
Vol.:(0123456789)

Wireless Personal Communications (2019) 105:599–618
https://doi.org/10.1007/s11277-018-6083-9

1 3

A Design of Secure Communication Protocol Using
RLWE‑Based Homomorphic Encryption in IoT Convergence
Cloud Environment

Byung‑Wook Jin1 · Jung‑Oh Park2 · Hyung‑Jin Mun3

Published online: 27 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
A super-connected society is emerging in which things and things or people and things
communicate with each other through the Internet of Things. Since devices in the exist-
ing IoT environment have limitations such as low power, volume, and performance, a new
paradigm has been suggested by integrating with cloud computing technology. However,
there are still issues to resolve in the new convergence paradigm in order to mitigate vul-
nerabilities regarding data management and information protection for security. Thus, this
study designs a RLWE-based homomorphic encryption communication protocol for user
authentication and message management in a cloud computing-based IoT convergence
environment. We conducted performance analysis on a communication protocols in the
existing IoT environment and the proposed communication protocol to ensure safety and
security. The study verified safety and security by conducting performance analysis of cur-
rent IoT environment communication protocol and proposed communication protocol. The
study conducted comparative analysis on time complexity and space complexity in accord-
ance with encryption and decoding of proposed communication protocol to confirm that it
provides strong security and equivalent level of efficiency. Also, by designing a communi-
cation protocol, the study aimed to provided a safe communication infrastructure from user
authentication to data transfer to users.

Keywords Authentication · Cloud computing · Homomorphic encryption · User privacy
protect

 * Jung-Oh Park
 jopark02@sungkyul.ac.kr

 Byung-Wook Jin
 wlsquddnr@koipa.re.kr

 Hyung-Jin Mun
 jinmun@gmail.com

1 Department of Strategy and Project, Korea Intellectual Property Protection Agency, Anyang,
South Korea

2 Department of Paideia, Sungkyul University, Sungkyuldaehakro-53, Manan-gu, Anyang-City,
Gyeonggi-Do 430-742, South Korea

3 Division of Information and Communication Engineering, Sungkyul University, Anyang,
South Korea

http://orcid.org/0000-0002-5478-0394
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-018-6083-9&domain=pdf

600 B.-W. Jin et al.

1 3

1 Introduction

The Internet of Things (IoT) technology has been in the center of the 4th industrial revolu-
tion, providing highly efficient services to users. The spread of IoT devices has created var-
ious data quickly, generating big data. In order to collect, manage, and analyze the created
data, convergence with the cloud computing technology is required [1]. Such integrated
technology is becoming a new paradigm of ICT environment. Thus, the environment,
where cloud computing technology and IoT are converged, can provide various services
to users by improving the limitations of the existing IoT environment, with increased effi-
ciency and availability compared to the existing way.

In the convergent IoT environment based on cloud computing, there is an increasing
need for the safety of the user account management and access security systems and a solu-
tion to personal information infringement and leakage. Furthermore, with the coming of
the hyper-connected network era, the possibility of social anxiety from user information
leakage, monetary damage and life threat is increasing. In addition to the existing security
threats of the IoT environment, new and altered attack techniques have appeared to require
technical improvement and new encryption algorithms [2].

This paper will apply a completely homomorphic cryptogram algorithm, design a
mutual authentication technique between a user and gateway in a cloud computing-based
IoT convergence environment, and ensure safety to prevent the leakage of important user
information and perform authentication. This study will also design a data verification
technique by applying a completely homomorphic cryptogram algorithm in a gateway
between the data management server and IoT environment in cloud computing.

