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Abstract
More computations have to be done through less powerful mobile devices which includes 
ultra modern wearables. The huge overhead lies in the processing of the humongous key 
space each and computation of the intelligible message. The uniqueness of the elliptic 
curve cryptography (ECC) lies in the processing of data using shorter keys which are capa-
ble to achieve the performance of long key requirement of RSA. In order to reduce the 
overhead involved in the computation of less powerful mobile devices the fuzzy genetic 
elliptic curve Diffie Hellman is proposed in this paper. The intelligent rules are used for 
ranking during key selection process, multi attribute decision making model with fuzzy 
reasoning for obtaining keys and genetic algorithms for effective optimization of computa-
tion in ECC contributes to obtain the proposed FGECDH algorithm.

Keywords FGECC · RSA · ECC · MADM

1 Introduction

Elliptic key cryptography (ECC) based algorithms are renowned for functions like Key 
Exchange [1] and Digital Signature [2] and hence the National Security Agency (NSA) 
has strongly recommended ECC. Due to the advantages possessed by the ECC, it is fur-
ther refined with fuzzy rules and genetic algorithms and hence introduced the evolution of 
fuzzy genetic version of ECC. Fuzzy logic is the computation approach based on degrees 
of truth rather than the usual Boolean logic on which the modern computer is based [3]. 
The genetic algorithm [4] is a process of populating new items by the creation of crossover 
among two or more existing set of basics and thus creates a new offspring by the process 
of mutation(changing it minutely) at every step. Now, this new offspring is evaluated by a 
certain mechanism to check the feasibility of this offspring to satisfy the required surviv-
ing criteria. ECC [5] irrespective of it’s advantages, has a distinctive disadvantage, like 
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complexity and implementation difficulty compared to RSA [6]. It increases the implemen-
tation errors, which is a direct parameter to hinder the security of the algorithm. The com-
plexity of the ECC lies in the generation and maintenance of the required key set.

Plenty of cryptographic algorithms [7, 8] are available. Number theory [9, 10] plays a 
vital role in each of the cryptographic algorithms. Each has a specific use case, and cater to 
a very specific kind of problem. This problem keeps changing with time and as the prob-
lem changes, modifying the existing system to support that change becomes necessary.

Mobile computing is the standard on which all kinds of cryptographic enhancements 
will be measured for the next decade. With the introduction of Apple Pay by Apple and 
Google Wallet by Google and numerous mobile based transaction portals are becoming the 
common place for most of the financial transaction. This creates a need for a cryptographic 
algorithm which is resource stringent but delivers yet delivering the security of a highly 
sophisticated system becomes a critical necessity. Genetic equations are largely known for 
its minimal resource utilization, fuzzy rules for decision making and elliptic curve cryp-
tography is by far, the most sophisticated algorithm in cryptography. In this paper, a new 
cryptographic algorithm called fuzzy genetic elliptic curve Diffie Hellman algorithm is 
proposed to enhance the security of wireless networks. The proposed FGECDH algorithm 
is an amalgamation of fuzzy, genetic equations and elliptic curve cryptography with the 
best of the trio worlds and each of the technologies negates the disadvantages of the other. 
The contribution of this paper is to propose a new algorithm for secure transmission of 
messages which is mobile compliant suiting the day today requirements.

This paper demonstrates a mechanism, where we use a simplified version of fuzzy to 
rank the key selection involved in multi attribute decision making (MADM) algorithm, 
genetic algorithm to automate the key set generation hence increasing the security of 
ECCDH in the process. The rest of the paper is organized as follows: Sect. 2 presents the 
genetic programming approach for decision making, Sect.  3 presents the fuzzy decision 
making systems. Section 4 presents the fuzzy genetic decision making systems. Section 5 
presents the proposed fuzzy genetic elliptic curve Diffie Hellman. Section  6 depicts the 
performance evaluation. Finally, Sect. 7 deals with the conclusion and future work.

