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Abstract
Camera placement is very important for surveillance applications. Proposed work presents 
a new method of optimum placement of visual sensors for maximum coverage of the prede-
fined surveillance space. The surveillance space is modeled as priority areas (PAs), obsta-
cles and feasible locations for placement of cameras. We are using PTZ (pan, tilt, zoom) 
cameras, which not only reduces occlusion due to randomly moving objects in the PA but 
also increases the covered area compared to pin hole cameras. The proposed approach will 
be useful for crowd monitoring in a big surveillance space holding multiple events and 
having multiple entrances. The problem of optimum camera placement for maximum cov-
erage considering both static and randomly moving obstacles is mapped as a Grey Wolf 
Optimization (GWO) problem. The proposed algorithm is computationally lighter and con-
verges faster as compared to Genetic Algorithm (GA) based camera placement and Particle 
Swarm Optimization (PSO) based camera placement algorithm. The concept is validated 
using simulation as well as the experimental results.

Keywords Camera placement · GWO · Obstacles · Pan · Tilt · Zoom · Priority area · Visual 
sensors · FoV · Surveillance

1 Introduction

The use of video surveillance has become very popular for investigation purpose as they 
act as a deterrent of crime. Therefore, surveillance cameras are installed in both indoor 
and outdoor environments [1, 2]. A camera network is essential for surveillance of indoor 
or outdoor spaces, as a single camera cannot cover discrete events in a large surveillance 
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space. The major challenge for such a camera network is to cover PAs in a surveillance 
space, like multiple entrances and locations of various important activities, with opti-
mum number of cameras and minimum predefined resolution, considering both static and 
dynamic occlusion. To cover such multiple distributed events with minimum required reso-
lution, we need an algorithm that determines optimum locations of the cameras along with 
their pan, tilt and zoom levels [3, 4].

Identifying optimum configuration of camera network for such coverage is a combi-
natorial optimization problem. It will be difficult for simple search techniques to deter-
mine optimum placement configurations [5]. GA [4, 6] and PSO [7] have been used in the 
past for camera placement problem. Apart from GA and PSO, meta heuristics approach 
GWO [8] has shown good results in a variety of fields such as relay node (RN) placement 
problem [9–13], channel estimation in wireless communication [14], photovoltaic systems 
[15], wireless body area networks [16] and image processing [17]. GWO is inspired by the 
behaviour of grey wolves to attack the prey for hunting and is preferred by many research-
ers for optimization purpose because of its fast rate of convergence and robust behaviour 
[8, 15]. As compared to other optimization algorithms, GWO requires fewer operators and 
parameters to adjust. GWO has performed better than algorithms like ACO (Ant Colony 
Optimization), GA and PSO for general optimization problems. This motivated us to use 
GWO as an optimization algorithm for developing an optimum camera placement strategy. 
Author’s contributions to the paper are as follows.

• In this paper, we propose a camera placement algorithm for covering each PA at least 
by 3 cameras so as to enhance the information content of images and to reduce the 
effect of occlusion due to randomly moving obstacles. Even if randomly moving 
obstacle blocks the PA covered by one camera, the other two cameras will surface our 
requirement.

• The paper proposes a meta-heuristics approach GWO that optimizes the coverage of 
discrete PAs in a surveillance space by calculating optimum coordinates of the cameras 
along with their pan, tilt and zoom levels. GWO is computationally lighter as compared 
to GA and PSO and is faster in execution.

The article is divided into 7 sections. A literature review is presented in Sect. 2. The prob-
lem statement is explained in Sect. 3. Mathematical formulation of the floor plan and cov-
erage matrix are discussed in Sect. 4. GWO mapping with the current problem and GWO 
implementation are discussed in Sect. 5. Results are explained in Sect. 6. We conclude our 
work in Sect. 7.

