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Abstract
Limited resources and harsh deployment environments may cause raw observations col-
lected by sensor nodes to have poor data quality and reliability, which will influence the 
accuracy of the analysis and decision making in wireless sensor networks (WSNs). There-
fore, anomaly detection must be implemented on the data collected by nodes. Support vec-
tor data description based on spatiotemporal and attribute correlations (STASVDD) can 
efficiently detect outliers. A novel optimization method based on STASVDD (N-STAS-
VDD) is put forward in this paper. The proposed method considers that outliers can inde-
pendently occur in each attribute when the collected data vectors are independent and 
identically distributed in WSNs. The proposed method applies the concept of core-sets 
to reduce the computational complexity of the quadratic programming problem in STAS-
VDD, consequently reducing the energy consumption of resources-constrained WSNs. In 
addition, comparing the distributed and centralized detection approach of this method, the 
results show that the distributed approach has better performance because it relieves the 
communication burden. Extensive experiments were performed on both synthetic and real 
WSNs datasets. Results revealed that N-STASVDD achieves low time complexity and high 
detection accuracy.

Keywords  Anomaly detection · Wireless sensor networks · Spatiotemporal and attribute · 
SVDD · Computational complexity

1  Introduction

Wireless sensor networks (WSNs) have many applications in different fields, such as smart 
citys, [1] smart grid, [2] environmental monitoring [3] and medical sensing [4]. However, 
the innate characteristics of WSNs render the sensor node vulnerable to anomalies caused 
by resource constraints, including energy, memory, computation, bandwidth, and transmis-
sion channel. Anomalies are caused by faulty sensor nodes, security threats in the network, 
or unusual phenomena in the monitoring scope. Therefore, anomaly detection must be 
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implemented in WSNs [5] so that accurate information can be obtained and effective deci-
sions can be made by information gatherers. Researches have proposed several anomaly 
detection approaches for WSNs [6–11], such as statistical techniques, nearest-neighbor-
based approaches, data mining, and machine learning methods.

In In statistical techniques, a statistical model is established to determine the data dis-
tribution, and evaluate the data samples in terms of their suitability for the model. Zhang 
et  al. [12] proposed a statistical outlier detection method based on spatial and temporal 
correlations of data in WSNs. This method uses the time series to determine the statistical 
distribution model of the data to achieve the outlier detection, which will lead to a larger 
amount of computations and affect the energy limited wireless sensor network lifetime. 
Dereszynski and Dietterich [13] presented a statistical method for identifying valid obser-
vations in data streams and distinguishing sensor failures in WSNs; this method exploits 
the spatial and temporal correlations of the data in real time. Due to the use of real-time 
approach, it will lead to the increase of the amount of calculations of the outlier detection, 
which will consume more energy and reduce the lifetime of the network. Li et al. [14] pro-
posed an intrusion detection method based on the statistical distribution in WSNs. These 
statistical techniques exhibit good detection performance when the underlying data distri-
butions are known. They are not feasible for application in the changing environments of 
WSNs, wherein data distributions are uncertain.

Nearest-neighbor-based approaches use several well-defined distance notions to cal-
culate the distance between two data samples with similar measured values. A data sam-
ple is considered an outlier if it is located far from its neighbors. Branch et al. [15] pro-
posed a distance-based method for outlier detection in WSNs. Zhang et al. [16] presented 
a distance-based scheme wherein global outliers are identified in snapshots and continu-
ous query processing is performed. The above two methods are outlier detection method 
based on the reduction of network traffic. Zhuang et al. [17] proposed two in-network out-
lier cleaning schemes for data acquisition in WSNs. The first scheme uses wavelet analysis 
to detect outliers of noises or random errors. The second scheme employs distance-based 
dynamic time warping to detect outliers of random errors for a certain time period. These 
techniques have great computational complexities because they require the computation of 
the distances between each pair of data samples.

In recent years, many studies have been conducted on machine learning and data min-
ing approaches for anomaly detection in WSNs [9, 18–23]. Moshtaghi et al. [18] proposed 
an adaptive method that can create elliptical decision boundaries for anomaly detection 
in WSNs and maintain the decision boundaries without the need for re-training. Zhang 
et al. [22] presented two ellipsoidal one-class SVM-based outlier detection techniques for 
identifying outliers in a distributed and online manner in WSNs. Rajasegarar et  al. [24, 
25] proposed a distributed approach of one-class quarter-sphere support vector machine 
(QSSVM) and a centered approach of hyper-ellipsoidal support vector machine (CESVM) 
for anomaly detection in WSNs; they compared and analyzed the detection accuracy and 
sensitivity to parameter settings of CESVM and QSSVM. Gol et al. [26] proposed a linear-
programming-based fuzzy-constraint SVDD method for anomaly detection in WSNs. In 
general, data mining and machine learning methods can achieve the desired effect of anom-
aly detection in WSNs. However, they are hindered by the high computational complexity 
and large communication overheads for anomaly detection.

Nonparametric approaches for anomaly detection are kernel-based machine-learning 
methods, which do not require any prior knowledge regarding the data distribution [27, 
28]. As such, these approaches are suitable for resource-constrained WSNs, wherein prior 
knowledge regarding the abnormal behavior of the collected data distribution cannot be 
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obtained in advance. However, an arising challenge in the implementation of nonparamet-
ric anomaly detection is acquiring labeled data for training a classifier. In particular, the 
training must be implemented frequently in WSNs to adapt to the change in normal behav-
ior over time. Support vector data description (SVDD) [28–30] aims to address this chal-
lenge for unsupervised learning problems. Machine learning method can construct the nor-
mal area of the data and disregard a few errors or anomalies by the relaxation factor. This 
method can also deal with nonlinear samples of normal behavior by using a kernel function 
to map the samples in the input space into high-dimensional feature space. Therefore, this 
SVDD method is suitable for the problem of outlier detection. However, SVDD based on 
spatiotemporal and attribute correlations requires the solution for a computationally inten-
sive quadratic programming problem, and is therefore unsuitable for application to WSNs. 
Moreover, sensor nodes have limited energy in WSNs, and most of the energy is consumed 
during information transmision rather than calculation [31, 32].