2  The Genetic Programming Approach for Decision Making

Evolutionary computing is a division of artificial intelligence (AI) which gets the basic 
evolution principles and implements them in a program. Rather than the programmer giv-
ing a solution to the program, the program literally evolves a solution. A genetic algorithm 
(GA) [11–13] is a particular form of evolutionary computing which is used in this paper. A 
GA is similar to biological evolution. The fitness function is the key parameter of any prob-
lem handled by GA. In fact this is another heuristic. It is a feature of the problem that the 
programmer can use to guide the evolutionary process. In computing terms, this is simply 
a method which allows us to rank all potential solutions from hopeless to perfect. If such a 
ranking is possible then GA methods will at least in principle, be able to evolve a solution 
to the problem.

In this work, genetic algorithm is used for the generation of every valid key in a shorter 
period of time where partial computation is done at the background. Using this process, 
the set of candidate solutions is generated as follows: most of the real life applications in 
key generation for enhancing the security of communication need an optimal and efficient 
method for selecting a key with less number of bits but providing high security equivalent 
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to large number of bits in the order of 4096 bits. In such a scenario, the time complexity 
of the algorithm for key generation is less when a genetic algorithm (GA) based optimiza-
tion approach is used. Moreover, the security proof in such algorithms has guaranteed that 
the time complexity for decrypting the text without knowing is increasing exponentially 
in such a way that its complexity is in discrete logarithmic type. Therefore, a genetic algo-
rithm based key generation approach is proposed in this work in which optimization is 
carried out by introducing an efficient fitness function. In the past, genetic algorithm was 
introduced as a heuristic technique [14] which is used to find the shortest path in a graph by 
applying the heuristic function. When it was compared with other search technique includ-
ing hill climbing, the solution provided by genetic algorithms was more optimal than the 
other existing heuristic search technique [15]. Since, GA works on the set of candidate 
populations from possible solution that it performs better than most of the heuristics that 
works based on probabilistic methods and hence such techniques are not deterministic in 
nature. On the other hand, each individual to be used as a parent in the GA process will 
contribute more uniformly to provide the most optimal solution. In this work, the GA based 
key generation and optimization technique starts with a set of large prime numbers which 
are taken from the points on the elliptic curve represented by the equation

are considered to be the initial chromosomes called as the initial set of candidate keys 
called the initial population where s and t are constants. Moreover, the large prime numbers 
P and Q taken from the above equation are used as the candidate keys for the optimization 
process in the key generation algorithm. Such candidate keys are consisting of large prime 
numbers which are encoded using binary encoding to provide 4096 numbers and two such 
candidates are selected at a time to form the initial set of chromosomes called parents in 
the GA re-production process. The solution obtained from this population is checked with 
the activation function called the fitness function shown in (2).

In (2), the values of WT1 and WT2 were fixed as 0.4 and 0.6 after performing repeated 
number of experiments using values between 0 and 1. The parents have been selected from 
the candidate chromosomes by using the random subset generation method since the set of 
candidates consists of a finite set of large prime numbers that have been obtained from the 
elliptic curve. The fitness function used in this work performs better global optimization 
when it is compared with other greedy techniques. The main advantage of applying the 
subset generation method is that it reduces the key space by controlling the direction of 
search. During the candidate key generation from the elliptic curve, the proposed algorithm 
starts taking a large set of keys and then it applies the subset generation technique to reduce 
the candidate sets from K1,K2,…Kn to KA1,KA2,…KAm where m < n . Finally, the tour-
nament selection method is used in this work to select the suitable chromosomes as parents 
which are obtained from the subsets generated using the subset generation process.

In this work, genetic programming is introduced to set up a set of candidate solutions 
to the security problem. At this initial stage, they will be totally random. These candidate 
solutions are then ranked by means of a fitness function. Even though they were generated 
as completely random attempts, it is possible to rank them from first to one hundredth. Of 
course, the chances are that even the first in this ranking will not look like any sort of solu-
tion to the problem. The algorithm then follows natural selection by dispensing with, say, 
the bottom n members of the population. They are replaced by combinations of the top n 
members of the population in a process inspired by biological reproductions. Portions of 

(1)y2 = x3 + sx + t

(2)Fitness Value = WT1 ∗ Count(Zeros) +WT2 ∗ Count(Ones).
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the pairs of the top n are combined in a process known as crossover [16, 17]. This is the 
computational equivalent of biological reproduction. With the population up to the original 
value again, the process of selection by means of fitness function [18] is repeated. Then the 
crossover is repeated, and so on for many generations. Eventually the program will con-
verge towards an acceptable solution to the problem-always assuming that there is at least 
one solution and the fitness function can guide the selection process towards it. Multiple 
attribute decision making algorithm [19, 20] plays a vital role in key selection.