The purpose of this paper is first to apply a fully homomorphic encryption algorithm in
the convergent IoT environment based on cloud computing and to provide safety related to
important user information leakage and certification process by designing a mutual certi-
fication technique between the user and gateway. Second, a data verification technique is
designed using the fully homomorphic encryption algorithm between the data management
server in the cloud computing environment and the gateway in the IoT environment. The
data verification and management techniques have higher efficiency and safety compared
to the conventional encryption algorithms. The designed data verification technique offers
higher safety for data transfer and against information leakage. Lastly, the certificate gen-
erated by the proposed protocol maintains reliability of the signature value created in the
certification process using the self-certification infra hash-tree technique, quickly respond-
ing to any infringements of integrity caused by alteration of the signature value. The hash-
tree technique verifies the signature value to create the certificate and reduces the overhead
compared to the existing methods when performing the verification process.

The proposed encryption protocol is designed for registration and key generation by
exchanging the identification value and random number parameter between the user and
gateway in the convergent IoT environment based on cloud computing.

The signature value and identification value are verified between the gateway and cloud
computing server to design the data verification and management techniques. A self-certi-
fication hash-tree technique is designed to prevent infringements of integrity and maintain
reliability of the signature value generated in the registration process and message manage-
ment process. Lastly, a communication protocol is designed to provide a safe communica-
tion infrastructure for the user, from user verification to data transfer.

The composition of this paper is as follows. Section 2 analyzes the convergent IoT
environment based on cloud computing, the public key encryption algorithm and its

601A Design of Secure Communication Protocol Using RLWE-Based…

1 3

vulnerabilities, and the certificate management technique. Section 3 describes the design
for the fully homomorphic communication protocol proposed in the IoT environment based
on cloud computing. This includes user registration, session key generation, message man-
agement technique and message communication protocol. Section 4 verifies safety of the
proposed encryption protocol and comparatively analyzes its efficiency and security. Sec-
tion 5 draws a conclusion.

2 Related Work

2.1 Analysis on Issues of IoT Convergence Paradigm and Security Requirements

Based on the advantages of cloud computing, cloud computing-based IoT convergence
environment overcomes the limits of IoT and provides the maximization of resource use,
data processing on-demand service, and mutual operability [3]. It has been studied as it can
solve issues such as user’s reliability and security in a cloud environment. However, there
are still weaknesses and assignments to solve although the aforementioned advantages are
provided.

2.1.1 Device

IoT devices have various operation systems ranging from low power to high specifications.
Thus, the provision of appropriate resources for each device in an environment converged
with cloud computing technology must be researched. IoT devices must have their func-
tions optimized, and they must also be managed so that the remaining resources can join
virtualization management to efficiently use other equipment. If remaining resources are
not used during virtualization management, the resource virtualization service must oper-
ate effectively so that the resources are managed stably. In addition, as an IoT-based device
can join a cloud computing domain, overhead can occur in terms of additional data and
operational aspect. Accordingly, effective device management using high-efficient algo-
rithm is required in contrast to intelligent calculation and low power performance [4, 5].

2.1.2 Data

Various data are created in an IoT-based environment. Such transferred and collected data
are analyzed and processed in real-time in a cloud service environment, and must be man-
aged separately through various service providers. Research needs to be conducted on a
solution that manages data safely and effectively because there is none yet [6].

2.1.3 Service

For an IoT device to participate in a cloud computing service, users must be paid and pro-
vide enough services to participating users. Service should include device performance,
sensing and actuator functions, as well as communication with the data from the devices
[4, 6].

602 B.-W. Jin et al.

1 3

2.1.4 Security

In a cloud computing-based IoT convergence environment, protecting data security and
user’s personal information is an important issue. When a user receives service from a
cloud computing domain, not only reliable security for data processing and storage but also
data confidentiality, availability, integrity, and information protection must be guaranteed.
Moreover, there can be vulnerabilities from the operation of IoT convergence environment
and during the creation and processing of data. Thus, to ensure safe transfer and reliable
management of data, safe accessibility and connectivity are essential [3, 4].

2.2 Algorithm of Completely Homomorphic Cryptogram

A homomorphic cryptogram is an encryption function that saves defined operation in a
plain text and cryptogram space, and enables operation on plain texts by applying arith-
metic operations + and × to cryptogram. A homomorphic cryptogram is used to perform
operation on a plain text by applying addition and multiplication, the basic arithmetic oper-
ations, on cryptogram. A cryptogram that differentiates from homomorphic encryption and
stores random logical operations is called completely homomorphic cryptogram [5, 7].