Therefore, the purpose in this paper is to propose a lightweight data mining method 
based on SVDD as well as perform anomaly detection in a distributed manner in WSNs. 
The main contributions of this article are as follows:

•	 We introduce a novel SVDD approach for anomaly detection in WSNs, namely spati-
otemporal and attribute SVDD (STASVDD). When the collected data of node is inde-
pendent and identically distributed in WSNs, the outliers can occur independently in 
each attribute of the data. STASVDD can solve this problem well, which combines 
spatiotemporal and attribute correlations of the collected data to implement anomaly 
detection.

•	 Given that WSNs have limited energy and that solving the quadratic programming 
problem by STASVDD will lead to high computational complexity, a novel optimiza-
tion method based on STASVDD (N-STASVDD) for anomaly detection is proposed by 
using core-sets, which can reduce the computational complexity of STASVDD from 
O(l3) to O(l). In addition, the method is applied in distributed manner to reduce the 
communication complexity in the anomaly detection of N-STASVDD.

The remainder of this paper is organized as follows. The problem of anomaly detection 
in WSNs is described in Sect. 2. N-STASVDD for anomaly detection in WSNs is proposed 
in Sect. 3. The distributed anomaly detection in WSNs is discussed in Sect. 4. In Sect. 5, 
the proposed algorithms are evaluated using synthetic and real data sets. Finally, the drawn 
conclusions are enumerated in Sect. 6.

2 � Problem Statement

Consider a hierarchical architecture of WSNs deployed in a certain region, where multi-
ple sensor nodes are connected with each other through wireless channel for monitoring 
m environmental attributes. The network shown in Fig. 1 is a hierarchical topology with 
seven sensor nodes. Nodes S2 and S3 are the direct parents of nodes S4, S5, S6 and S7 , and 
are also members of the gateway node S1 . Each node Si is connected to a set of spatially 
adjacent nodes, represented as N(Si) . It is assumed that each sensor node is configured 
with m(m ≥ 2) different types of sensors, which will sense m-dimensional data at every 
sampling instant. In one region, the sense data by different adjacent nodes is a high cor-
relation in spatiotemporal and attributes, such as temperature, humidity, pressure etc. At 
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each sampling instant k, each node Si has a data vector xi
km

 . The b neighboring nodes of 
Si in the spatially are represented as Sij , where j = 1, 2,… , b . At the kth sampling instant, 
{xi

km
, xi1

km
, xi2

km
,… , x

ij

km
} denotes the m-dimension data vectors at {Si, Si1, Si2,… , Sij} . The 

problem is to identify normal or abnormal for every new sensed data vector xi
km

 of the node 
Si in real time. An anomaly detection approach based on spatiotemporal and attribute cor-
relations of SVDD will be used to solve this problem.

3 � The Proposed N‑STASVDD for Anomaly Detection in WSNs

This section focuses on the method of N-STASVDD for anomaly detection in WSNs. 
Firstly, the idea of SVDD based on spatiotemporal correlations (STSVDD) is described 
for anomaly detection in WSNs. Secondly, the idea of STASVDD is discussed in detail. 
Finally, the optimization of STASVDD by using the idea of core-set is discussed and its 
computational complexity is analyzed.

3.1 � SVDD Based on Spatiotemporal Correlations (STSVDD)

The basic idea of SVDD classifier [7, 8, 33] is to find the minimum hyper-sphere 
which contains all possible target data in the feature space. Give a set of training data 
Xi = {xi

1m
, xi

2m
, xi

3m
,… , xi

lm
} at the node Si in the set N(Si) , where xi

km
∈ ℜm(1 < k < l) rep-

resents m-dimensional data vector corresponding to the number of attributes, and l is the 
size of the measurements corresponding to l sampling instants. Let Xi at the node Si be 
mapped from the input space to feature space via a mapping function �(⋅) . R is the radius 

Fig. 1   The architecture on a hierarchical WSNs
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of the minimum hyper-sphere, which is determined by a set of training data Xi , using the 
idea of SVDD. It is used to identify non-support vectors (NSVs), margin support vectors 
(MSVs), and non-margin support vectors (NMSVs) on the basis of the Lagrange multiplier 
�i values. The sketch map of SVDD is shown in Fig. 2.

Aiming at a new arrived data xi
km

 of the node Si at a sampling instant, it is classified as 
the normal class if the distance between itself and the sphere center is less than or equal to 
the radius R. On the contrary, it is then classified as outliers. The outliers identified in this 
way are called local outliers, because it only considers the temporal correlation of the data 
on a single node Si . While, the data obtained from a set of N(Si) has spatiotemporal corre-
lation. Outlier identification is called global outliers in the set N(Si).

O’Reilly et al. [9] summarizes the outlier detection method of wireless sensor networks. 
This paper analyzes the method of considering temporal and spatial correlation with bet-
ter detection performance compared to method of considering temporal correlation. So 
the method of STSVDD can achieve better detection results to some extent by considering 
spatiotemporal correlations in WSNs. However, this method does not consider the node 
data which is independent and identically distributed. When outlier occurs independently 
in each attribute of the node data, it will cause low anomaly detection rate. Therefore, an 
effective technology for anomaly detection should combine with attribute correlation on 
the basis of STSVDD.

