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Abstract
A new era of ubiquitous indoor location awareness is on the horizon especially for context 
sensing, ambient assisted living and many other smart city applications. Although indoor 
localization plays a pivotal role in making the environment smarter, it is still very diffi-
cult to compare state-of-the-art localization algorithms due to the scarcity of standard data-
bases. Publicly available databases are neither fine-grained nor contain data for different 
conditions. Received Signal Strength Indicator (RSSI) of Wi-Fi signals vary with indoor 
environment (open/closed room, presence/absence of user, temperature etc.) and scanning 
smart hand-held devices. Thus, localization accuracy varies with various environmental 
conditions and also granularity of location points (cell). Consequently, in this paper, our 
contribution is two-fold. First, we present a comprehensive indoor localization dataset, 
subject to different domains-spatial, temporal, context and device. RSSI data has been col-
lected with cell sizes as small as 1m × 1m from three floors of a building of our University 
using an Android application built for this purpose. This multi-floor dataset is available 
online at https://drive.google.com/open?id=1_z1qhoRIcpineP9AHkfVGCfB2Fd_e-fD. 
Our experimental results show that maximum of 71.78% classification accuracy can be 
achieved for state-of-the-art classifiers when training and testing samples are taken in 
different environmental conditions and from smartphones having different configura-
tions. Single classifier cannot easily be modified to suit these variations without loosing 
its generality. So, to overcome these conditional dependencies, our second contribution is 
to propose a framework for indoor localization, JUIndoorLoc and design an ensemble of 
condition specific classifiers as part of the framework to take care of context and device 
heterogeneity. Consequently, this ensemble of condition specific classifiers is implemented 
and found to predict a location with 91.74% accuracy (1.87 m) for our dataset.
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1 Introduction

A spectacular growth of indoor localization studies can be witnessed today as many 
real-world applications including smart home, smart campus, disaster management need 
to localize user in order to provide services. The goal of indoor localization is to iden-
tify the exact location of a smart device within a multi-storied building. This domain is 
enhanced by many researcher’s effort from past two decades. The GPS system does not 
work in indoor environment properly as signal strength fluctuates badly and location 
update may not be received by user’s device at regular intervals [1, 2]. Nowadays, every 
location of most buildings (like universities, hospitals, offices, shopping malls etc.) 
are covered by Wireless LAN, thus indoor localization based on Wi-Fi (IEEE 802.11 
WLAN standard) signal strength or RSSI has become a prominent approach as it does 
not require any additional hardware devices to be installed in a building.

Most of the WLAN localization systems need two phases: training and testing. In 
training phase, a radio map of an area is constructed based on RSSI values of available 
Access Points (APs) as scanned by smartphones. Later, in the testing phase, received 
signal strength of the available APs are recorded at a current instance and predict cur-
rent location of the smartphone based on the data collected in training phase [3].

Though RSSI fingerprinting based localization technique is a popular approach, sub-
stantial challenges still exist. In an indoor environment, RSSI values frequently change 
with environmental conditions even when data is collected by the same device at the 
same location [4]. Environmental conditions include opening/closing of doors and/or 
windows, humidity and temperature variation, presence and absence of people and other 
interfering devices [5]. Moreover, the heterogeneity of devices is also an important fac-
tor. Not only signal strength varies from one device to the other, but devices may also 
detect different sets of APs [6] from the same location. Thus, indoor localization tech-
niques should be validated against datasets that pertains to different environmental con-
ditions. However, there is a serious lack of publicly available database in this field. Each 
approach presents its estimated results using its own database and describes how the 
experiments are carried out [7]. Under these circumstances, comparing different meth-
ods are not possible since the distinctiveness of each experiment is hardly reproducible. 
In the Pattern Recognition and Machine Learning research fields, the common practice 
is to test the results of the works by applying it on a widely accepted standardized data-
set (like the datasets available in UCI Machine Learning Repository [8]) or providing 
the dataset for other researchers to compare. Thus different methodologies can be fairly 
compared on a common ground.

Datasets for different devices under the same context or that of multiple buildings 
can be found in [9–13]. As a room is considered to be a location point, accuracy with 
respect to a room was given in [9]. Moreover, the authors in [9] reported that the signal 
strengths vary with respect to a given device at different times and at a certain time with 
different devices. This motivates the importance of having a dataset that comprehen-
sively presents RSSI data under different ambiance and device configurations. Addition-
ally, in order to achieve better accuracy, location points need to be more fine-grained.

Generally, the ambiance and device configuration vary at the time of train and test 
data collection. These variations typically affect RSSI as discussed earlier. As a result, 
the classification accuracy of a base learner is also degraded. An ensemble model con-
taining a number of base learners has a generalization ability, which is usually much 
stronger than individual base learners. Few ensemble based localization methods have 
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been proposed in [14–16] without considering indoor contextual heterogeneity. The 
location points considered in these works are mostly not fine-grained either.

Consequently, in this paper, our main contribution is twofold.

• First, we design and present a benchmark dataset for indoor localization subject to 
temporal, context (like open/closed room and presence/absence of user) and device 
heterogeneity.

• In this regard, the second contribution is to propose a ubiquitous indoor localiza-
tion framework, JUIndoorLoc that incorporates an ensemble technique for condi-
tion-based classifiers. This is designed to mitigate the effect of these heterogenei-
ties while predicting the location of a user/device. The framework is ubiquitous as it 
does not require any specialized hardware but uses the existing Wi-Fi infrastructure 
of the buildings and smartphones commonly used by people.