3  The Fuzzy Decision Making Systems

The fuzzy temporal rules [21] for developing an intelligent pattern classification system 
for analyzing periodic patterns in medical diagnosis based on symptoms which is used to 
identify the diseases more accurately by applying the fuzzy decision making approach. A 
fuzzy temporal approach [22] has a fuzzy temporal logic which predicts the energy level 
based on past and present data leading to suitable rotation of cluster heads based on energy 
to improve the network performance. An intelligent agent and fuzzy swarm optimization 
approach in optimal routing [23] improved the performance of the network by increas-
ing the packet delivery ratio and by reducing the energy consumption using fuzzy swarm 
optimization.

4  The Fuzzy Genetic Decision Making Systems

Genetic fuzzy systems are fuzzy systems constructed based on genetic programming, 
which mimics the process of natural evolution, to identify its structure and parameter. To 
automatically identify and build a fuzzy system traditional linear optimization techniques 
have several limitations, given the high degree of non linearity of the output. Hence the 
genetic programming has been imbibed on fuzzy systems in this work for proper identifica-
tion of structure and parameters of fuzzy systems in the decision making process involved 
in the ranking process of key selection. The fuzzy rules applied on the genetic algorithm 
yields better results and it is evident in the novel weighted fuzzy C-means clustering based 
on immune genetic algorithm for intrusion detection [24] to carry out the communication 
through the cluster heads in order to develop an efficient intrusion detection system for 
wireless networks.

5  The Proposed Fuzzy Genetic Elliptic Curve Diffie Hellman(FGECDH)

The fuzzy genetic elliptic curve Diffie Hellman is the fuzzy genetic version of ECC along 
with the inclusion of multi attribute decision making model (MADM) in key selection. The 
baseline in imposing fuzzy genetic in ECC is that it has the capability to analyze the design 
process in the space of rule sets by coding the model in chromosome. The primary step in 
the design of the fuzzy genetic algorithm is to analyze and decide which parts of the fuzzy 
system are subjected to optimization by genetic algorithm coding in chromosomes. The 
ranking for key selection in MADM is based on fuzzy rules.

ECC has shorter key which is as strong as larger keys of RSA. Hence the genetic version 
has the refined key selection methodology having shorter keys produces the best security. 
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The key size is the prime factor which reflects the encryption time and decryption time. 
The proposed FGECDH being mobile compliant is designed to have lesser encryption and 
decryption time and hence the key size and key selection is given at most importance. The 
security of the algorithm is strengthened by identifying the prime parameters and optimiz-
ing it. The parameters identified for optimization are selecting the keys, generating the plot, 
obtaining the co-ordinates, encrypting the message, decrypting the message. Most of the 
algorithms concentrate more on generating the plot, obtaining the co-ordinates whereas the 
primary focus of this paper is to optimize the key selection. In this work, the elliptic curve 
x3 + sx + t = y2 has been considered in which P and Q are two points on the elliptic curve. 
Q = A + B where, A and B are any other two points that have been selected from the ellip-
tic curve. Here, the members a, b, c, d… are the members of the key set selected from the 
original key set by applying the subset generation process. The original key set is consist-
ing of the set of points representing the keys obtained from the elliptic curve.

5.1  Key Selection Using MADM

The key selection involves a modified version of the multiple attribute decision making 
algorithm. MADM consists of two levels. In level 1 the judgments are aggregated on 
the basis of goals and alternative decisions. The derived judgments are sorted in level 2. 
According to the algorithm the final decision is obtained by gradually altering the attribute 
value available at each decision node.

The key set comprises of be any set of preselected keys that can be used for 
ECCQ = {a, b, c, d…} where a, b, c, d… are the preselected keys. At each instance the 
genetic algorithm selects any key, (b, c, d…) for a specific a. This is achieved by a careful 
crossover and eliminating the most illogical candidate at each stage.