3.2 � SVDD Based on Spatiotemporal and Attribute Correlations (STASVDD)

Each node Si of the set N(Si) in WSNs, consists of multiple sensors for measuring the m 
attributes of data xi

km
 . Combined with SVDD formulation, xi

km
 at each sampling instant k 

will determine the attribute radius RA and the corresponding margin support vector based on 
attribute correlation. Next, the solution of the attribute radius RA will be described. Given that 

Fig. 2   The sketch map of SVDD
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the training data set Xi = {xi
1m
, xi

2m
, xi

3m
,… , xi

lm
} at each sampling instant k of the node Si , 

and let the vector xi
km

 at each sampling instant k be mapped onto feature space by a mapping 
function �(⋅) . It will be divided into g portions of m × m dimensions each. Here g is equal to 
⌊l∕m⌋ , where ⌊⋅⌋ is the floor operation. As a result, each Xi corresponding to the node Si can be 
expressed as the formula (1).

Each part of the Xi at node Si can be showed by Xg,s , where g = 1, 2,… , ⌊l∕m⌋ ; 
s = 1, 2,… ,m . Thus, each Xg,s is expressed by formula (2).

In the matrix Xg,s , each row of data correspond to a specific sampling instant, and each 
column of data correspond to a different attribute. A method based on spatiotemporal and 
attribute correlation is proposed here. Using each column of Xg,s as a m-dimension data 
vector, the attribute radius RA will be obtained by applying the constrained optimization 
problem of SVDD. Therefore, m consecutive time measurements for a single attribute are 
used as a vector for optimization purpose. Compared with the previous method of STS-
VDD, the method takes into consideration each row of Xg,s as data vector for optimization. 
Thus, in view of Xg,s of the gth row vector of Xg,s , the primal optimization problem of 
SVDD can be defined as following:

where, �′
(
x′gs

)
 is the image of attribute vector x′

gs
 and acquires via a mapping function 

�(⋅) . RAg and ag denote the radius and center of the hyper-sphere respectively in the feature 
space, �g,s is the slack variable to allow for a few training data outside the hyper-sphere [9, 
13], and the penalty parameter C controls the trade-off between the volume of the hyper-
sphere and the number of target data outside the hyper-sphere.

In order to solve the optimization problem of Eq. (3) with these constraints, Lagrange func-
tion is constructed as follows:

(1)Xi = {X1,s,X2,s,X3,s,… ,X⌊l∕m⌋,s}

(2)
Xg,s =

⎡
⎢⎢⎢⎣

xm(g−1)+1,1 xm(g−1)+1,2 ⋯ xm(g−1)+1,m
xm(g−1)+2,1 xm(g−1)+2,2 ⋯ xm(g−1)+2,m

⋮ ⋮ ⋱ ⋮

xm(g−1)+m,1 xm(g−1)+m,2 ⋯ xm(g−1)+m,m

⎤⎥⎥⎥⎦
=
�
x�g1 x�g2 ⋯ x�gm

�

(3)

MinR2
Ag

+ C

m∑
s=1

�g,s

s.t.
‖‖‖�

�
(
x�gs

)
− ag

‖‖‖
2

≤ R2
Ag

+ �g,s

�g,s ≥ 0, g = 1, 2,… ,
⌊
l

m

⌋
, s = 1, 2,… ,m

(4)

Lg
(
RAg, ag, �g,s, �g,s, �g,s

)
= R2

Ag
+ C

m∑
s=1

�g,s

−

m∑
s=1

�g,s

(
R2
Ag

+ �g,s −
‖‖‖�

�
(
x�gs

)
− ag

‖‖‖
2
)
−

m∑
s=1

�g,s�g,s
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In the above equation, Lagrange function for the parameter g expansion is obtained as 
follows:

where each �g,s ≥ 0 , �g,s ≥ 0 , ∀g = 1, 2,… ,
⌊

l

m

⌋
 , s = 1, 2,… ,m is the Lagrange multipliers 

and x′
gs

 is the sth column vector corresponding to Xg,s.

(5)

⎡
⎢⎢⎢⎢⎣

L1(RA1, a1, �1,s, �1,s, �1,s)

L2(RA2, a2, �2,s, �2,s, �2,s)

⋮

L� l

m

�(R
A
�

l

m

�, a� l

m

�, �� l

m

�
,s
, �� l

m

�
,s
, �� l

m

�
,s
)

⎤
⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣

R2
A1

0 ⋯ 0

0 R2
A2

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ R2

A
�

l

m

�

⎤⎥⎥⎥⎥⎦

×

⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣

1

1

⋮

1

⎤⎥⎥⎥⎦
−

m�
s=1

⎡⎢⎢⎢⎢⎣

�1,s
�2,s
⋮

�� l

m

�
,s

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠

+

m�
s=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1,s

������
�
x�1s

�
− a1

���
2

− �1,s

�

�2,s

������
�
x�2s

�
− a2

���
2

− �2,s

�

⋮

�� l

m

�
,s

������
��

�
x�� l

m

�
s

�
− a� l

m

�
�����

2

− �� l

m

�
,s

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

m�
s=1

⎡⎢⎢⎢⎢⎢⎣

�
C − �1,s

�
�1,s�

C − �2,s
�
�2,s

⋮�
C − �� l

m

�
,s

�
�� l

m

�
,s

⎤⎥⎥⎥⎥⎥⎦

+

m�
s=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1,s

������
�
x�1s

�
− a1

���
2

− �1,s

�

�2,s

������
�
x�2s

�
− a2

���
2

− �2,s

�

⋮

�� l

m

�
,s

������
��

�
x�� l

m

�
s

�
− a� l

m

�
�����

2

− �� l

m

�
,s

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

m�
s=1

⎡⎢⎢⎢⎢⎢⎣

�
C − �1,s

�
�1,s�

C − �2,s
�
�2,s

⋮�
C − �� l

m

�
,s

�
�� l

m

�
,s

⎤⎥⎥⎥⎥⎥⎦
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Define L =
[
L1 L2 ⋯ L⌊ l

m

⌋ ] and RA =
[
RA1 RA2 ⋯ R

A
⌊

l

m

⌋ ] . Using KKT conditions 
[34], L should be minimized with respect to RAg, ag, �g,s and maximized with respect to �g,s 
and �g,s . In order to find the stationary point of the Lagrange function, it will set partial 
derivatives of L equal to zero. That is, �Lf