To efficiently deal with the problem, the main characteristics of the dataset are:

• Data are captured with 1m × 1m cell size from three floors of a building so that dif-
ferent RSSI patterns of rooms, laboratories, corridors and stairs can be investigated.

• The numbers of APs appearing in the dataset are 172.
• Total 1000 location points from three floors are covered.
• RSSI data has been collected by 4 Android devices with different configurations.

An Android application for Wi-Fi data collection is built to collect Wi-Fi footprints from 
different areas. The application takes a floor plan as input and partitions the whole area 
into a number of cells as specified by the user. Each cell acts as a location point that is 
assigned a unique identifier and RSSI values are collected for those location points. The 
application is generic and can be configured for any specific map or cell size.

Rest of the paper is organized as follows. Section 2 discusses main features and lim-
itations of other available datasets. Design of proposed JUIndoorLoc is described in 
Sect. 3 while Sect. 4 describes the design of a condition-based ensemble classifier. Sec-
tion 5 analyses the results of state-of-the-art classifiers and condition-based ensemble 
classifier. Finally, Sect. 6 concludes the paper.

2  Related Work

This section is organized as follows. First, we discuss some prior works related to indoor 
positioning. Then we briefly describe main features and limitations of some publicly 
available indoor localization datasets.

2.1  Prior Works of Indoor Positioning

Indoor localization and positioning techniques are roughly classified into two catego-
ries: (i) Statistical approach and (ii) Machine Learning approach.
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2.1.1  Statistical Approach

RADAR, a user localization and tracking system for indoor environment, is proposed in 
[17]. It used the nearest neighbor technique in signal space to determine location of a 
device. In this work, authors showed 2–3 m accuracy in the proposed work. Another sys-
tem Horus [18] played a major role in this field of research. It is a well known indoor 
localization system in statistical approach, which requires less computational resources. To 
achieve better accuracy, the authors proposed different modules to address the causes of 
wireless channel variations. The system used joint clustering techniques and probabilistic 
methods. The experimental results showed that this system could achieve 90% accuracy 
and maximum 2.1 m error. To reduce positioning error, a fuzzy control system, combining 
Dead Reckoning (DR) and RSSI, was proposed in [19] and reported an average error of 
0.625 m. However, information about the experimental region and scanning devices were 
not provided. Using Wi-Fi and Bluetooth a novel fingerprint algorithm was proposed in 
[20]. It adopted log-distance path loss model for removing unwanted RSSI data. They had 
also used Hausdorff distance algorithm and median filter to minimize their database and 
eliminate unnecessary signals of Wi-Fi APs. They had found an improvement in position-
ing error by 0.695 m. Their experiment was conducted in a small indoor region mainly a 
corridor of 2.3m × 34.8m and a room of 6.4m × 5.2m without any obstacles. As finger-
printing is very time consuming, a quick radio fingerprint collection (QRFC) algorithm 
was proposed in [21] for collecting fingerprints rapidly using a smart-device and its’ in-
built motion sensor. The time needed for collecting samples was almost close to the time 
of walking slowly through a path. In their experiments, they found no notable difference in 
their accuracy. Although QRFC requires very less time to complete the whole task, the use 
of motion sensor incurs errors which cause incorrect step detection.

2.1.2  Machine Learning Approach

To apply machine learning techniques for indoor localization, a model is first generated 
based on collected fingerprints in offline phase. Then current location is predicted by the 
model based on the data collected in online phase. Many works can be found that uses 
single classifier as in [22–25] where the authors also apply heuristics about signal propaga-
tion. A graph-based indoor sub-area localization technique, GraphLoc is proposed in [26]. 
This work does not require any specialized device and the fingerprint map is generated 
by the crowd-sourcing approach. First, logical floor graph is constructed using inherent 
characteristics of Wi-Fi signals. Then, the problem of constructing fingerprint map is for-
mulated as a graph mapping problem between logical floor graph and physical floor graph. 
Finally, in online phase, a Bayesian-based method is utilized to predict the unknown loca-
tion. The reported average localization accuracy was 88.2%.

However, the changing signal characteristics for different conditions, such as device and 
context heterogeneity can be better captured by multi-classifier models such as ensemble. In 
[14], a novel technique to localize people in the indoor environment was proposed. A sim-
ple decision tree, J48G and a more advanced Soft Computing algorithm called Fuzzy Unor-
dered Rule Induction Algorithm (FURIA) had considered as base classifiers in order to derive 
ensemble of classifiers. Their proposed work had implemented in two real-world indoor envi-
ronments. An ensemble of some weak position estimators was proposed in [16] for developing 
a robust indoor positioning model. The area of a user was estimated first. Then the weight 
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of each weak estimator was updated according to the estimated area. Based on all of the 
weighted weak estimators, the user’s location was computed. Wi-Fi fingerprints had collected 
from one floor ( 29.8m × 16.3m ) of a building using one Android device. However, location 
points were not fine grained and selected in a random way. In Loco [15], authors use Blue-
tooth low energy (BLE) beacons along with Wi-Fi signals for better indoor positioning. The 
authors applied boosting for complexity reduction. Almost 56 BLE beacons were deployed on 
the ceilings of their experimental area. The signal strengths of 159 Wi-Fi APs were observed. 
Applying boosting method this system is found to achieve 96.6% accuracy at room level. Thus 
precise positioning within a room is not possible.