The attribute selected at each node is programmatically maintained to help in the subse-
quent stages of decryption to arrive at the exact key as generated for the encryption. The 
MADM based model used for the generation of keys in FGECDH are illustrated as follows. 
Let the alternatives set be defined as A =

{
ai|i = 1,… , n

}
 and the goal set be defined as 

G =
{
gi|j = 1,… ,m

}
 . rij represents alternative i corresponding to goal j and wj ∈ ℝ 

denotes weight of goal j. The fuzzy membership function of i mapped to j is denoted as 
�Rij(rij)

 on ℝ . Likewise, The fuzzy membership function of wj is denoted as �wj(wj)
 . Assump-

tion: Every fuzzy set is normalized.
Step 1 The xi is evaluated based on rkj and wj Considering a function g∶ℝ2n

→ ℝ is 
defined by,
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with z = (w1,… ,wm, r1,… , rm) . The member function of the product space ℝ2n is as 
follows

the fuzzy set Z = (ℝ2m,�zi) induces a fuzzy set Ri = (ℝ,�Ri) using function g with the 
membership function

�Ri(r) is the alternative xi final rating based on rank is evaluated in step 2.
Step 2 Baas and Kwakernaak proposed that if xi has got higher rating a valid algorithm 

naturally selects xi and makes this as its preferred alternatives as

Baas and Kwakernaak [25] proposed in their model two fuzzy sets to choose preferabil-
ity of the alternative.

The conditional set (I|R) is determined along with the characteristic function.

The above stated function denotes that xi is a member of preferred set if and only if the fol-
lowing equation is satisfied.

The R defined on ℝ2n , the fuzzy set R = (ℝn,�R) is depicted with the membership function

The fuzzy set and conditional fuzzy set together includes I = (I,�i) and its associated func-
tion is

If xi is not the best alternative then the scenario may be represented by rij which is another 
fuzzy set.

The final ratings for r1,… , rn is

Inorder to increase the accuracy of key ranking fuzzy rules are used. This work uses 
Fuzzy IF...THEN rules for ranking effectively. Based on the definition of fuzzy logic [26, 
27], overlapping regions are used to determine the degree of fuzziness. In this work, fuzzy 
rules have been formed by applying the triangular membership function. The fuzzy linguis-
tic variables are shown in Table 1. Fuzzy rules for normalized key and ranking is shown in 
Table 2.

The associated mapping for the rating of ri is ℝ2n
→ ℝ

(3)g(z) =

∑m

j=1
wjrj

∑m

j=1
wj

(4)�zi(z) = min
{
minj = 1…m(�wj(wj),mink=1,…,m(�Rik

(rk))
}

(5)�Ri(r) = supz∶ g(z)=r�zi(z)r ∈ R.

{
i ∈ I|ri ≥ rj,∀j ∈ I

}
, I = {1,… , n}.

(6)�(I|R)(i|r1,… , rn) =
{
1
0
if rj∀j ∈ I, else

}

(7)ri ≥ rj∀i,j ∈ I

(8)�R(r1,… , rn) = min(�Ri(ri))

(9)�I(i) = sup(min)
{
(�I|R)(i|r1,… , rn),�R(r1,… , rn)

}

(10)pi = ri −
1

n − 1

n∑

j=1,j≠i

rj i takes the value 1 to n.

(11)�pi(p) = sup�i(r1,… , rn)�R(r1,… , rn).
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The stage at which the most suitable key-pair is obtained is maintained as a public key 
X.

This process of crossover is a hidden function f(x).

This binary code has to be reverse mutated with the same genetic algorithm used before

Such x, y and other details are then mapped to their original keys using original ECC. 
Hence the whole process of selecting the key set for the required ECC is automated and 
managed by the designated computer itself hence reducing the complexities and providing 
an artificial intelligence based support to ECC hence making it more robust

5.2  The Security Feature Enhancement

Let the key function be

where ka and kb are the two selected keys respectively. If the encryption technique’s 
execution time includes the time involved in deciding the initial keys, Then the total time 
involved is

Usually an ECC encryption algorithm takes time for the following:

(12)f (x) = 011010100010101010.