�RAh

= 0 and �Lf

��h,s
= 0 for f ≠ h , where 

f = 1, 2,… ,
⌊

l

m

⌋
 and h = 1, 2,… ,

⌊
l

m

⌋
 , the Jacobi matrices are expressed as follows:

In the same way, the Jacobi matrix for a and �g,s can be obtained similar to (6). Now putting 
the Jacob equation equal to zero, the following equations are obtained.

where 
∑m

s=1
�g,s = �g,1 + �g,2 +⋯ + �g,m , 

∑m

s=1
�
g,s�

�
�
x
�
gs

�
= �

g,1�
�
�
x
�
g1

�
+�

g,2�
�
�
x
�
g2

�

+⋯+�
g,m�

′
(
x
′
gm

)
.

From the last equation �g,s = C − �g,s and using �g,s ≥ 0, �g,s ≥ 0 , the following inequality 
can be obtained.

Resubstituting (7)-(9) into (5) results in:

(6)J
�
RA1 RA2 ⋯ R

A
�

l

m

� �
=

⎡
⎢⎢⎢⎢⎢⎢⎣

�L1

�RA1

0 ⋯ 0

0
�L2

�RA2

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯

�L⌊ l
m⌋

�R
A⌊ l

m⌋

⎤⎥⎥⎥⎥⎥⎥⎦

(7)
m�
s=1

⎡
⎢⎢⎢⎢⎣

�1,s
�2,s
⋮

�� l

m

�
,s

⎤
⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

1

1

⋮

1

⎤⎥⎥⎥⎦

(8)

⎡⎢⎢⎢⎢⎣

a1
a2
⋮

a� l

m

�

⎤⎥⎥⎥⎥⎦
=

m�
s=1

⎡
⎢⎢⎢⎢⎢⎣

�1,s�
�
�
x�1s

�
�2,s�

�
�
x�2s

�
⋮

�� l

m

�
,s
��

�
x�� l

m

�
s

�

⎤⎥⎥⎥⎥⎥⎦

(9)

⎡⎢⎢⎢⎢⎣

�1,s
�2,s
⋮

�� l

m

�
,s

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

C − �1,s
C − �2,s

⋮

C − �� l

m

�
,s

⎤⎥⎥⎥⎥⎦

(10)0 ≤ �g,s ≤ C
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Now, using the kernel trick, [25] in the feature space the dot product of two vectors in (11) 
can be calculated by a kernel function (12). Hence, the dual formation of the problem (3) 
will become (13).

(11)

⎡
⎢⎢⎢⎢⎣

L1(RA1, a1, �1,s, �1,s, �1,s)

L2(RA2, a2, �2,s, �2,s, �2,s)

⋮

L� l

m

�(R
A
�

l

m

�, a� l

m

�, �� l

m

�
,s
, �� l

m

�
,s
, �� l

m

�
,s
)

⎤
⎥⎥⎥⎥⎦

=

m�
s=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�1,s
�����

�
x�1s

�
− a1

���
2

�2,s
�����

�
x�2s

�
− a2

���
2

⋮

�� l

m

�
,s

�����
��

�
x�� l

m

�
s

�
− a� l

m

�
�����

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

m�
s=1

⎡⎢⎢⎢⎢⎢⎣

�1,s�
�
�
x�1s

�
∙ ��

�
x�1s

�
�2,s�

�
�
x�2s

�
∙ ��

�
x�2s

�
⋮

�� l

m

�
,s
��

�
x�� l

m

�
s

�
∙ ��

�
x�� l

m

�
s

�

⎤⎥⎥⎥⎥⎥⎦

−

m�
s=1

m�
r=1

⎡⎢⎢⎢⎢⎢⎣

�1,s�1,r�
�
�
x�1s

�
∙ ��

�
x�1r

�
�2,s�2,r�

�
�
x�2s

�
∙ ��

�
x�2r

�
⋮

�� l

m

�
,s
�� l

m

�
,r
��

�
x�� l

m

�
s

�
∙ ��

�
x�� l

m

�
r

�

⎤⎥⎥⎥⎥⎥⎦

(12)K(xi, xj) =�(xi) ⋅ �(xj)

(13)

max

m�
s=1
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From Eq. (13) the value of �g,s can be obtained using quadratic optimization technique. Xi 
is composed of 

⌊
l

m

⌋
 sets of �g,s , which respectively corresponds to 

⌊
l

m

⌋
 parts of Xi . Each set 

includes m number of �g,s , which can be further classified according to the results of �g,s . 
The data vectors corresponding to �g,s = 0 , which are called non-support vectors and fall 
inside the hyper-sphere. The data vectors corresponding to 0 < 𝛼g,s < C , which are called 
margin support vectors. Their distances to the center of hyper-sphere indicate the radius of 
hyper-sphere. The data vectors corresponding to �g,s = C , which are called non-margin 
support vectors and fall outside the hyper-sphere. Their distances to the center of hyper-
sphere is larger than the radius of the hyper-sphere. Thus the corresponding sample points 
of these data vectors are considered to be outliers.

For a given set of training data Xi of node Si in WSNs, the attribute radius R2
Ag

 cor-
responding to Xg,s can be calculated by the following formula.

where x′
gs

 is margin support vector and ag is the center of hyper-sphere in each part of Xi . 
The final attribute radius of Xi is then acquired by taking the mean of all 

⌊
l

m

⌋
 radii. The 

center of the corresponding sphere can be determined by calculating the mean of all 
⌊

l

m

⌋
 

spheres.

The algorithm is given as follows, which is the determination of spatiotemporal and attrib-
ute radius at each node.

Step 1	 Let Xi be the l × m data at sensor node Si . The rows of Xi represent l sampling 
instants and the columns of Xi represent m attributes.