2  Literature Review

Several approaches have been proposed in the past to solve optimum guard location prob-
lem for a polygon area, for example, art gallery problem (AGP) [5] [18–20] that aims to 
visualize maximum area with minimum number of guards. The solutions presented to 
AGP were based on assumptions like unlimited field of view and infinite servo precision 
that makes them unsuitable for real world applications. The effects of random occlusion in 
offline camera placement were initially addressed by [21] which was later continued by [22] 
using a pin hole camera. Authors in [23] used binary integer programming (BIP) method 
for optimizing the orientations of a PTZ camera. The BIP method is computationally 
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complex and is not useful for large number of cameras. Authors in [24] used cheap motion 
sensors for real time control of PTZ cameras, but they did not optimize pan and tilt angles 
of a PTZ camera and also compromised with the image quality. Authors in [25] addressed 
the problem of detecting an unexpected activity from a large surveillance space. Fore-
ground extraction method was adopted to mark people and objects in a surveillance space. 
Outliers from the daily surveillance patterns of a city were identified and considered as 
unexpected activity or area of interest. Authors in [26] used GA for optimizing pan and 
tilt angles of a PTZ camera for photogrammetric network. However, the algorithm is too 
complex to be used for 3D spaces. Authors in [4] used GA to optimally cover discrete PAs 
in a surveillance space with minimum required zoom incorporating the static obstacles. 
Authors in [7] used PSO to find the optimum camera orientations for 2D space by keep-
ing the camera location fixed. Authors in [27] presented a camera placement approach that 
aims at minimizing the occlusion for object detection and tracking applications. Authors 
in [28] presented a framework that finds optimum number of sensors with their locations 
and orientations in a 3D terrain having multiple objectives. The framework finds a trade-
off between conflicting objectives of covering maximum area at a low acquisition cost of 
sensor deployment. Authors in [29] proposed a video surveillance system based on face 
detection and recognition method that collects videos from multiple surveillance cameras 
to track and detect people over space and time. Authors in [30] used simulated annealing 
to find optimum camera configurations in a multi-camera system. The algorithm performs 
similar to BIP for small scale problems but performs better than BIP for large scale prob-
lems. Authors in [31] proposed a two phase camera placement algorithm based on BIP to 
find optimum camera coordinates in a large surveillance space. Phase 1 finds minimum 
number of cameras to cover a surveillance space while phase 2 achieves maximum cover-
age with the cameras established from phase 1. A low cost camera placement algorithm 
for bridge surveillance was proposed in [32]. They used uniqueness score and local search 
algorithm (ULA) that gives greater importance to the areas often left uncovered by other 
cameras. ULA yields better results than greedy algorithm and GA in terms of coverage and 
average surveillance cost.

Camera placement problem in a surveillance space is analogous to RN placement prob-
lem in WSN. Authors in [9–13] addressed RN placement problem using meta heuristic 
algorithms. In [9], if a part of network is damaged, the number of packets reaching the 
sink is decreased. So for correcting such cases, RNs are optimally placed using GWO to 
reactivate the network. GWO was used again in [10] to optimize the placement of RNs in 
a WSN. They used convex hull approach to restrict the deployment area of RNs and used 
alpha shapes to identify the structure and boundary of obstacles. Authors in [11] used BAT 
algorithm, interior search algorithm and moth flame optimizer to find the optimum location 
of RNs to achieve full coverage. Among the three bio-inspired algorithms used in [11], 
MFO required the least number of RNs to cover the entire deployment region. Authors in 
[12] used PSO to optimally place RNs in a WSN. They focused on minimizing the aver-
age distance between a RN and a sensor node to achieve an energy efficient network. An 
enhanced Ant Bee Colony (ABC) based RN deployment algorithm was proposed in [13] to 
extend the lifetime of a network. The first phase of the algorithm includes construction of 
network backbone structure by deploying RNs in the network, while in the second phase; 
the RNs are optimally placed using ABC. Although similar, relay node placement does not 
use directional sensors like a camera. We consider camera sensor that involves optimiza-
tion of a variety of parameters like its location, pan angle, tilt angle and zoom level.

The proposed camera placement algorithm enhances the information content of images 
as well as reduces the effects of randomly moving obstacles. Also, the proposed method 
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is using a better optimization technique (GWO) which converges faster than the existing 
methods.

3  Problem Statement

Monitoring large surveillance space having distributed multiple activities with a predefined 
resolution is a challenging task. The aim of the proposed work is to determine the optimum 
location, pose (pan and tilt angles) and zoom level of each camera to achieve maximum 
coverage of all predefined PAs of a large surveillance space satisfying the task-based con-
straints which may be static or dynamically varying according to the requirements. The 
major constraint is covering all distributed PAs by at least 3 cameras for capturing maxi-
mum information content in the images. This problem is mapped as an optimization prob-
lem. The proposed algorithm is computationally simple as the methodology is based nei-
ther on calibration of cameras nor on learning environment.

3.1  Coverage of Priority Points

Past research [4] had considered only static obstacles and the effects of randomly moving 
obstacles were overlooked. In order to achieve optimum coverage of the PAs in a large sur-
veillance space with N cameras and randomly moving obstacles, we propose each PA to be 
covered by a minimum of 3 cameras. Let us consider the PAs in a large surveillance space 
covered by 3 cameras (Fig. 1), the following cases may occur.

3.1.1  Case I—Pillar as an Obstacle

In Fig. 1a we have 4 PAs, 3 cameras and one obstacle. Even with the presence of big obsta-
cle like a pillar, we could place the cameras in such a way that all PAs are covered by 3 
cameras from different angles.

Fig. 1  a All PAs covered by 3 cameras. b FoV of cam 1 and cam 2 blocked by randomly moving obstacles 
(men)
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3.1.2  Case II—View of 2 Cameras Blocked by Random Obstacles at Different Times

Figure 1b shows that the randomly moving obstacles (men in this case) block the view of 
cam 1 and cam 2 at time t1 and t2 respectively ( t1 ≠ t2 ). In this case, cam 3 and either of cam 
1 or cam 2 cover PA 2 from different angles.