A condition-based ensemble classifier based on majority voting scheme is proposed in [27]. 
This scheme is implemented on a relatively small dataset for 2m × 2m cells. Only majority vot-
ing method is considered in the work and the dataset is not made public, it is neither sufficiently 
fine-grained, nor it considered several types of indoor regions like rooms and corridors etc.

2.2  Publicly Available Indoor Localization Datasets

Main features and limitations of some publicly available datasets are briefly described in 
Table 1. UJIIndoorLoc [9] is first publicly available database for indoor localization. Although 
this dataset covered a large area, a comprehensive benchmark was not provided. Only the 
results of simple 1NN algorithm were reported with 89.92% success rate. In UJIIndoorLoc, 
RSSI data was collected from the center of every room and from another position in front of 
every door. Hence, in this work, positioning error was huge, nearly 7.9 m. In [11], a magnetic 
database was published consisting of inertial sensor data. Unfortunately, these type of sensors 
generate errors which incur high noise in location prediction. Besides, the datasets published 
in [12, 13] contain RSSI specific data very small regions. In recent past, few crowd sourced 
indoor localization datasets [12, 30] are published. In [30] at the time of data collection the 
location of a user is taken as manual input from that user. As a result, incorrect location point 
labeling problem is occurred as the data had been captured by the crowd. Moreover, in the 
above mentioned datasets, RSSI data of various time instants and indoor environments were 
recorded. However, these datasets did not provide any information about the indoor environ-
ments in which the data samples were taken.

Thus, existing indoor localization techniques heavily depends on fingerprinting effort and 
more importantly, the fingerprints change due to environmental conditions. Though in many 
research works authors use their own experimental setups which are often impossible to repro-
duce and hence make the whole process hard to compare. In this context, the current paper 
proposes a fine grained multi-device dataset of Wi-Fi signals. Thus, the next section elaborates 
about the data collection mechanism and attributes of our dataset that we intend to publish for 
further enhancement. In order to show the effectiveness of the benchmark dataset, an ensem-
ble of condition specific classifiers is also designed and tested on the dataset as described in 
subsequent sections.

3  Design of JUIndoorLoc

In this section, detailed design of JUIndoorLoc is presented. First, the framework of 
JUIndoorLoc is described followed by data collection process and description of pre-
processing techniques applied on the data before storing it into the database. The dataset 
description along with the motivation of such design is also discussed.
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3.1  Framework of JUIndoorLoc

The major modules of this framework are Wi-Fi Data Collector (WDC) and Indoor 
Localization Server (ILS) as depicted in Fig. 1.

WDC application is used for collecting RSSI signals of every location points of an 
indoor environment and for transferring the collected data to the localization server, 
ILS, to create a knowledge base of the environment. WDC runs on Android devices and 
communicates with ILS using socket. Authorized users of this system can upload a floor 
plan of an area as an image as shown in Fig. 2. Administrator of an indoor environment 
can manage this user. The floor plan is divided into a number of cells (represented by 
boxes in the figure) according to the desired granularity. Thus, the area covered by a 
cell can be varied according to requirement. RSSI data is collected for each cell by tap-
ping a cell on the grid shown in the WDC application. After tapping on a cell, data is 
captured for 120 seconds. Each cell is assigned a unique identifier by the application. 
The collected data is sent to ILS and stored in a MySQL database. This dataset is avail-
able from online in .csv file format. In server side, an application (ARFF Generator) is 
developed to generate ARFF (Attribute Relation File Format) file based on collected 
data. This generated file is taken as an input to different machine learning algorithms for 
classification.

3.2  Data Collection

Training and test data have been collected for a duration of 31 days and 5 days respectively. 
As the indoor environment is not consistent, any existing AP can be removed or new APs 
can be installed. To deal with this kind of temporal and environmental changes and to iden-
tify stable APs, a gap of two month has been maintained between training and test data col-
lection. Using WDC application, mobile device measures the signal strength of available 
APs from a location point and sends the data to a server to analyze. In this phase, the RSSI 
dataset is collected from all possible location point of the region and the recorded RSSI 

Fig. 1  Block diagram of the 
framework of JUIndoorLoc
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values are stored along with collection time, location point identifier, device identifier and 
detailed features of APs like Basic Service Set Identifiers (BSSIDs) and Service Set Identi-
fiers (SSIDs). At the time of data collection, it has been observed that at a specific location 
point and time instant, RSSI significantly varies with hardware. Signal strength also varies 
with time at same location and for a specific device. Moreover, different factors of the envi-
ronment such as the presence of obstacles, the condition of weather as well as, the presence 
of human beings and other devices may also affect Wi-Fi signal strength. These observa-
tions motivate us to collect data for different perspectives so that robustness of localization 
algorithms can be analyzed with the dataset. To analyze the pattern of RSSI data, we have 
collected data in different perspectives as follows:

1. Spatial: Instead of collecting data from the center of a cell, data has been collected from 
different points around a cell (based on open space and obstacles).

2. Temporal: Data has been collected at different time of a day, to understand varying 
nature due to different environmental effects.