Step 2	 Get Xg,s by dividing Xi into 
⌊

l

m

⌋
 parts.

Step 3	 Construct the spatiotemporal and attribute optimization problem Lg for each Xg,s.
Step 4	 Determine the Lagrange Multipliers �g,s for each Lg.
Step 5	 Obtain the center of sphere RAg and the radius ag for each Lg.

Step 6	 Calculate RA = mean

{
RA1,RA2,RA3,…R

A
⌊

l

m

⌋
}

 and a = mean
{
a1, a2, a3,…

a⌊ l

m

⌋
}

 for Xi.

As you can see from the above procedure of algorithm, the obtained radius RA and the 
center point a of hyper-sphere are used to detect the abnormal state of the node data 
in WSNs. However, STASVDD requires the solution of a computationally-intensive 
quadratic programming problem in the process of obtaining the decision boundary. The 
runtime complexity is of O(l3) , where l is the number of training samples. Since energy 
is very vital to resource constrained WSNs, it is necessary to reduce computation com-
plexity of quadratic programming problem in STASVDD.

(14)R2
Ag

=
‖‖‖x

�
gs − ag

‖‖‖
2

(15)RA = mean

{
RA1,RA2,RA3,…R

A
⌊

l

m

⌋
}

(16)a = mean

{
a1, a2, a3,… a⌊ l

m

⌋
}
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3.3 � A Novel Optimization STASVDD by Using Core‑Sets (N‑STASVDD)

On the broader perspective, the problem of sphere-finding in STASVDD is similar to the 
minimum enclosing ball problem (MEB) in computational geometry [35–37]. MEB prob-
lem is to computer a ball of minimum radius enclosing a given set of data vectors. The 
MEB algorithm combined with the idea of core-sets has the computational time that is 
only linear in the number of samples in the literature [36]. Therefore, inspired by this idea, 
a novel optimization STASVDD is proposed, which reduces the computation complexity 
of STASVDD from O(l3) to O(l).

The main procedure is as follows. Firstly, how to determine an initial core-set that only 
contains m normal samples, and how to obtain the initial radius RA,1 of the sphere. Sec-
ondly, the execution process of the proposed method is introduced in STASVDD, how to 
implement iterative procedure with the core-set of samples instead of all l training sam-
ples. Finally, the computational complexity of QP (quadratic programming) will be of 
O(n3) ≪ O(l3) because the size of the core-set is n ≪ l . It is proved that the number of iter-
ations is independent of l, and the proposed method has a linear computational complexity.

There are two key issues to deal with the initialization process. On the one hand, it is 
necessary to select m normal samples of time continuous as much as possible. The ideal 
choice is to obtain the m samples in Xi that are the most adjacent to the sample mean. 
However, in the kernel-induced feature space, it will cost O(l2) time in order to obtain the 
m samples nearest to the sample mean. It is self-contradictory that the goal of runtime is 
only linear in l. Since the data obtained by sensor node are usually normal at the beginning 
in WSNs, the initial m samples are called l0 that are fixed to select at the beginning of the 
m sampling instants from Xi . The STASVDD is run on these l0 samples to get a sphere with 
the center a0 . The sample y is able to choose from these l0 samples which is the most adja-
cent to a0 . On the other hand, the initial radius RA,1 of the sphere is set that is yet key issue. 
Theoretically, the smaller RA,1 will be more appropriate so that the initial sphere does not 
contain any outlier. Hence, a sample x0 is first selected from l0 sample above. Meanwhile, 
the the sample z ∈ Xi that is the farthest distance from the sample x0 is searched out. Define 
B = ‖‖x0 − z‖‖ . RM is radius, which can be determined by using the MEB algorithm in the 
sample set of Xi . It is obvious that B ≥ RM . RA,1 = B∕p is initialized, where p > 1 , suer-
defined constant and determine the number of iterations, such that RA,1 is a much smaller 
number. Therefore, the following expression is established.

3.3.1 � Execution Process

After initialization, a set of samples is added to core-set incrementally, which is a multiple 
of m. The center, radius and the core-set are expressed as at , RA,t , Xit at the tth iteration, 
respectively. Moreover, the value of C is assumed to have been given in STASVDD, which 
is an upper bound on the fraction of outliers.

The process of STASVDD using the formulation of the core-set is given as follows.

Step 1	 Initialize RA,1 and y as mentioned above. Set Xi1 =
{
l0
}
 , a1 = y and t = 1.

Step 2	 Find the set Qt of samples in Xi that fall outside the (1 + �)-sphere Gat(1+�)RA,t
 . In 

other words, 

(17)RA,1 ≥ RM∕p

(18)Qt =
{
x ∈ Xi|‖‖x − at

‖‖ > (1 + 𝜎)RA,t

}
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Step 3	 If the size of Qt is smaller than 1/C, the expected number of outliers, then terminate.
Step 4	 Otherwise, enlarge the sample size of core-set Xit by including the sample in Qt 

that is closest to at and do not belong to the sphere with the radius of RA,t . Denote the 
enlarged core-set by Xi(t+1).

Step 5	 Run STASVDD on Xi(t+1) , also acquire the new center at+1 and the radius RA,(t+1) 
of the sphere.

Step 6	 Perform the constraint that 

 where, � is a small constant defined by the user. That is, the radius at each iteration 
must be increased by at least ��RA,t.

Step 7	 Increment t by one and then return to step 2.

3.3.2 � Analysis of Computational Complexity

In the MEB problem, it can be indicated that the number of iterations is of O
(
1∕�2

)
 in sim-

ilar steps as above [35]. Even the number of iteration is of O(1∕�) when the farthest sample 
is used in each iteration [37]. Because of the presence of a slack variable in the STASVDD 
formulation, it is not directly applied here. However, the computational complexity of the 
above algorithm is analyzed that is only linear in the number of training samples l.