3.1.3  Case III—View of 2 Cameras Blocked by Random Obstacles at the Same Time

Figure 1b shows the worst case scenario where randomly moving obstacles (men) block 
the view of cam 1 and cam 2 at the same time t . Even in the worst-case scenario, PA 2 is 
covered by one camera (cam 3).

We propose a camera placement algorithm that covers all predefined PAs with mini-
mum 3 cameras to reduce the effects of occlusion due to randomly moving obstacles. This 
also improves information content in images as the surveillance area is covered from 3 
different angles. The angle between field of view (FoV) of adjacent cameras is equal to or 
slightly greater than 60 degrees to allow cameras to cover a larger space.

3.2  Camera Model

PTZ camera is used to capture images as it can cover bigger space in comparison to a pin 
hole camera as it is panning continuously. Some of the important parameters of PTZ cam-
era are following.

FoV of a simple camera is presented in Fig. 2a. PTZ camera can rotate at an angle of ±� 
along its tilt and pan axis to have an extended FoV as shown in Fig. 2b.

Figure 3a shows the camera model used in [23]. A rotation along x-axis corresponds to 
tilt (θ1) while a rotation around y-axis corresponds to pan (θ). Figure 3b shows the camera 
model used in this work incorporating zoom limits as a function of depth of view. The 
depth of view is the distance between the nearest and the farthest object appearing in the 
FoV of a camera. The nearest and the farthest distance are denoted by near focus plane and 
far focus plane respectively as shown in Fig. 3b.

In the proposed algorithm, we aim to cover each PA by 3 cameras. Figure 4a shows that 
the PA c is covered by FoV of 3 cameras Cam 1, Cam 2, and Cam 3. We introduce the con-
cept of line of sight of a camera that helps us to figure out the effect of an obstacle on the 

Fig. 2  a FoV of a simple camera. b Extended FoV of a PTZ camera
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FoV of a camera. If an obstacle occludes the FoV of a camera from the line of sight, the 
occluded coverage area is removed from the FoV as shown in Fig. 4b.

Let us imagine there are 4 discrete PAs located at L1, L2, L3 and L4 in the surveillance 
space as shown in Fig. 5a. Coverage of these discrete PAs depends on their distribution in the 

Fig. 3  a Camera model used in [23]. b The depth of view of a PTZ camera

Fig. 4  a PA c covered by 3 cameras. b FoV occluded by an obstacle

Fig. 5  a Multiple cameras required to cover distributed PAs. b Single camera covering all PAs
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surveillance space and location of the cameras. For instance, we need 4 cameras to cover the 
PAs shown in Fig. 5a while the PAs in Fig. 5b can be covered using a single camera. The pro-
posed work aims to achieve optimum location of the camera for covering maximum such PAs.

3.3  Surveillance Space Model

Surveillance space is modeled in terms of cubical grids. A point in the surveillance space is 
considered to be covered if it lies in the FoV of three cameras with minimum required resolu-
tion. In this paper, user defines a set of high activity PAs, location of the obstacles with its 
shape and size and feasible locations for camera placement using a user friendly graphical 
user interface (GUI). A GUI shown in Fig. 6 defines PAs, obstacles and feasible locations for 
camera placement with cubical dimensions m ∗ m ∗ m where m is the largest side of the PA/
obstacle.

4  Mathematical Formulation of the Floor Model

We consider a floor plan of m ∗ m ∗ m grid points. PAs are denoted by matrix P as shown in 
Eqs. 1 and 2.

(1)P =
|||pxyz

|||m∗m∗m

Fig. 6  Feasible locations for camera placement, obstacles (pillars) and PAs defined with help of GUI
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Feasible location for camera placement is denoted by matrix F as shown in the Eqs. 3 
and 4.

Obstacles are denoted by matrix O as shown in Eqs. 5 and 6.

For each camera location, visibility measurement of all points covered by the camera is 
determined and defined as visibility matrix. Let a camera located at ( xc , yc, zc ) with a pan 
angle pc , tilt angle tc and a zoom level Zm covers a 3D point ( xp , yp, zp ). Visibility matrix of 
the 3D point viewed by a camera with different pose ( pc, tc ) and zoom levels can be defined 
by 9 dimensional matrix (Eq. 7).

The 9D matrix is reduced to 4D matrix using Eqs. 8–10 as 9D matrix is very inconven-
ient to work with. We use array indexing to convert 3D coordinates 

(
xc, yc, zc

)
 of a camera 

into 1D point ( i ) as shown in Eq. 8.

N in Eq. 8 represents the total number of cameras. Similarly, each pose can be mapped 
into 1D point, represented by j in Eq. 9. These functions are effectively creating a one-
dimensional index for multi-dimensional points.