3. Context: Different contextual heterogeneities are considered while collecting data. 
These are given below:

(a) In open room and presence of human ( C
1
),

(b) In open room and absence of human ( C
2
),

(c) In closed room and presence of human ( C
3
),

(d) In closed room and absence of human ( C
4
).

4. Device: Four Android devices ( D
1
 , D

2
 , D

3
 and D

4
 ) are used for data collection to under-

stand the variation of the radio signal.

The experiment is carried out on the 3rd, 4th and 5th floor of a 5 storied-building of 
our University. In this building, each floor covers 882 m2 area, with a length of 42 m 
and width of 21 m and consists of faculty rooms, classrooms, seminar rooms, research 

Fig. 2  Android based Wi-Fi Data Collector (WDC) application for collecting RSSI value in offline phase
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labs and corridor as shown in Fig. 3. 172 APs are installed at specific positions cover-
ing the whole experimental region and every location point is covered by at least 3 APs. 
Firstly, data are collected dividing the whole region into 2m × 2m cells. However, for 
fine grained results, later on, the region is divided into 1m × 1m cells or location points. 
Thus, X and Y coordinates of each floor is divided into 42 and 21 cells respectively 
as shown in Fig.  2. Each cell is distinguished by a unique identifier by naming them 
as L <floor number>-< X coordinate>-< Y  coordinate>. Suppose, identifier of a cell 
is L4 − 22 − 8 . It represents that the cell is in the 4th floor and it’s X and Y coordinates 
are 22 and 8 respectively. Due to the presence of obstacles, RSSI values have not been 
collected from all cells. Note that, in this experimental region ground truth locations are 
cells of 1m × 1m dimension. Ground truth is the data that is known to be correct. How-
ever, there is a maximum error of sqrt(2) / 2 in the ground truth as the data have been 
collected from different points around a cell. In order to take care of device heterogene-
ity, data is collected from 4 different types of devices namely, Samsung Galaxy Tab 10 
(Android version 4.0), Samsung Galaxy Tab E (Android version 5.0), Samsung Galaxy 
Tab 2 (Android version 4.1.1) and Motorola Moto E (Android version 5.1). Fingerprints 
are collected by each device covering the total area of three floors, which is divided into 
1000 number of cells. The RSSI scan is repeated 2 to 3 times at a cell from each device 
to collect around 15 fingerprints and among them 7 fingerprints are selected randomly.

3.3  Data Preprocessing

Raw data needs preprocessing before analysis. Our Wi-Fi data are preprocessed in the 
following manner:

• Elimination of duplicate entries: In preprocessing, duplicate entries are removed as 
these may affect the accuracy of the system.

• Filling entries of unobserved APs: Due to the presence of obstacles, limited cover-
age range of Wi-Fi and nearby interfering devices along the path, the RSSI values 
are not received from all APs from all cells. So to prepare dataset that can be fed 
to machine learning algorithms, there are some missing features, which needs to be 

Fig. 3  Experimental regions; a research lab of 3rd floor; b corridor connecting different rooms on the 4th 
floor
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filled. Note that, in our dataset for very poor signal strength, the RSSI value is nearly 
− 100 dBm. So, for JUIndoorLoc, these missing features are filled with − 110 dBm.

• Removal of Wi-Fi hotspots: Wi-Fi hotspots are eliminated as they are not stable. RSSI 
data has been recorded for many days and also different times in a day. Hence, the 
APs available only for few days or some specific time instant in a day are easily 
detected and removed. Thus, we have considered those APs that were alive for the 
entire duration of our data collection for further analysis.

3.4  Description of Dataset

A dataset has been created based on collected data from the experimental region. This 
Wi-Fi dataset contains 25,364 samples. Each sample has 177 different fields as men-
tioned below.

(1) (2) – (173) (174) (175) (176) (177)
Cid AP

001
– AP

172
Rs Hpr Did Ts

L4 − 22 − 8 − 54 – − 88 1 0 D
1

1468832345801

Cid (column 1) corresponds to a value for uniquely identifying each cell. It is used to 
represent the location point where the RSSI values are recorded. This dataset contains 
1000 unique cells with each of size 1m × 1m . Each AP is identified by a Service Set 
Identifier (SSID) and Basic Service Set Identification (BSSID). However, it is observed 
that many APs may have the same SSID. Thus, APs are identified by the BSSIDs or 
MAC addresses. Due to privacy reasons, these BSSIDs are renamed to AP

001
 to AP

172
 . 

RSSI values of 172 different APs, the most important data in fingerprinting based indoor 
localization, are represented in AP

001
 to AP

172
 (column 2—173). Context heterogeneity 

in terms of open and closed rooms (represented by 1 and 0 respectively) is shown in 
Rs (column 174) and presence and absence of human (represented by 1 and 0 respec-
tively) are depicted in Hpr (column 175). Did (Column 176) represents unique identifier 
assigned to each device. Ts (column 177) indicates the data collection time in millisec-
onds. Note that, RSSI values and Cid are used to train different machine learning algo-
rithms. Other attributes are used to distinguish between training and testing conditions.

The whole Wi-Fi dataset is divided into two different sets: (i) Training (23,904 sam-
ples) and (ii) Test (1460 samples) datasets. Two datasets contain same attributes as men-
tion above. Training dataset contains RSSI values of 1000 cells captured by 4 different 
devices, whereas test dataset contains RSSI values of some specific cells captured by 2 
devices.

