q → 1 Eq. 14 reduces to:

Now substituting ln(z) = t , we have:

Applying Holtzman Three Point Distribution [20], we obtain the generalized superstatistics 
Weibull/q-Lognormal PDF as follows:

(13)f (�) =

∞

∫
0

f (�|z)g(z)dz.

(14)f (�) =
∞∫
0

�Az−�∕2��−1 exp

[
−A

(
�2

z

)�∕2
]
×

1

Cz

[
1 −

(1−q)(ln(z)−�)2

(3−q)�2

] 1

1−q
dz.

(15)f (�) =
�A��−1

C

∞∫
0

z−�∕2 exp

[
−A

(
�2

z

)�∕2
]
× exp

[
−(ln z−�)2

2�2

]
1

z
dz.

(16)f (�) = �A��−1
∞∫

−∞

exp (t)−�∕2 exp

�
−A

�
�2

exp(t)

��∕2
�
×

1√
2��

exp
�
−(t−�)2

2�2

�
dt.

(17)f (�) ≃
2

3
�(�;�) +

1

6
�

�
�;� +

√
3�

�
+

1

6
�

�
�;� −

√
3�

�
,
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Fig. 5   Plot of q-Lognormal distribution for q = 1.5 with generated signal data
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where

Figure 6 shows the plot of the analytical and simulation results of the Weibull/q-lognormal 
model. In Fig. 7 it can be seen that the well known Weibull/lognormal model [12, 13, 26] 
does not provide a good fit with the generated synthetic signal. The synthetic signal has been 

(18)�(�; t) = �A��−1

[
exp (t)−�∕2 × exp

(
−A

(
�2

exp(t)

)�∕2
)]

.

0 1 2 3 4 5 6 7 8 9 10
SNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
PD

F

Monte-carlo Simulation

Analytical

Fig. 6   Analytical and simulation results of Weibull/q-Lognormal PDF for � = 0 , � = 1.155 , � = 3
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generated using MATLAB. However, in Fig. 8 it is seen that the Weibull/q-Lognormal model 
provides an excellent agreement with the generated synthetic signal for the value of the non 
extensive parameter q = 1.8 . The plots in Figs. 7 and 8 are obtained by using Monte-carlo 
simulation technique on Eq. 14.

5 � Performance Analysis

In this section, the various performance metrics viz., amount of fading, outage probability and 
average channel capacity for the superstatistics shadowed fading model are evaluated and the 
analytical expressions for each measures have been presented.

5.1 � Amount of Fading

An important and condemnatory performance measure in fading environment is the Amount 
of Fading that specifies the severity of fading. It is mathematically expressed as [26]:

The closed form expression obtained in Eq. 17 is the sum of three Weibull distributions 
terms and the kth moment of � (SNR per symbol) is obtained as:

Substituting 𝛾̄ = exp(t) , we obtain:

(19)AF =
E[�2]

{E[�]}2
− 1.

(20)E[�k] =
∞∫
0

�k × �A��−1
(
exp (t)−�∕2

)
× exp

(
−A

(
�2

exp (t)�

)�∕2
)
d� .

(21)E[�k] =

[
exp (t)�∕2

A

] k

�

× �

(
1 +

k

�

)
.
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Fig. 8   Plot of Weibull/q-Lognormal distribution for q = 1.8 with generated synthetic signal
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Using Eq. 21 equipped with Eq. 17, we have:

Finally, the analytical expression for Amount of Fading is given as:

We present the analytical and simulation results for amount of fading in Fig. 9, for σ = 6 
dB, σ = 4 dB, and σ = 2 dB.

5.2 � Average Channel Capacity

The channel capacity is defined as the maximum transmission capacity that a channel is capa-
ble of achieving with a small probability of error [27]. It is significant to study the channel 
capacity in fading environments and hence we exploit the Meijer’s G function to derive the 
analytical expression of the average channel capacity.

The ergodic channel capacity is defined as [28]:

where B represents bandwidth of the fading channel. Using Eqs. 17, 24 we have:

(22)E[�k] = �

�
1 +

k

�

�⎧⎪⎨⎪⎩

(2∕3)
�

exp(�)

� (1+2∕�)

�k∕2
+ (1∕6)

�
exp(�+

√
3�)

� (1+2∕�)

�k∕2

+(1∕6)
�
exp(�−

√
3�)

� (1+2∕�)

�k∕2
⎫
⎪⎬⎪⎭
.