For each pose ( pc, tc)

M in Eq. 9 represents various pan or tilt angles of a camera.

ZmL in Eq.  10 represents the number of various zoom levels of a camera and ‘ Zm ‘ 
range from 1 to ZmL . Now the visibility matrix shown in Eq. 7 is reduced to 4 dimensional 

(2)pxyz =

{
1, if x, y, z is the priority area

0, else

(3)F =
|||fxyz

|||m∗m∗m

(4)fxyz =

⎧
⎪⎨⎪⎩

1, if x, y, z is a feasiblity area

0, else

(5)O =
|||oxyz

|||m∗m∗m

(6)oxyz =

⎧
⎪⎨⎪⎩

1, if x, y, z is a obstacle

0, else

(7)A = [xp, yp, zp, xc, yc, zc, pc, tc, Zm]

(8)i =
(
xc − 1

)
∗ N ∗ N +

(
yc − 1

)
∗ N + zc

(9)j = M ∗
(
pc − 1

)
+ tc

(10)Zoom
(
Zm

)
=
(
high ZmL − low ZmL

)
∗

Zm

ZmL
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matrix. The performance measure of all visible points due to the camera pose are calcu-
lated and represented as 4D visibilty matrix A in Eq. 11. Each term in the matrix A denotes 
the visibility measure of a point k viewed by a camera located at point i with pose j and 
zoom level Zm.

where

From the visibility matrix of all cameras, we should be able to calculate the number of 
cameras covering a point k . The covered points are now classified into priority and non 
priority areas. The PAs are further classified into PAs covered by 3 cameras, 2 cameras, 1 
camera and placed in A3,A2, and A1 respectively. A point k is assumed to be covered by 3 
cameras if it lies in the FoV of 3 cameras placed at different locations with differant pose 
and zoom levels.

Figure 7 represents the FoV of 3 cameras cam 1, cam 2 and cam 3 to cover the PAs P1, 
P2, P3, P4, P5 and P6. The visibility matrix of the PAs P1 and P2 covered by 3 cameras 
(cam1, cam 2 and cam 3) will be denoted by A3

(
i, j, k, Zm

)
 , visibility matrix of the PAs P3 

and P4 covered by 2 cameras (cam 1 and cam 3) will be denoted by A2

(
i, j, k, Zm

)
 , visibility 

matrix of the PAs P5 and P6 covered by 1 camera (cam 3) will be denoted by A1

(
i, j, k, Zm

)
 

and visibility matrix of non PAs NP1 and NP2 will be denoted by An

(
i, j, k, Zm

)
.

4.1  Coverage Matrix

We define the coverage matrix based on following inferences

1. A single lens is used as an optical sensor. Focal distance from the object is measured 
from the center of the lens.

(11)A =
[
aijkZm

]
m3∗M2∗m3∗ZmL

(12)aijkZm =

⎧
⎪⎨⎪⎩

1, if point k is covered

0, else

Fig. 7  Priority areas (PAs) covered by 3 cameras, 2 cameras, 1 camera and Non PAs covered by 1 camera
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2. Lens aperture is assumed to be constant throughout the process.
3. Geometric distortion effect and blurring of objects has been ignored.

Coverage matrix is defined in Eqs. 13–18.

where

A
(
i, j, k, Zm

)
 denotes the visibility matrix at a point in the surveillance space calculated in 

Eq. 11. n, u and v denotes the weightage given to the PAs covered by 3 cameras, 2 cam-
eras and 1 camera respectively and w denotes the weightage given to the non PAs that are 
covered.

The coverage matrix (or fitness function) in Eqs.  13–18 should maximize the PAs cov-
ered by 3 cameras and minimize the PA covered by 2 cameras and 1 camera respectively. To 
achieve this objective, relative measure of the weighing functions is kept as n > u>v > w which 
give higher weight to the PAs covered by 3 cameras thus reducing the probability of occlu-
sion. We maximize the value of C (Eq. 13) using GWO.

The coverage matrix is subject to the constraint

where θadjacent is the angle between 2 adjacent cameras in the surveillance space. Equa-
tion 19 ensures that all cameras in a surveillance space are separated by a minimum angle 
and allows the cameras to cover a larger space.

5  GWO Mapping

The proposed work uses meta heuristic algorithm GWO [8] to find optimum locations, pose 
and zoom levels for visual sensors to cover each PA in a surveillance space by at least 3 cam-
eras. A wolf (Wi,, 1 < i < N,N = total number of cameras) in GWO denotes a candidate solu-
tion and the entire population comprises of N number of wolves searching for the prey or the 
optimum solution. Each wolf ( Wi ) in the proposed algorithm represents a camera location (x, 
y, z coordinates), pose (pan and tilt angles) and zoom level in form of a vector shown in Eq. 20.

where 1 < i < N.