3.5  Discussions on JUIndoorLoc

Data from JUIndoorLoc are analyzed for different environmental factors in order to have a 
close look at the issues and challenges. Note that, in a cell. RSSI scan is performed for 120 s 
and in this time period 3 to 4 fingerprints are selected out of 5 to 6 captured fingerprints. 
The selected values are averaged and plotted in the Fig. 4. The scan is repeated at every 15 
minutes from (11:00 am) to (07:00 pm). At a particular time instant, for every APs an aver-
age of statistical RSSI values received in this scan duration is considered. Variation of the 
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signal strengths of 5 APs are shown in Fig. 4 with respect to time, using same device and 
same location. It can be observed that the signal strengths in morning (11:00 am) and even-
ing (07:00 pm) are almost same with a drop at around (02:00 pm) for all APs. At morning 
and evening, the location is less crowded. Thus, the number of nearby interfering devices 
are also less while at around (02:00 pm) the place is more crowded.

The RSSI signal is also affected by varying number of nearby interfering devices. RSSI 
variation of 4 neighboring locations due to the presence of 1 to 20 interfering devices is 
shown in Fig. 5a. This experiment is conducted in a research lab of the 3rd floor. In the 
presence of one interfering device, RSSI values of two APs, AP

1
 and AP

2
 are − 48 dBm 

and − 60 dBm respectively for Location 1. However, these values gradually decrease with 
the presence of increasing number of interfering devices and reach a steady state when the 
interfering devices are increased to 15 and 20.

Correlation of RSSI values of 9 neighboring locations ( Loc
1
 to Loc

9
 ) is shown in Table 2 

and the position of neighboring locations are shown in Fig. 5b. One user, carrying a smart-
phone, captures RSSI values from Loc

1
 and then moves to the next neighboring location. 

In this way, the user collects RSSI values of 9 neighboring locations. This experiment is 

Fig. 4  Variation of RSSI values with different times at a specific location

Fig. 5  a Effect of interference for varying number of devices; Di indicates i number of devices used in the 
experimental setting for 4 locations; b map showing the position of 9 neighboring locations
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repeated 8 times. It has been observed that RSSI values of adjacent locations have a strong 
positive linear correlation, as the correlation coefficient r is close to + 1 (0.8 to 0.9). How-
ever, correlation coefficient varies between 0.5 and 0.7 for the locations that are not adja-
cent to each other.

While Figs. 4 and 5a show behavior of the dataset with time and environmental factors 
for some selected samples, Figs. 6, 7 and 8 present a general discussion of the dataset. Note 
that, each dataset record corresponds to an RSSI scan. At most 30 APs are detected in RSSI 
scans as depicted in Fig. 6. However, maximum dataset records (RSSI scans) contain 14 
APs. All location points considered in the dataset are found to be covered by some AP. As 
the behavior of Wi-Fi signals vary with its signal strength, it is important to look at the pro-
portion of dataset records that are found to provide appreciable RSSI.

Figure 7 depicts the number of APs with different RSSI levels that are detected in dif-
ferent time instants. Dataset records contain different RSSI levels ranging from − 11 to 
− 100 dBm. RSSI level of the maximum number of APs are found to lie between − 81 and 
− 90 dBm irrespective of time. Total records (number of appearance in the dataset) with 
this RSSI level are 147,216 that are spread over 3 floors as shown in Fig. 8. Very strong 
RSSI signals ( − 11 dBm to − 30 dBm) and weak RSSI signals ( − 91 dBm to − 100 dBm) are 
detected from only few APs (Fig. 7) and captured by few dataset records (Fig. 8). Hence, 

Table 2  Correlation of RSSI gradient of 9 neighboring locations

Loc
1

Loc
2

Loc
3

Loc
4

Loc
5

Loc
6

Loc
7

Loc
8

Loc
9

Loc
1

1 – – – – – – –
Loc

2
0.8283 1 – – – – – – –

Loc
3

0.8948 0.9426 1 – – – – – –
Loc

4
0.9619 0.8886 0.9303 1 – – – – –

Loc
5

0.8888 0.8743 0.8792 0.9692 1 – – – –
Loc

6
0.7388 0.8463 0.5698 0.5899 0.7422 1 – – –

Loc
7

0.7675 0.5543 0.8579 0.6274 0.6974 0.6498 1 – –
Loc

8
0.8054 0.5386 0.6742 0.8672 0.7169 0.6021 0.6825 1 –

Loc
9

0.8148 0.4928 0.7263 0.7935 0.8563 0.7136 0.5906 0.6369 1

Fig. 6  Total number of records with respect to number of APs detected in a single capture
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learning based methods can be applied to predict as more records can be found with mod-
erate but comparable RSSI levels.

In this regard, our proposed conditional ensemble classifier is described in the next sec-
tion that deals with context and device heterogeneity.

4  Design of Conditional Ensemble Classifier

RSSI values are vulnerable to time (as shown in Fig. 4), contexts (as shown in Fig. 5a) and 
devices. So, localization performance may degrade when training and test conditions are 
different. For instance, if the training data are collected from one device, then it would 
be difficult to predict the location of a user carrying a different device with state-of-the-
art classifiers. In this scenario, classifiers are not capable to generalize all the conditions 

Fig. 7  The number of APs detected with different RSSI levels between 11:00 am to 07:00 pm

Fig. 8  Number of records (number of appearance in dataset) with different RSSI levels



753JUIndoorLoc: A Ubiquitous Framework for Smartphone-Based…

1 3

individually. Hence, the combination of multiple classifiers can improve accuracy, robust-
ness and efficiency over individual classifier.