Consider first step 1. As l0 is fixed, both running the initial STASVDD and searching of 
y only spend O(1) time. In identifying the initial radius RA,1 and searching of z spend O(l) 
time. Thus the total cost of the time is O(l) in the process of initialization. At the tth itera-
tion, combining formula (17) with (19), at least increase in RA,t is shown in the following 
formula (20). Obviously, RM is an upper bound on the radius of the acquired sphere. There-
fore, the total number of iterations is no more than p∕�� = O(1∕�).

At each iteration, a sample set consisting of m continuous samples will be added to the 
core-set in step 4. Consequently, the size of Xit is mt and at is a linear combination of mt �′

-mapped samples. Thus, step 4 needs to spend time which is O(mtl) at the tth iteration, and 
running STASVDD needs to spend time which is O

(
(m(t + 1))3

)
= O

(
t3
)
 . The other steps 

spend only constant time. Thus, the total cost of the time is O
(
mtl + t3

)
 for the tth iteration.

The total cost of the time is shown as the formula (21) for the whole process in N-STAS-
VDD including initialization time and W = O(1∕�) of iterations time.

Remark 1  Based on the above analysis, the computational complexity of N-STASVDD 
can be seen from the formula (21), which is O(l) for a fixed � . However, the computational 

(19)RA,(t+1) ≥ (1 + ��)RA,t

(20)��RA,t ≥ ��RA,(t−1) ≥ ⋯ ≥ ��RA,1 ≥
��

p
RM

(21)

T = O(l) +

W∑
t=1

O
(
mtl + t3

)

= O(n) +

(
W∑
t=1

mt

)
O(l) +

W∑
t=1

t3

= O
(
mW2l +W4

)
= O

(
m

�2
l +

1

�4

)
= O(l)
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complexity of the STASVDD is O
(
l3
)
 because it needs to solve the quadratic optimization 

problem of the formula (13). Therefore, the performance of computational complexity in 
N-STASVDD is significantly improved.

4 � Distributed Anomaly Detection in WSNs

According to network architecture in the second section, an approach of distributed 
anomaly detection is used in wireless sensor networks deployed in hostile environ-
ment. Each sensor node with multiple sensors collects a set of measurements monitored 
environment at every sampling instant. The purpose of this article is mainly to discuss 
the local and global anomaly detection for the collected data by nodes in WSNs. Local 
anomalies are identified using similarities among data within a single sensor node. 
Global anomalies are identified considering similarities on the union set of measure-
ments representing multiple sensor nodes on the network.

Local anomalies can be detected by using the data of a single node, so it needs no 
communication overhead. Global anomalies can be detected by using the data of mul-
tiple sensor nodes, so it will generate some communication overhead and consume the 
energy of sensor node. The scheme of centralized anomaly detection needs to gather all 
the sensor measurements to the gateway. However, these data communication will con-
sume the energy in the network and are bound to reduce the lifetime of the network [32, 
38]. Thus, the distributed approach of energy efficient is suitable for anomaly detection 
in WSNs. These urge us to propose a distributed anomaly detection scheme based on 
STASVDD that can be used to detect local and global anomalies for the data collected 
by sensor nodes in WSNs. This scheme is described as follows.

Each sensor node Si runs the N-STASVDD algorithm on its local measurements and 
acquires the local radius. The local radius is used to determine whether the new meas-
urement is abnormal. Each sensor node Si transmits its radius information to its parent 
node Sp . The parent node computes the global radius based on the mean strategy, which 
combines radius information from its own and its children nodes. The parent node sends 
back the global radius to all of its children nodes. For a new received data, the child 
node uses the global radius to determine whether it is a global anomaly.

Research on the problem of anomaly detection, a typical topology of WSNs is applied 
in this paper, as shown in Fig. 1. Taking the network topology structure as an example, our 
scheme for distributed anomaly detection is analyzed in WSNs. The local radius of any single 
node is used to detect local anomaly in the network, which can be obtained by running the 
N-STASVDD algorithm on the local measurements. The global radius can be obtained at any 
parent node of the hierarchy in the network and is used to detect global anomaly. For example, 
the global radius of the parent node S2 can be obtained by computing the mean value of the 
radii from its own and its children S4 and S5 . The node S4 or S5 will implement global anomaly 
detection that needs to apply the global radius from the node S2 . Similarly, if the node S2 or 
S3 uses the global radius from the node S1 to detect global anomaly, then the global radius is 
considered by the local radius information of all nodes in the network in Fig. 1. Therefore, 
this illustrates that the distributed approach can be flexibly to realize anomaly detection for 
the local region or global region of the network on the basis of actual requirement.
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Remark 2  In the process of distribution anomaly detection, the approach only requires to 
exchange the radius information and not to exchange the other information between the 
parent node and the children node, so the communication complexity is O(1) on each link. 
Compared with the centralized approach, all data is centralized to the central node for 
anomaly detection,so the communication complexity is O(lm) on each link. This distributed 
approach greatly reduces communication overhand and thus effectively prolongs the net-
work lifetime. Moreover, with the expansion of the scale of the network, it can significantly 
increase the amount of data communicated in the centralized approach. Meanwhile, it is 
meaningless that the anomaly detection will consume a large amount of limited energy 
in WSNs. Rajasegarar et al. [24, 33] and other related literature have been compared with 
distributed and centralized outlier detection methods. The results show that the distributed 
method is superior to the centralized method. Thus,the distributed approach is more suit-
able for data anomaly detection in WSNs because the approach only needs to transmit a 
small amount of data and can implement the local anomaly detection as required.

The amount of data transmission and data calculation in wireless sensor networks are the 
main energy consumption of network nodes. The greater the amount of data to be calculated 
and the amount of data to be transmitted, the greater the energy consumption will be, and 
vice versa.Furthermore, the distributed approach is not restricted by the hierarchical topol-
ogy of the network and can be applied to any topology of the network. The parent node and 
the child node can be flexible to determine and effectively detect global anomaly. Therefore, 
this distributed approach has certain robustness to the fault nodes in the network, so as to 
improve the accuracy of the anomaly detection in resources-constrained WSNs.