Each wolf will be assigned a weightage according to the fitness function (coverage matrix 
in Eq. 13). The values of the vector (Eq. 20) will be the optimum solution which gives opti-
mum position, pose and zoom of a camera to achieve maximum coverage of all PAs with 

(13)

C = n
∑

priority(3−cam)

Px + u
∑

priority(2−cam)

Qy + v
∑

priority(1−cam)

Rz + w
∑

nonpriority

Hs, 0 < n, u, v,w,C < 1

(14)Px = A3

(
i, j, k, Zm

)
if priority area is covered by 3 cameras

(15)Qy = A2

(
i, j, k, Zm

)
if priority area is covered by 2 cameras

(16)Rz = A1

(
i, j, k, Zm

)
if priority area is covered by 1 cameras

(17)Hs = An

(
i, j, k, Zm

)
for non priority areas

(18)n + u + v + w = 1

(19)θadjacent ≥ 600

(20)W
i
= ||Xcoord(i)

||Ycoord(i)
||Zcoord(i)

||Pan(i)|Tilt(i)|Zoom(i)|
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each PA being covered by at least 3 cameras. The algorithm converges when the value of C in 
Eq. 20 becomes maximum.

From Eq. 20, we have

Variable values x1, x2, …… ..xN in Eq. 21 represent the set of x coordinates for N cam-
eras. Similarly variable values y1, y2, …… ..yN and z1, z2, …… ..zN in Eqs. 22 and 23 rep-
resent the set of y and z coordinates for N cameras.

Variable values p1, p2, …… ..pN and t1, t2, …… ..tN in Eqs.  24 and 25 represent the 
set of pan angles and tilt angles for N cameras. Variable values Zm1, Zm2, … .ZmN in Eq. 26 
represent the set of zoom level for N cameras.

In this way, a population of wolves in GWO represents a set of cameras belonging to the 
solution space. Our problem is now redefined to search for the fittest individual from solu-
tion space. The fitness function for each wolf is obviously the coverage matrix calculated in 
Eq. 13. The optimization criterion is set for maximization. A GWO population comprising 
of N wolves (each wolf representing a camera) is shown in Fig. 8.

(21)Xcoord(i) = [x1, x2,…… ..xN]

(22)Ycoord(i) = [y1, y2, …… ..yN]

(23)Zcoord(i) = [z1, z2, …… ..zN]

(24)Pan(i) = [p1, p2,…… ..pN]

(25)Tilt(i) = [t1, t2,…… ..tN]

(26)Zoom(i) = [Zm1, Zm2,…… ..ZmN]

Fig. 8  GWO population of N wolves
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5.1  GWO Implementation

The search process of GWO is initialized by a set of wolves (candidate solutions) search-
ing for the prey (optimum solution). The position of each wolf is represented by a vector 
shown in Eq. 27 where N denotes the number of wolves in the population

The fitness of a candidate solution/wolf in GWO is calculated using Eq. 13. The top 3 
fittest wolves in the population are denoted by α, β and δ and the rest of the population is 
denoted by ω. In most cases, α decides the hunting, sleeping and walk decisions for a pack 
of wolves and entire pack follows the decision made by α. In some democratic cases, α is 
seen to follow the decisions made by β and δ. The next level in the hierarchy is β. They 
help α to make decisions. The lower level in the hierarchy is ω. They simply follow the 
rules. The hunting behavior of the wolves consists of 3 major steps namely chasing the 
prey, encircling the prey, and finally attacking the prey.

5.1.1  Encircling the Prey (Exploration)

Wolves encircle the prey in order to stop its movement. The encircling process can be 
mathematically formulated in Eqs. 28–29.

Here t shows the current iteration, X⃗p denotes the position vector of the prey and X⃗ 
denotes the position vector of the wolf, X⃗(t + 1) is the updated position of the wolf towards 
the prey. The coefficients ���⃗A  and ���⃗C  are calculated as per Eqs. 30 and 31.

The value of a⃗ is reduced from 2 to 0 over the iterations. Vectors r⃗1 and r⃗2 varies ran-
domly in the interval [0,1].

5.1.2  Hunting the Prey (Exploitation)

We assume that the position of the prey is best known to first three best solutions α, β and 
δ. Therefore, we save the position of the first three best solutions as X⃗α , X⃗β and X⃗δ for the 
current iteration t and oblige all other wolves in the population (ω) to update their positions 
according to X⃗α , X⃗β and X⃗δ as shown in Eqs. 32–34.