In our indoor localization system, a set of all location points is represented by 
LP = {lp

1
, lp

2
, lp

3
,… , lpn} . Here, the dataset is represented as 

DS = {dsc
1
d
1
, dsc

2
d
1
,… , dscmd1 , dsc1d2 , dsc2d2 ,… , dscmd2 ,… , dsc

1
dp
, dsc

2
dp
,… , dscmdp} where 

m and p denote number of contexts and devices respectively. The dataset (DS) is a function 
of context and device which is represented as DS = f (Context,Device) . DS′ is generated 
after preprocessing the dataset DS. DS′ contains the feature set. In our case, features are the 
different RSSIs received from APs, AP = {ap

1
, ap

2
, ap

3
,… , apq} available while collecting 

data. An instance Xj of dataset DS′ is represented by {x
1
, x

2
, x

3
,⋯ , xq, lp

�

j
} , where xi repre-

sents the received RSSI value of ith AP and lp′
j
 represents the location label where lp�

j
∈ LP.

Using a learning algorithm, the objective of indoor localization problem is to identify 
the location set LP from dataset DS′ using feature space AP with a function g ∶ DS� → LP . 
Here, g is a member of hypothesis space and it best fits the dataset DS′ using a loss func-
tion l ∶ LP × LP → R such that if for an instance j of the training model, the location label 
is lpj and the predicted label is lp′ then the loss is computed as l(lpj, lp�) . In order to solve 
the problem of indoor localization more effectively, more than one learning algorithms are 
used to predict the location from dataset DS′ . Based on different conditions of the training 
dataset ( DS′ ) the learning algorithms are trained using cross-validation. Depending upon 
the localization accuracy, a base classifier is chosen for the conditional datasets.

The training datasets, say k number of datasets, are selected based on various context and 
device as depicted in Fig. 9. These k training datasets are tuned with a base classifier. The 
test dataset, containing data of all contexts and devices is classified with each of the k con-
dition based classifiers, CF = {cf

1
, cf

2
, cf

3
,… , cfk} . Finally, the results of k condition based 

classifiers are taken as input to the ensemble methods to get final prediction result. Indoor 
localization problem can be solved effectively using k-condition based Ensemble Classifier 
E ∶ DS�� × CF → LP , where E performs either majority voting or the average of probabilities 
using CF on test dataset DS′′ and estimated location point is returned as output.

Fig. 9  Block diagram of conditional ensemble classifier
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4.1  Majority Voting

Here, all test instances are classified by every individual condition specific classifier, then the 
final prediction result for the ensemble is obtained by majority voting of these results of the 
individual classifiers. In case of a tie, cf ′

i
 s may be assigned relative weights based on their per-

formance accuracy. The accuracy ( Amv ) of ensemble classifier is obtained by,

Here, Tc and Ti represent the total number of correctly predicted instance and the total num-
ber of instances of test dataset respectively.

4.2  Average of Probabilities

In our proposed conditional ensemble classifier, we have used k condition based classifiers 
( cf

1
, cf

2
,… , cfk ). Suppose, there are n location points and each location point corresponds to a 

class. Thus, we have n classes. Using a classifier, a test dataset is classified and probability of a 
class P(CLi) in test dataset is obtained by,

Here, Nc and N′

i
 represent the number of correctly predicted instances of that class and 

the total number of instances of that class respectively. Similarly, k classifiers are used to 
classify test data and probability of each class is calculated. Thus, mean of the probability 
Pm(CLi) of the ith class is obtained by,

Hence, the accuracy ( Aap ) of ensemble of k classifiers is calculated by,

In this context, experimental results of indoor localization for the collected dataset using 
state-of-the-art classifiers and the proposed ensemble of condition-based classifiers are 
shown in the next section.

5  Results and Discussions

The performance of dataset collected for JUIndoorLoc has been analyzed with two differ-
ent perspectives. First, state-of-the-art classifiers of Weka 3.9 tool and a statistical method, 
Horus [18] are used to evaluate location prediction performance of our proposed dataset. 
This is followed by performance analysis of our proposed ensemble of condition-based 
classifiers in Sect.  5.2. All the experiments are performed on Intel Pentium quad core 
machine with 1.60 GHz processor and 4 GB RAM.

Amv
=

Tc

Ti
× 100%

Pcfj
(CLi) =

Nc

N�

i

Pm(CLi) =

∑k

j=1
Pcfj

(CLi)

k
where i = 1… n

Aap
=

∑n

i=1
Pm(CLi)

n
× 100%
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5.1  Performance of Dataset Using State‑of‑the‑Art Classifiers

A baseline is a method that uses randomness, simple summary statistics, heuristics or 
machine learning to create predictions for a dataset. In [9] the distance based technique 
K Nearest Neighbor (KNN) is considered as a baseline for comparison purposes. They 
have established 1NN technique ( K = 1 ) in conjunction with the Euclidean Distance. This 
method when applied to our dataset yields the results as reported in Table 3.