(13)f − 1(011010100010101010) = x

(14)f (k) = f (ka + kb)

(15)t(k) = t(ka) + t(kb)

Table 1  Fuzzy rules for initial 
decision

Score Class

Low (L) 0.0 < P
i
< 0.5

Medium (M) 0.4 < P
i
< 0.8

High (H) 0.7 < P
i
< 0.85

Medium high (MH) 0.8 < P
i
< 0.95

Very high (VH) 0.9 < P
i
< 1.0

Threshold (th) 0.65

Table 2  Fuzzy rules for 
normalized key and ranking

Final rating ( P
i
) Normalized key size (s) Rank

0 < P
i
< L s ≤ th 10

0 < P
i
< L s > th 9

L < P
i
< M s ≤ th 8

L < P
i
< M s > th 7

M < P
i
< H s ≤ th 6

M < P
i
< H s > th 5

H < P
i
< MH s ≤ th 4

H < P
i
< MH s > th 3

MH < P
i
< VH s ≤ th 2

MH < P
i
< VH s > th 1
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selecting the keys = t(k).
Generating the plot = t(p).
Obtaining the co-ordinates = t(o).
Encrypting the message = t(e).

The optimization of ECC algorithm involves a consideration of all these factors. The 
same factors has to considered for improving the security also. Each of these steps has to 
individually secure in order to affect the overall security performance of the ECC algo-
rithm. Since most of the algorithms mainly concentrate on generating the plots (t(p)) and 
obtaining the co-ordinates (t(o)), the maximum time and security performance of any algo-
rithm is staggered. True potentials involved in the key selection and encryption process and 
usually ignored which is the primary focus of this paper. Initially the whole without the 
help of a genetic algorithm the time function of ECC is

where t(e) is the time taken to actually encrypt the pattern. Similarly the decryption is done 
using

where t(lk) is the time considered for the local key which plays a vital role in decryption 
When FGECDH is used, t(k) is omitted as the key generation and identification is done 
prematurely and due to this, even the plotting time t(p) and the co-ordinates obtaining time 
is highly minimised as it is partially computed In the background for every valid key gener-
ated by the Genetic algorithm. bp is a variable partially computed in the background that 
represents the plot value. bo is a variable that partially computed in the background that for 
obtaining the coordinates. Hence the updated time functions for FGECDH are

The security feature of ECC is also enhanced in a similar fashion.

6  Performance Evaluation

The performance evaluation environment used is Visual studio 2013 Integrated Develop-
ment Environment. The performance evaluation environment further uses Visual C++ pro-
gramming language with Block Cipher Cryptography 2015 as Software Development Kit. 
The security analyser used is Hackman Tools 2015

(16)f (encryption) = (t(k) + (t(p) + t(o)) + t(e))keySize

(17)f (decryption) = (t(lk) + (t(p) + t(o)) + t(d))keySize

(18)f (fgecdhEncryption) = (t(bp + bo) + t(e))keySize

(19)f (fgecdhDecryption) = (t(bp + bo) + t(d))keySize

(20)fs(encryption) = (s(k) + (s(p) + s(o)) + s(e))keySize

(21)fs(decryption) = (s(lk) + (s(p) + t(o)) + t(d))keySize

(22)fs(gecdhEncryption) = (S(bp + bo) + S(e))keySize

(23)fs(gecdhDecryption) = (S(bp + bo) + S(d))keySize.



1001Fuzzy Genetic Elliptic Curve Diffie Hellman Algorithm for Secured…

1 3

6.1  Simulation Scenario 1: Varying File Size

The scenario 1 of the simulation is to study the performance of the proposed FGECDH 
over the other advanced encryption standard differential fault analysis (AES_DFA), data 
encryption standard differential fault analysis (DES_DFA), elliptic curve cryptography 
Diffie Hellman (ECC_DH) by varying the file size. The four key parameters such as 
encryption time, decryption time, memory usage and security are considered.

In Table 3, encryption time is directly proportional to the file size. The encryption 
time of the FGECDH is lesser compared to the ECC_DH. This is achieved because 
genetic versions of the algorithms are capable of processing quickly by matching the 
data from the learned set. The values enlisted are from the operations involving learning 
set for the first time. The secondary operations in the same category take very little time 
to encrypt making the algorithm more mobile friendly.