5 � Experiment

5.1 � Simulation Scenario

In this section, the performance of our proposed method is evaluated by applying it to syn-
thetic and real data sets, and compared with the method of FCSVDD and LP-FCSVDD 
in the literature [26]. All experimental evaluations are performed on MATLAB with the 
data sets and are run on Intel Core i5 CPU, 3.30 GHZ, and the OS is windows 7. All of the 
experimental the parameters for this N-STASVDD method are set as follows: the initial 
value of l0 is set to m, p in Eq. (17) is set to 5,and � in Eq. (19) is set to 0.01. The synthetic 
dataset consists of three features with a mixture of Gaussian distributions. For each attrib-
ute of the Gaussian distribution, its mean is randomly selected from (0.3 − 0.6) and the 
variance 0.03, and uniformly distributed outlier ranging between [0.60, 1] is added to each 
feature of the dataset with the ratio of 5%. The data set for 20 sensor nodes is created and 
combined. The combined data comprise 3000 data samples of three features, including 5% 
abnormal data. The entire data set is normalized to the range [0, 1]. Among, the training set 
consist of 2200 data samples and the testing set consists of 800 data samples.

In the first experiment, the synthetic dataset with three attributes is applied in the pro-
posed methods. The RBF kernel is used as the distance based kernel for this evaluation, 

which can be represented as krbf = exp

(‖‖‖yi − yj
‖‖‖
2

∕�2
)

 for data vector yi and yj , where � is 

the width parameter of the kernel function.
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In each simulation, the measured values of the false positive, the true positive, the 
false positives rate (FPR) and the true positive rate (TPR) were recorded. The false posi-
tive means that a anomalous measured value is detected as normal by the detector. The 
true positive means which an actual normal measured value is correctly identified by the 
detector. The FPR is calculated as the percentage ratio between the false positives and the 
actual anomalous measurements. The TPR is calculated as the percentage ratio between 
the true positives and the actual normal measurements. In order to compare several meth-
ods of STSVDD, STASVDD, N-STASVDD, FCSVDD and LP-FCSVDD, receiver operat-
ing characteristic (ROC) curves were acquired for each anomaly detection scheme. The 
ROC curve plots the TPR versus the FPR by varying one of the parameters of the detection 
scheme while the others are fixed. The value of AUC can be obtained by calculated the 
area under the ROC curve, which has better performance if the value is more close to 1.

Figure 3 illustrates the AUC curves for STSVDD, STASVDD, N-STASVDD, FCSVDD 
and LP-FCSVDD in the synthetic dataset by using the RBF kernel. Results are reflected in 
an exponential interval with different � parameter in the range 2−10 ∼ 240 and set the value 
of � to 0.2 in N-STASVDD. From the experimental results, we can see that the introduced 
STASVDD has better performance than STSVDD and FCSVDD. Meanwhile, the proposed 
optimal method of N-STASVDD has a comparable performance contrast to STASVDD 
and is slightly better than LP-FCSVDD.

Figure 4 compares the time complexity of STSVDD, STASVDD, N-STASVDD, FCS-
VDD and LP-FCSVDD with different number of training dataset. Here, RBF kernel is used 
and set the parameter � to 1. Seen from the figure, the time complexity of STSVDD and 
STASVDD is almost the same and slight superior to FCSVDD, which shows that the pro-
posed STASVDD method is effective. When the training dataset is small, the time com-
plexity of STSVDD, STASVDD and FCSVDD are faster than N-STASVDD and LP-FCS-
VDD. This is because N-STASVDD and LP-FCSVDD has to run the QP multiple times 
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under this situation. However, with the continuous expansion of the training dataset, this 
can be clearly seen from Fig. 4 that N-STASVDD gets significantly faster than other three 
approaches. Meanwhile, the time complexity of our proposed N-STASVDD is superior to 
LP-FCSVDD. This is because the N-STASVDD method uses the idea of core-set to reduce 
the computational complexity from O(l3) to O(l). Therefore, when the number of samples 
is greater than 800, the computational complexity of this method is greatly reduced.

5.2 � Real Scenario

In the second experiment, the real dataset is obtained from a cluster of neighboring sen-
sor nodes which is derived from a wireless sensor networks deployed in Grand-St-Ber-
nard. Figure 5 illustrates the deployment. This sub-network consists of seven sensor nodes, 
namely nodes 2, 3, 6, 7, 11, 13 and 14. The sensor node record ambient temperature, sur-
face temperature, solar radiation, relative humidity, soil moisture, watermark, rain meter, 
wind speed and wind direction measurement at 2 min interval. A continuous time period of 
3000 data recorded is used in our experiment in September 2007. To validate our proposed 
method, we select five attributes to carry out the experiment, namely ambient temperature, 
solar radiation, relative humidity, soil moisture and wind speed. The obtained sensor data 
was standardized to zero mean and unit variance, using a data conditioning approach as in 
the literature [33]. Besides some of outliers, which account for 5% of the normal data, are 
generated randomly and introduced to the normal data. A three-level hierarchical struc-
ture of wireless sensor node as shown in Fig. 1, was formed with node 7 as gateway node, 
nodes 11 and 13 as the intermediate parent nodes, and the others as leaf nodes.

The purpose of experiment is to compare the performance of the proposed distributed 
anomaly detection approaches. Several methods were performed in MATLAB and some of 
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the function derived from PRtools and DDtools are utilized. Here, we mainly evaluate the 
STSVDD, STASVDD, N-STASVDD, FCSVDD and LP-FCSVDD strategy for anomaly 
detection. The radius of the sphere R is computed using any border support vector. RBF 
kernel function was considered in the evaluation. The training set is composed of 80% data 
samples and the testing set is composed of 20% data samples. Results are reported for the 
global radius calculation at the most top parent node (gateway node) in the network topol-
ogy. The strategy of the global radius computation adopts the median value of all radii for 
the distributed detection scenario.