The success rate corresponds to the percentage of samples that are correctly located 
inside the corresponding cell. Error in positioning represents the average error in meters. 
The average time in milliseconds required to obtain the precise location per sample is men-
tioned in the time field. The corresponding error and success rate as reported in [9] for the 
same baseline method are 7.9 m and 89.92% respectively.

The RSSI data from various regions such as room, corridor, stairs and entire floor are 
analyzed as shown in Table 4. All these 4 datasets contain data of various time instants 
taken at a specific context and device. Different machine learning algorithms such as KNN, 
K*, Bayesian Network, J48 and SVM are used to classify data apart from the basic algo-
rithm of Horus [18]. The default parameters provided by Weka toolkit for the above-men-
tioned algorithms are used in the experiments. Classification accuracy obtained by these 
algorithms are measured in percentage (Ap) and in the form of distance (Em) from actual 
cell (in case of misclassification). These results show that for various regions, the accuracy 
of location estimation varies significantly in different approaches. However, it has been 
observed that in different area accuracy of any algorithm does not change significantly, 
though population density changes with time. The basic algorithm of Horus [18] is applied 
to our dataset for validation. In different area, the performance of Horus [18] system ranges 
between 85.31 and 87.91% and error in positioning (meter) lies between 1.16 and 1.46 m. 
In our datasets, KNN algorithm performs better than other classifiers in different locations. 
The average case accuracy of KNN algorithm ranges between 87.33 and 90.12% . In KNN, 
worst case error of location prediction lies between 1.07 and 1.57 m. However, accuracies 

Table 3  JUIndoorLoc results 
with 1NN in conjunction with 
Euclidean Distance

Error in positioning Success rate Time

1.24 m 91.67% 1.44 ms

Table 4  Accuracies of used classifiers in different locations: Accuracy (in %) ( Ap ), Average error in meter 
( Em)

All accuracies are obtained by performing fivefold cross-validation

Dataset Metric KNN K* Bayes Net. J48 SVM Horus

Room Ap 87.33 85.45 85.58 84.72 86.25 85.45
Em 1.21 1.42 1.89 1.24 1.82 1.16

Corridor Ap 89.37 88.41 82.50 83.37 85.76 85.31
Em 1.07 1.35 1.79 1.31 1.28 1.36

Stairs Ap 90.12 88.46 87.57 85.22 86.65 87.91
Em 1.57 1.41 1.41 1.22 1.32 1.25

Entire floor Ap 88.52 86.50 85.32 84.71 85.38 87.24
Em 1.24 1.77 1.68 1.87 1.54 1.46
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of K*, Bayesian Network, J48 and SVM vary between 82 and 88% and the overall meter 
level accuracy ranges from 1.22 to 1.89 m.

5.2  Performance of Proposed Condition‑Based Ensemble Classifiers

5.2.1  Estimating Location Accuracies with Experimental Dataset Using 
Cross‑Validation Method

Some experiments are performed with our dataset to estimate unknown location points. 
In Table 5, 7 subsets of data are taken from our dataset. Each subset of data contains RSSI 
data of a specific context (such as C

1
 to C

4
 ) taken from a specific device (such as D

1
 to 

D
4
 ) in different times in a day. Classification accuracies are obtained by performing five-

fold cross-validation of some well known classifiers like KNN, Bayesian Network, J48 and 
SVM. In most of the subsets of data, KNN provide reasonably better prediction accuracy 
than other three classifiers. The default values of the parameters of all classifiers are kept 
unchanged.

5.2.2  Estimating Location Accuracies Using Separate Training and Testing Dataset

Rather than using the same subset of data with cross-validation method, in our next phase 
a different condition (context and device) specific test dataset is used to evaluate classifica-
tion accuracies. This step is essential to verify whether the classifiers can accurately esti-
mate the location points, when the user is in different environment or with different types 
of devices than the state in which the classifiers are trained. In Table 6 each conditional 
subset of data is used to train classifiers and a different condition specific data is used as a 
test set to predict location accuracy. The default values of the parameters of all classifiers 
are kept unchanged. The performance of every classifier decreases in Table 6. However, the 
performance of KNN classifier is well enough in some cases despite of different condition 
specific datasets. Hence, KNN is chosen as the base classifier for ensemble method in the 
next section.

5.2.3  Evaluating the Performance of Ensemble Method

The performance of proposed ensemble method is evaluated by taking 7 dissimilar condi-
tion specific dataset as train datasets. The test sets are taken for two cases:

Table 5  Classification accuracies 
(in %) obtained on experimental 
datasets with different machine 
learning algorithms

All accuracies are obtained by performing fivefold cross-validation

Dataset KNN Bayes Net. J48 SVM

C
4
–D

2
86.79 87.97 85.97 83.24

C
3
–D

3
88.14 80.47 82.77 84.43

C
2
–D

1
73.47 62.60 70.62 69.18

C
2
–D

3
89.13 72.70 84.80 80.73

C
4
–D

4
86.07 74.18 87.54 85.47

C
3
–D

1
87.32 73.40 80.36 88.62

C
1
–D

2
88.37 80.55 86.23 81.48
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Case-I: The test dataset is collected in such a way that it contains instances for 7 differ-
ent conditions of train datasets. The results are summarized in Table 7.