In Eq.  32, XWi
 denotes the position of wolf Wi , X⃗α is α wolf’s position and D⃗α is 

updated α position. Similarly, X⃗β is β wolf’s position and D⃗β is the updated β position. 
X⃗δis δwolf

�

s position and D⃗δ denotes the updated δ position.C1,C2, C3 are calculated as per 

(27)���⃗X = {x[1], x[2], x[3]…… .x[N]}

(28)D⃗ =
|||C⃗.X⃗p(t) − X⃗(t)

|||

(29)X⃗(t + 1) = X⃗p(t) − A⃗.D⃗

(30)���⃗A = 2a⃗.⃗r1 − a⃗

(31)���⃗C = 2r⃗2

(32)D⃗α =
|||C⃗1.X⃗α − X⃗Wi

|||, D⃗β =
|||C⃗2.X⃗β − X⃗Wi

|||, D⃗δ =
|||C⃗3.X⃗δ − X⃗Wi

|||
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Eq. 31. The positions ( ⃗X1 , X⃗2 , X⃗3 ) of a wolf for the current iteration are evaluated as per 
Eq. 33 [8].

Coefficients A1,A2, A3 are calculated as per Eq.  30. The wolf ( Wi ) finally updates its 
position towards the prey (optimum solution) as shown in Eq. 34.

GWO hunt the prey on basis of α, β, and δ, therefore it is prone to be stuck at local 
optima. Although some exploration was done during encircling the prey, GWO needs 
more operators to carry out exploration and to search for better solutions.

5.1.3  Searching for the Prey (Exploration)

Coefficient vector ���⃗A  plays an important role in movement of a wolf towards the prey 
(Eqs. 29–30). Figure 9 shows that ���⃗A  take random values greater than 1 to enable the 
wolves diverge from the prey and search for better solutions [8].

Vector ���⃗C  is another important factor used for exploration in GWO. As evident from 
Eq. 28, the value of distance ( ⃗D ) depends on ���⃗C  while encircling the prey. Instead of 
decreasing ���⃗C  linearly, we deliberately keep ���⃗C  as random as possible in the interval [0, 
2] to emphasize exploration [8]. This factor is very important for avoiding local optima 
in both initial as well as final iterations.

5.1.4  Convergence of GWO

During optimization of GWO, ω wolves iteratively improve their fitness according to 
α, β, and δ. When the improvement in the fitness of ω wolves reaches a threshold and 

(33)X⃗1 =
|||X⃗α − A⃗1.

���⃗(Dα)
|||, X⃗2 =

|||X⃗β − A⃗2.
���⃗(Dβ)

|||, X⃗3 =
|||X⃗δ − A⃗3.

���⃗(Dδ)
|||

(34)X⃗(t + 1) =
(
X⃗1 + X⃗2 + X⃗3

)
∕3

Fig. 9  a wolf diverging away from the prey to search for better solutions when |A| > 1. b wolf moving 
towards the prey when |A| < 1
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fitness of ω wolves cannot be further improved on the basis of the fittest solutions α, β 
and δ, GWO is said to converge [8]. The pseudo code for the proposed work is shown by 
Algorithm 1.

6  Experimental Results

The proposed algorithm is implemented using Python and the floor plan is of size 
100*100*5 m3 which is divided into cubical grids of size 1*1*1  ft3. For simulation, we 
place 50 cameras throughout the surveillance space to cover 60, 80 and 100 distributed 
PAs with static and dynamic obstacles. The locations of the static obstacles are shown in 
Table 1.

Figure  10a shows the random camera placement of 50 cameras in the surveillance 
space. The FoV of the cameras is represented by cones. The locations and pose of all cam-
eras are calculated for maximum coverage of PAs at least by 3 cameras using the proposed 
algorithm. The optimum camera locations after implementing the algorithm are shown in 
Fig. 10b–d respectively for 60, 80 and 100 PAs. It is seen that all PAs are covered by at 
least one camera, some are covered by 2 cameras, but maximum PAs are covered by 3 
cameras. The result is shown in Fig. 11.

Table 1  Static obstacles used for 
simulation

Obstacle no. x y Z

1 62 45 5
2 34 22 5
3 24 76 5
4 91 49 5
5 56 68 5
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Fig. 10  a Random camera placement. b GWO based camera placement for coverage of 60 PAs. c GWO 
based camera placement for coverage of 80 PAs. d GWO based camera placement for coverage of 100 PAs

Fig. 11  Maximum PAs are 
covered by 3 cameras in GWO 
camera placement
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Table 2 shows the optimum camera coordinates and poses of 25 (out of 50) PTZ cam-
eras calculated using the proposed algorithm.

GWO based camera placement is compared with random camera placement, GA cam-
era placement [4] and PSO camera placement [7] for surveillance space coverage. Fig-
ure 12 shows that 50 cameras provide a coverage of 29, 66 and 78% for random camera 
placement, GA camera placement and PSO camera placement respectively; while in the 
proposed GWO camera placement algorithm, only 45 cameras provide 100 percent cov-
erage which significantly reduces the hardware cost of any surveillance application.