Similarly, Table  4 reveals that the decryption time of the FGECDH is lesser com-
pared to ECC_DH but higher than the other cryptographic algorithms like AES_DFA, 
DES_DFA. Even though AES_DFA, DES_DFA have lesser encryption and decryp-
tion time the security provided by the two algorithms are lesser than the ECC_DH and 
FGECDH. To avoid system dependent complexity analysis, the proposed model pro-
vides the complexity of the existing algorithms namely AES_DFA, DES_DFA and 
the proposed algorithm using the Big ∅ notation and hence it is not depending on the 
system configuration. The complexities of the algorithms using Big O notations are as 
follows:

where K is the key size.

AES_DFA = ∅(2K)

DES_DFA = ∅(2K∕2)

ProposedAlgorithm = ∅
�
2
√
K
�

Table 3  Encryption time analysis 
(ms)

File size 
(MB)

AES_DFA DES_DFA ECC_DH FGECDH

1 3085 2785 3708 3368
2 5392 4961 6417 5814
3 8417 7731 10,016 9058
4 11,289 10,611 13,594 12,513
5 14,192 13,163 16,999 15,691

Table 4  Decryption time analysis 
(ms)

File size 
(MB)

AES_DFA DES_DFA ECC_DH FGECDH

1 2953 2886 3746 3372
2 5354 5089 6599 5823
3 8286 7721 9931 9082
4 11,239 10,473 13,538 12,420
5 14,208 13,144 17,055 15,736
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The memory consumption enlisted in Table 5 reveals that the ECC_DH and FGECDH 
have almost similar memory consumption and it is found that the FGECDH has slightly 
less memory consumption than ECC_DH. The reason behind this is the selection of 
smaller key size using MADM which are as strong as larger key size. Moreover the fuzzy 
rules contributed to the ranking

From Table 6, it is clear that the proposed FGECDH out performs all the other crypto-
graphic algorithms by providing good security. Even though security is ensured the mem-
ory consumption is not compromised and encryption and decryption is done in lesser time 
than ECCDH. This is achieved due to the accuracy in key selection by incorporating fuzzy 
rules. The security analysis percentage is calculated based on the time complexity indicat-
ing the time taken for decryption without knowing the key with each algorithm with a 
relative scale of DES algorithm. Here, the attacks considered are Denial of Service attacks, 
Probe, User to Root (U2R) and Remote to User (R2L).

6.2  Simulation Scenario 2: Varying Key Size

The scenario 2 of the simulation is to study the performance of the proposed FGECDH 
over the other advanced encryption standard differential fault analysis (AES_DFA), data 
encryption standard differential fault analysis (DES_DFA), elliptic curve cryptogra-
phy Diffie Hellman (ECC_DH) by varying the key size. The four key parameters such as 
encryption time, decryption time, memory usage and security are considered. The key size 
is taken small but the security is high irrespective of the key size being small. It can give 
same security as the larger key size. The MADM is used during key generation and the 
genetic version of the algorithm have refined it and give better encryption time, decryption 
time, almost similar consumption of memory and better Security as enlisted in Tables 7, 8, 
9 and 10.

Table  7 reveals that FGECDH increase with increase in the key size. AES_DFA, 
DES_DFA can encrypt better than ECC_DH but the security quotient of the latter 
algorithms holds good. The prime objective of the message transfer is the security and 

Table 5  Memory consumption 
analysis (bytes)

File size 
(MB)

AES_DFA DES_DFA ECC_DH FGECDH

1 6046 5746 8061 8031
2 6714 6372 8889 8890
3 10,245 9444 13,219 13,135
4 13,528 12,637 17,700 16,999
5 16,804 15,690 22,127 21,336

Table 6  Security analysis % File size 
(MB)

AES_DFA DES_DFA ECC_DH FGECDH

1 85 79 95 96
2 84 75 94 95
3 84 76 94 96
4 86 74 94 96
5 85 75 93 95
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then comes the encryption and decryption time. Even though FGECDH have greater 
encryption time than AES_DFA and DES_DFA, it has proved to perform better than the 
ECCDH by having refined it with genetic technology and MADM algorithm with fuzzy 
decision making systems.