Figure 6 shows graphs of the ROC curves obtained for STSVDD, STASVDD, N-STAS-
VDD, FCSVDD and LP-FCSVDD using RBF kernel. � is fixed at 1, C is varied from 0.01 
to 1 in intervals of 0.01 and the value of � is set to 0.2 in N-STASVDD. The graph indi-
cates that the proposed N-STASVDD scheme shows better detection performance than 
other schemes in Grand-St-Bernard dataset. Among them, the AUC value of STSVDD is 
0.9599, the AUC value of STASVDD is 0.9814,the AUC value of R-STASVDD is 0.9825, 
the AUC value of N-STASVDD is 0.9883,the AUC value of RN-STASVDD is 0.9891, 
the AUC value of FCSVDD is 0.9620, the AUC value of LP-FCSVDD is 0.9834. Mean-
while, Table 1 shows the time complexity of the above methods in the case of obtaining the 

Fig. 5   Grand-St-Bernard deployment in SensorScope System

Table 1   The time complexity of 
five methods

Method Time(s) AUC​

RN-STASVDD 1.465 0.9891
N-STASVDD 1.536 0.9883
LP-FCSVDD 2.654 0.9834
R-STASVDD 24.317 0.9825
STASVDD 26.425 0.9814
FCSVDD 32.215 0.9620
STSVDD 23.643 0.9599
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ROC curve of Fig. 5. Obviously, as can be seen from the value, STASVDD was superior to 
FCSVDD with a significant difference. N-STASVDD is slightly better than LP-FCSVDD. 
Meanwhile, R-STASVDD and RN-STASVDD are the results of the first part of the simu-
lation data set. The result is better than the corresponding STASVDD and N-STASVDD, 
respectively, because the simulation data set is more normal distribution than the actual 
data set.

Figures 7 and 8 show that graphs of the FPR and TPR exploit distributed detection sce-
narios of the above five schemes with varying � and C values. Here, it is required to fix one 
of the parameters at a time and the value of � is set to 0.2 in N-STASVDD. In Fig. 7a, FPR 
gradually increased with the increase of C. In the range of C, the value of the FPR of five 
schemes is the best when C is equal to 0.1. Among them, the FPR value of N-STASVDD 
is 3%, slightly lower than the other schemes. In Fig.  7b, the sensitivity of the detection 
scheme with C can be revealed. Better performance is revealed for values beyond 0.25 of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

STSVDD(auc=0.9599)
FCSVDD(auc=0.9620)
STASVDD(auc=0.9814)
R−STASVDD(auc=0.9825)
LP−FCSVDD(auc=0.9834)
N−STASVDD(auc=0.9883)
RN−STASVDD(auc=0.9891)

Fig. 6   The graph of ROC curve

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C

F
P

R

FPR(STSVDD)

FPR(FCSVDD)

FPR(STASVDD)

FPR(LP−FCSVDD)

FPR(N−STASVDD)

(a) FPR versus parameter (C)

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

T
P

R

TPR(N−STASVDD)
TPR(LP−FCSVDD)
TPR(STASVDD)
TPR(FCSVDD)
TPR(STSVDD)

(b) TPR versus parameter (C)

Fig. 7   The graphs of FPR and TPR



1253A Lightweight Anomaly Detection Method Based on SVDD for Wireless…

1 3

five schemes. In Fig. 8a, the FPR value of N-STASVDD is better than the other schemes 
with varying � values, and the FPR value of N-STASVDD gets the minimum value of 
5% when � is equal to 0.02. In Fig. 8b, the best detection performance is reflected for � 
between 0.02 and 1.5 in five schemes, and then all of TPR value reach more than 85% and 
the performance of N-STASVDD was best. Seen from these pictures, STASVDD reveals 
significantly better performance than STSVDD and FCSVDD, and N-STASVDD reveals 
slightly better performance than LP-FCSVDD. Therefore, these results demonstrate that 
the distributed N-STASVDD scheme achieves comparable accuracy compared with the 
other schemes. In general, the proposed N-STASVDD has achieved good performance by 
using the distributed anomaly detection in WSNs.

6 � Conclusions

Several of the existing anomaly detection methods in WSNs are analyzed based on the 
spatial and temporal correlations of the collected data. However, the collected data are 
independent and identically distributed, causing outliers to independently occur in each 
attribute. Thus, spatiotemporal and attribute correlations of the collected data must be 
considered to improve the detection performance. Therefore, a light-weight N-STASVDD 
approach is presented in this paper to address the problem of anomaly detection in WSNs.

The proposed approach is based on SVDD combined with spatiotemporal and attribute 
correlations of collected data in WSNs. Since SVDD is unsuitable for energy-constrained 
WSNs because it requires the solution for a computationally intensive quadratic program-
ming problem. As for the computation complexity, a novel optimized method that uses 
core-sets in STASVDD (N-STASVDD) is presented to reduce the computation complex-
ity from O(l3) to O(l). Given that data transmission is the main energy consumption in 
WSNs, N-STASVDD performs anomaly detection in a distributed manner. To evaluate 
and validate the proposed method, both synthetic and the real WSNs dataset deployed in 
Grand-St-Bernard were used. We compared several methods of STSVDD, STASVDD, 
N-STASVDD, FCSVDD, and LP-FCSVDD. The results demonstrate that the distributed 
N-STASVDD achieves better detection accuracy and satisfactory performance in WSNs. 
This article uses a shorter sampling time of data in WSNs. The issue of a long sampling 
time needs to be further discussed in the follow-up work. Meanwhile, for the distributed 
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and centralized detection approaches, the work to be studied in the next stage is the math-
ematical theoretical analysis and experimental verification of the energy consumption 
problem.
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