(23)AF =
�

�
1+

2

�

�

� 2

�
1+

1

�

�
� �

2∕3+(1∕6) exp(
√
3�)+(1∕6) exp(−

√
3�)

�

�
2∕3+(1∕6) exp

�√
3

2
�

�
+(1∕6) exp

�
−

√
3

2
�

��2

�
− 1 .

(24)
C

B
=

1

ln(2)

∞

∫
0

ln(1 + �)f (�)d� ,
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Fig. 9   Analytical and simulation results of amount of fading for different values of �
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Using Meijer’s G-functions [29] and modifying the above equations according to 
ln(1 + x) = G12

22

[
x
|||
1,1

1,0

]
 and exp(−x) = G

10
01

[
x
|||.0
]
 we obtain:

From Eq. 26 and using the substitutions given in [21] we obtain:

Thus, from Eqs. 17 and 27, the average channel capacity can be expressed in closed form 
as:

where q1 = 2∕3, q2 = q3 = 1∕6, and pk =
� (1+2∕�)

exp(tk)
 with t1 = �, t2 = � +

√
3� and 

t3 = � −
√
3� . In Fig. 10, the analytical and simulation results corresponding to the aver-

age channel capacity for different values of β i.e., β = 2, β = 2.5, and β = 3.

(25)C

B
=

1

ln(2)

∞∫
0

ln(1 + �)�A��−1 ×

(
exp (t)−�∕2 exp

(
−A

(
�2

exp(t)

)�∕2
))

d� .

(26)C

B
=

�A exp (t)−�∕2

ln(2)

∞∫
0

��−1 G
10
01

[
A
(

�2

exp(t)

)�∕2|||.0
]
G12

22

[
�
|||
1,1

1,0

]
d� .

(27)C

B
=

�A exp (t)−�∕2

ln(2)
H31

23

[
A

exp (t)�∕2
|||
(−�,�),(1−�,�)

(0,1),(−�,−�),(−�,�)

]
.

(28)C

B
=

3∑
k=1

�

ln(2)
pk

�∕2qkH
31
23

[
pk

�∕2|||
(−�,�),(1−�,�)

(0,1),(−�,−�),(−�,�)

]
,
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5.3 � Outage Probability

For wireless communications systems functioning over fading channels the outage prob-
ability stands as an important performance measurement. It is denoted by Pout and is stated 
as the probability of the output SNR � , not exceeding a specified threshold value �th .

It is expressed mathematically as [1]:

From Eqs. 17, 18, 29 and using [30] Eqs. (3.381.1) and (8.352.1) the analytical expression 
for outage probability is obtained as follows:

Through Fig. 11, we provide the analytical and simulation results of the outage probability 
(Pout) versus threshold SNR for different values of β, viz., β = 1, β = 3, and β = 5.

6 � Conclusion and Future Work

In this paper, various performance measures viz., SNR, amount of fading, outage prob-
ability and average channel capacity over the superstatistics Weibull/q-Lognormal model 
were expressed in closed form. As q → 1 , this generalized superstatistics model provided 

(29)Pout =

�th

∫
0

f (�)d� .

(30)Pout =

⎧⎪⎪⎨⎪⎪⎩

2

3

�
1 − exp

�
−

A�th
�

exp (�)�∕2

��

+
1

6

�
1 − exp

�
−

A�th
�

exp (�+
√
3�)

�∕2

��

+
1

6

�
1 − exp

�
−

A�th
�

exp (�−
√
3�)

�∕2

��

⎫⎪⎪⎬⎪⎪⎭

.
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Fig. 11   Analytical and simulation results of Pout versus threshold SNR for different values of �
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an excellent agreement with the results of [26]. The model characterized the fast fading as 
well as shadowing effects of various wireless communication channels for different val-
ues of the non extensive parameter q. It has been observed that the Weibull/q-Lognormal 
model provided a better agreement to the generated signal for q = 1.8 in comparison to the 
well known Weibull/Lognormal model. The analytical expressions of the aforementioned 
performance metrics were obtained using Holtzman technique and Meijer’s G function 
equipped with Fox’s (H) function. Furthermore, the results were validated using extensive 
Monte-carlo simulation techniques.

Since, the proposed Weibull/q-Lognormal model is not analytically tractable, we fol-
low rigorous simulation technique to validate our results. Thus, it will be an interesting 
and challenging task to obtain the closed form expression for the same and derive the 
performance measures which will be the future objective of this work.
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