Case-II: In this case, the test dataset is prepared to contain the instances for a specific 
condition that is not included in train datasets. Here, test instances are collected using 
device D

3
 in a closed room with no other users in the vicinity (denoted as context C

4
 as 

mentioned in Sect. 3.2). The 7 condition specific classifiers are not trained for this specific 
combination of condition, C

4
–D

3
 as shown in Table 7.

In both cases, the instances of training and test datasets are distinct from each other. 
Here, KNN is considered as a base classifier for ensemble method since in the previous 
sections the performance of KNN classifier is found to be stable. Each of the 7 training 
datasets is cross-validated and the parameter K is tuned for each of the conditions with dif-
ferent values. After tuning the parameter K for each of the individual training datasets, the 
classification with test dataset is performed. The results of each condition specific classifier 
varies between 54.68 and 80.50% as shown in Table 7. However, combining the predic-
tion result of 7 condition specific classifiers with majority voting technique, the classifica-
tion accuracy is increased to 89.43% . While combining classifier results through average 
probabilities, 87.78% accuracy can be obtained. Moreover, in Table 7 prediction accuracies 
of both ensemble method majority voting and the average of probabilities are 88.61% and 

Table 6  Classification accuracies 
(in %) obtained on experimental 
datasets with different classifiers

Maximum accuracy that is obtained using different condition-specific 
datasets

Train Set Test Set KNN Bayes Net. J48 SVM

C
4
–D

2
C
1
–D

2
71.78 66.48 68.36 62.86

C
3
–D

3
C
3
–D

1
67.56 58.61 60.58 63.15

C
2
–D

1
C
4
–D

4
45.73 41.83 47.62 40.68

C
2
–D

3
C
4
–D

2
70.36 64.26 68.74 65.87

C
4
–D

4
C
3
–D

3
69.82 61.15 67.36 60.74

C
3
–D

1
C
2
–D

1
57.64 59.52 62.85 58.60

C
1
–D

2
C
2
–D

3
66.26 60.22 63.27 64.28

Table 7  Classification accuracies 
(in %) of two cases are obtained 
by each condition specific 
classifier with two test datasets 
and Ensemble method

K represents the parameter of KNN. In Case-I test set contains 
instances for Ci–Di where i = 1 to 4 and each condition, Ci–Di , 
matches with the 7 training conditions. In Case-II, test set C

4
–D

3
 is 

used
Accuracy obtained for the ensemble of classifiers

Train Set K Classifier Case-I Case-II

C
4
–D

2
3 Classifier 1 62.28 58.53

C
3
–D

3
5 Classifier 2 59.32 57.16

C
2
–D

1
3 Classifier 3 54.68 51.64

C
2
–D

3
3 Classifier 4 77.96 71.36

C
4
–D

4
7 Classifier 5 73.30 69.27

C
3
–D

1
5 Classifier 6 79.66 76.43

C
1
–D

2
3 Classifier 7 80.50 78.84

– – Ensemble (Majority Voting) 91.74 88.61
– – Ensemble (Avg. of probability) 89.53 89.13
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89.13% respectively. Although individual classifiers can not properly predict various condi-
tional data but together they cover all the conditions and their united decision can achieve 
higher prediction accuracy than individual classifiers.

The average error in meter for Case-I are obtained from our floor map and depicted in 
Fig.  10. The average error of ensemble methods (1.87  m and 1.92  m) are subsequently 
lower than that of individual classifiers. Hence, our proposed ensemble methods are found 
to better cope with device and context heterogeneity than the condition based individual 
classifiers in terms of classification accuracy and average error in meter.

6  Conclusion and Future Directions

This paper introduces a new indoor localization dataset, based on Wi-Fi signal strength 
subject to spatial, temporal, contextual and device heterogeneity. The dataset description 
has been detailed, including the attributes used in the dataset and their significance. An 
indoor localization framework, JUIndoorLoc is designed that uses an ensemble of condi-
tion-based classifiers designed to mitigate the effects of device and context heterogeneity 
in indoor positioning. Samples are collected in an anonymized fashion for three floors of 
our departmental building of our University. Total 25,364 samples are collected from 1000 
cells each of size 1m × 1m . Our dataset is validated against state-of-the-art classification 
algorithms and the basic algorithm of Horus [18] to justify its applicability for compar-
ing both machine learning and statistical approaches of indoor localization. Data are also 
analyzed for signal variations due to factors like differing indoor environments and devices. 
Significant localization accuracy ( 62.60% to 88.37% ) has been obtained when training and 
test samples belong to same contexts and devices. However, location prediction accuracy 
is found to drop ( 41.83% to 71.78% ) when training and test conditions are different. Our 
proposed condition specific ensemble classifier is found to efficiently overcome these dif-
ficulties achieving 91.74% accuracy. These results emphasize that our dataset provides a 
comprehensive dataset to make comparisons among different methods in the field.

In future, we are planning to work on reducing the effort of fingerprinting. One of 
the main issues with indoor localization is the effort needed for precise fingerprinting. 

Fig. 10  Average error of individual classifiers and ensemble methods in meter for Case-I
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Localization accuracy depends greatly on it. Crowdsourcing can be an alternative to reduce 
the fingerprinting effort but precision of fingerprinting may be degraded. Thus, in future we 
plan to investigate novel techniques that would provide considerable localization accuracy 
even for minimal and/or imprecise fingerprint data. Another future dimension is to provide 
real time indoor navigation technique based on semi-supervised learning mechanisms.
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