Table 8 reveals the decryption time analysis of the four algorithms AES_DFA, DES_
DFA, ECC_DH, FGECDH on the basis of key size which is the prime parameter of 
performance analysis. FGECDH performs better than the ECCDH. It can perform much 
better in the consequent runs as genetic versions can perform better by retrieving result 
from the learned set fuzzy decision making in generation of keys yields better perfor-
mance which is revealed in the table decryption time analysis.

The memory consumption analysis of the four algorithms are enlisted in Table 9. The 
memory consumption of the proposed algorithm is due to the incompatibility of the 

Table 7  Encryption time analysis 
(ms)

Key size AES_DFA DES_DFA ECC_DH FGECDH

32b 1787 1674 3438 3068
64b 3666 3513 6510 5530
128b 5464 5295 10,013 8584
256b 7482 7086 13,515 11,431
512b 9383 8858 17,047 14,597

Table 8  Decryption time analysis 
(ms)

Key size AES_DFA DES_DFA ECC_DH FGECDH

32b 1923 1743 3562 3187
64b 3548 3500 6587 5666
128b 5574 5194 10,039 8631
256b 7533 7076 13,632 11,538
512b 9306 9001 17,146 14,603

Table 9  Memory consumption 
analysis (bytes)

Key size AES_DFA DES_DFA ECC_DH FGECDH

32b 4806 4503 6629 6689
64b 6143 5893 7539 7479
128b 9142 8779 11,121 11,137
256b 12,218 11,671 14,817 13,645
512b 15,191 14,625 18,513 17,998

Table 10  Security analysis % Key size AES_DFA DES_DFA ECC_DH FGECDH

32b 76 67 84 86
64b 76 70 87 89
128b 81 74 91 93
256b 82 77 92 95
512b 85 80 94 97
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proposed algorithm in the crypto processors of the mobile devices. Once the algorithm 
is declared best in terms of security proposals may be sent to the concerned agencies for 
incorporating the compatibility of the proposed algorithm with its crypto processors. 
Basically the algorithm is designed to utilize lesser resource.

Table 10 reveals the ultimate objective of the proposed algorithm FGECDH by hav-
ing accomplished higher security than the other three algorithms AES_DFA, DES_
DFA, ECC_DH. The security quotient is directly proportional to the key size.

Figure  1 shows the security comparisons between the proposed algorithm and 
the existing algorithms namely ECC_DH, modified DES [28], enhanced AES [29], 
DES + network coding [30].

From Fig. 1, it is observed that the performance of the proposed security algorithm called 
FGECDH is better when it is compared to the other security algorithms such as ECC_DH, 
modified DES, enhanced AES and DES with Network Coding. This is due to the fact that the 
proposed algorithm uses a genetic based key generation and optimization approach in which 
a new activation function is introduced. Moreover, the elliptic key cryptography algorithm 
is modified with optimization technique leading to overall improvement in performance and 
hence the time consumption is reduced and security level is enhanced. This improvement in 
performance of FGECDH shown in Tables 3, 4, 5, 6, 7, 8 and 9 is due to the effective han-
dling of uncertainty in the growth of values of Pi using fuzzy rules. Moreover, the rules used 
in this work can be used to modify the exiting decisions by adding additional constraints. 
This leads to make decisions with non-monotonic reasoning starting with a default reason-
ing to make an initial decision. The final decision is made non-monotonically by the final 
decisions rules which considers qualitative reasoning and hence is able to handle incomplete 
information by making prediction using past and present data.

7  Conclusion and Future Work

Encryption is a highly volatile phenomenon and updating before the existing methods 
fail is highly necessary. This paper emphasises this by providing a solid update to an 
already robust security system. This not only enhances the security but also tackles 

Fig. 1  Comparative analysis of accuracy in security algorithms
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few vital flaws existing in the previous methods. The proposed FGECDH is the secured 
algorithm which can decrypt and encrypt at lesser time compared to ECC. FGECDH 
outperforms the other algorithms by maintaining the same processing requirements and 
just varying the amount of data based on the level of encryption required which has 
been achieved by using fuzzy rules for decision making and genetic algorithm for opti-
mization. Hence, this makes FGECDH a mobile friendly algorithm. The future work 
suggests to reduce the memory consumption by making the FGECDH compliance with 
the crypto processors of all models in mobile devices.
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