6.1  Experimental Evaluation

We conducted 3 experiments to validate the proposed algorithm. The aim of all experi-
ments was to cover distributed PAs in a surveillance space of size 10*10*5 m3, at least 
with 3 cameras per PA. We use 4 PTZ cameras for the experiments with static as well as 
random obstacles in the surveillance space. The use of 5 discrete clusters of PAs and 4 PTZ 
cameras covers all important activities in a big surveillance hall from different angles. The 
experimental evaluations are performed in Senior Machine Lab, DTU, DBMS Lab, DTU 
and Machine Shop, DTU which are cubical in shape. Senior Machine Lab, DTU has 2 

Table 2  Optimum parameters of 
25 cameras obtained from GWO 
implementation

Cameras x y Z Pan Tilt Zoom

1 38 42 4 15 45 2
2 53 86 3 50 15 9
3 73 41 2 47 33 8
4 8 7 3 − 54 − 48 1
5 5 74 3 − 30 84 2
6 25 87 2 65 − 64 2
7 47 80 5 − 17 15 6
8 67 79 2 38 − 39 9
9 23 51 4 10 − 41 6
10 2 87 5 − 42 85 4
11 45 6 4 36 45 5
12 30 16 5 58 − 62 7
13 39 52 2 − 48 − 80 8
14 47 32 3 36 39 2
15 54 8 4 − 34 60 5
16 52 18 4 − 50 65 7
17 71 29 5 60 − 80 8
18 13 78 3 75 44 6
19 27 66 3 15 35 5
20 19 87 5 − 18 65 8
21 46 42 3 60 − 77 7
22 53 61 2 − 39 − 38 2
23 33 60 3 45 − 76 4
24 2 87 4 − 44 66 6
25 47 80 4 37 45 4
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pillars at the center of the hall which we consider as obstacles. DBMS Lab, DTU has one 
obstacle at the center of the hall and has 2 high activity main doors. Machine shop DTU 
has 2 obstacles at the center of the shop and has 3 high activity main doors. Experimental 
evaluation of the proposed algorithm in 3 diversely structured surveillance halls with dis-
tributed PAs and obstacles allows us to validate our algorithm. We considered all locations 
on the wall as feasible location for camera placement. Main doors of a hall need to be cov-
ered with adequate number of cameras for any surveillance purpose as multiple doors are 
high activity areas. The PTZ camera used is shown in Fig. 13.

Fig. 12  Performance of GWO 
based camera placement 
compared with random camera 
placement, GA based camera 
placement and PSO based 
camera placement in terms of  % 
coverage

Fig. 13  PTZ camera used for 
experimental evaluation of the 
proposed algorithm
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Fig. 14  Camera coverage performance for experiment 1. a Experimental Setup b GUI mapping of the 
experimental setup viewed from 30° angle, c Image taken from camera 1. d Image taken from camera 2. e 
Image taken from camera 3. f Image taken from camera 4
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6.1.1  Experiment 1

We consider 5 distributed PAs (P1, P2, P3, P4 and P5) to be covered by 4 PTZ cam-
eras (C1, C2, C3 and C4) in Senior Machine Lab, DTU of size 10*10*5 m3, having 2 
static obstacles (O1 and O2) and 2 randomly moving obstacles as shown in Fig. 14a. 
GUI mapping of PAs and obstacles in the surveillance space viewed from an angle 
of  300 is shown in Fig. 14b. The obstacle and priority area coordinates are shown in 
Table 3.

We are considering P3 occluded by a pillar (Fig.  14e) and P5 and P2 occluded by 
randomly moving obstacles (Fig. 14e, f). We aim to cover all PAs with at least 3 cam-
eras by optimally placing 4 PTZ cameras. The camera coordinates obtained from the 
proposed algorithm are shown in Table 4.

The images captured by 4 cameras are shown in Fig.  14c–f. From Fig.  14c–f, it 
is seen that all PAs are covered by at least 3 different cameras with static occlusion. 

Fig. 14  (continued)

Table 3  Obstacle and PA 
coordinates for experiment 1

Areas x y Z

Obstacle 1 (Pillar O1) 5 4 5
Obstacle 2 (Pillar O2) 5 8 5
Priority 1 (P1) 10 4 2
Priority 2 (P2) 10 6 2
Priority 3 (P3) 5 10 4
Priority 4 (P4) 5 7 2
Priority 5 (P5) 2 10 4

Table 4  Camera coordinates for 
experiment 1

Cameras x y Z Pan Tilt Zoom

C1 10 1 3 33 4 5
C2 10 3 2 46 − 82 6
C3 0 3 3 64 30 5
C4 0 7 2 26 − 12 4
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However, after incorporating the dynamic occlusion, P2 and P5 are covered by 2 cam-
eras. Dynamic occlusion will not last for long duration as our camera is continuously 
panning.

Fig. 15  Camera coverage performance for experiment 2. a Experimental setup. b Image taken from of cam-
era 1. c Image taken from camera 2. d Image taken from camera 3. e Image taken from camera 4
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6.1.2  Experiment 2

In experiment 2, we consider 5 distributed PAs (P1, P2, P3, P4 and P5) to be covered by 
4 PTZ cameras (C1, C2, C3 and C4) in DBMS Lab, DTU of size 10*10*5 m3, having 1 
static obstacle (O1) and 2 randomly moving obstacles as shown in Fig. 15a. The obsta-
cle and PA coordinates are shown in Table 5.

We are considering P3 occluded by a pillar (Fig.  15d) and P1 and P3 occluded by 
randomly moving obstacles (Fig. 15b, e). We aim to cover all the PAs with at least 3 
cameras by optimally placing 4 PTZ cameras. Camera coordinates obtained from the 
proposed algorithm are shown in Table 6.

The images taken by 4 cameras are shown in Fig. 15b–e. It is visible from Fig. 15b–e 
that all the PAs are covered by at least 3 cameras considering static obstacles. However, 
after incorporating the randomly moving obstacles, P1 and P3 are covered by 2 cameras.

6.1.3  Experiment 3

We consider 5 distributed PAs (P1, P2, P3, P4 and P5) to be covered by 4 PTZ cameras 
(C1, C2, C3 and C4) in Machine shop, DTU of size 10*10*5 m3, having 2 static and 2 
randomly moving obstacles and 3 main doors as shown in Fig. 16a. The obstacle and 
priority area coordinates are shown in Table 7.

We are considering P5 occluded by a pillar (Fig.  16d) and P3 and P5 occluded by 
randomly moving obstacles (Fig. 16d, e). We aim to cover all PAs with at least 3 cam-
eras. The camera coordinates obtained from the proposed algorithm to optimally cover 
all PAs are shown in Table 8.

The images captured by 4 cameras are shown in Fig. 16b–e. From the Fig. 16b–e, it is 
seen that all PAs are covered by at least 3 different cameras with static obstacles. However, 
after incorporating the randomly moving obstacles, P5 is covered by only 2 cameras. Since 
PA 5 is viewed from 2 different angles, most of the information in the PA 5 is covered.

Table 5  Obstacle and PA 
coordinates used for experiment 
2

Areas x y z

Obstacle (Pillar O1) 5 5 5
P1 0 10 4
P2 10 10 4
P3 5 9 1
P4 4 5 2
P5 7 10 2

Table 6  Camera coordinates 
used for experiment 2

Cameras x Y z Pan Tilt Zoom

C1 0 2 4 55 12 4
C2 0 5 2 44 78 5
C3 5 0 2 33 − 20 4
C4 10 3 3 54 − 25 6



1164 A. Kaushik et al.

1 3

Fig. 16  Camera coverage performance for experiment 3. a Experimental Setup. b Image taken from camera 
1. c Image taken from camera 2. d Image taken from camera 3. e Image taken from camera 4
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From the experimental evaluation, we made the following observations

1. Coverage of different sets of PAs by camera 1, 2, 3 and 4 is shown in Figs. 14, 15 and 
16. All the PAs are covered by at least 3 cameras.

2. In case of randomly moving obstacle(s) blocking the view of one or more cameras, the 
PA is always covered by at least 1 camera.

3. For the PTZ cameras that are placed far away from the PA (Fig. 14d), a higher degree 
of zoom is used to get an accurate image. This explains the accuracy of the model used.

4. Experiment 1, 2 and 3 are a testimony to the fact that all the PAs are covered for a longer 
duration and with optimum image resolution.

7  Conclusion

In this work, we present a new method for optimizing the coverage of visual sensors by 
adjusting their locations, pose and zoom levels using a meta heuristic algorithm GWO. The 
proposed GWO based approach is computationally lighter and faster in execution. Since 
we are using priority areas, obstacles and feasibility areas, our approach will be useful in 
practical applications. Zoom level as a parameter ensures good quality and resolution of 
the images. The proposed algorithm covers each PA by 3 cameras which not only enhances 
the information content in the images but also reduces the possibility of occlusion due to 
static and randomly moving obstacles. We have shown the experimental evaluation of our 
work using PAs, obstacles, and feasible camera locations. The proposed work gives an eco-
nomical and cost-effective solution for any surveillance application.

Acknowledgements We acknowledge the suggestions and help of Prof. Santanu Chaudhury (IIT Delhi) to 
this work.

Table 7  Obstacle and PA 
coordinates for experiment 3

Areas X y Z

Obstacle 1 (Pillar O1) 5 4 5
Obstacle 2 (Pillar O1) 5 8 5
P1 1 10 4
P2 2 7 1
P3 2 10 3
P4 10 6 3
P5 10 9 3

Table 8  Camera coordinates for 
the experiment 3

Cameras x Y Z Pan Tilt Zoom

C1 0 8 2 22 54 3
C2 0 6 2 22 34 4
C3 1 0 3 − 64 56 5
C4 3 0 3 12 − 60 5
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