Rivest announced the very first homomorphic cryptogram algorithm by modifying an
RSA cryptogram algorithm, but it could not be applied due to safety issues. However, stud-
ies on homomorphic cryptogram algorithms different from the existing techniques have
been carried out recently; in 2009 Gentry presented a complete cryptogram algorithm with
proven safety, which mainly uses learning with error (LWE) [7] (Fig. 1).

LWE-based completely homomorphic encryption performs encryption process by using
the elements in a vector space, and the cryptogram includes an Error value. When a homo-
morphic operation (Evalpk (·, c, c*)) is performed for the multiplication of two cryptograms
with an n-dimension, the encryption grows to n2 and thus the dimension of cryptogram
must be lowered through key change. Ring learning with error (RLWE) is an LWE-based
completely homomorphic cryptogram algorithm on a ring, and consists of key setting,
encryption decode, and key switch stages [4, 8].

Fig. 1 RLWE Based fully homomorphic encryption algorithm process

603A Design of Secure Communication Protocol Using RLWE-Based…

1 3

2.3 Trend of Fully Homomorphic Encryption Algorithm in Cloud Environment

The latest homomorphic encryption algorithm is applied to the cloud computing environ-
ment. It uses the verifiable computation technique, searchable encryption technique and
encryption data sharing technique.

(1) Verifiable computation: This is a technique in which a device with relatively poor
computing capability requests outsourcing of computation services that cannot be
handled on its own. The outcome of outsourcing can be provided in an efficient way.
The technique is comprised of three steps including the pre-treatment process, input
preparation process, and output computation and verification process [4, 9].

First off, the pre-treatment process computes supplementary information that includes
the public key and private key associated with the client function. When the client sends a
request to the cloud server for computation, the input preparation process sends the public
key, private key and supplementary information found in the pre-treatment process to the
client. Lastly in the output computation and verification process, the cloud server computes
π, which is the result of encrypting f(x) using on public information associated with F and
x. The client computes f(x) and compares it with the result computed by the cloud server
[10].

The verifiable computation technique is a non-interactive technique between users with
verified identities. It has an advantage of protecting privacy by comparing and verifying
the input and output values [2, 9].

(2) Searchable encryption: This is an encryption technique developed to increase the effi-
ciency of search by attaching an index to search specific information while guarantee-
ing safety of encrypted information, similar to the conventional encryption technolo-
gies. This technique is comprised of four steps including the key generation process,
encryption process, trapdoor generation and search testing process.

In the key generation step, the user generates and stores a private key and discloses
a public key and public information to other users. The encrypted message is created by
encrypting data, and an index is also created to search data keyword information. The user
generates a trapdoor for the keyword using the private key. Lastly, the receiver can use the
trapdoor to find data sent by the sender [11, 12].

(3) Sharing encryption data: In the cloud computing services, the user wants to share
encrypted data with other users while protecting confidentiality and privacy. Since the
existing services fail to provide reliability, a technique that can achieve such service is
demanded. The encryption data sharing technique is a technique designed to share data
using the re-encryption key generated from the private key of the data owner and the
public key used by the receivers. This technique is comprised of four steps including
the key generation process, encryption process, proxy server re-encryption process and
decryption process [2, 9, 13].

First, the user generates and stores a private key and discloses a public key and public
information to other users. The sender generates an encrypted message that can execute the
decryption process without exposing the encrypted message. The encrypted message is sent

604 B.-W. Jin et al.

1 3

to the cloud server, along with a re-encryption key that is used to execute the re-encryption
process on the cloud server. When decrypting the encrypted message generated by the sender,
the receivers receive the re-encryption key to execute the decryption process and confirm the
encrypted message. Data can be obtained later by decrypting with the private key.

3 Design of Proposed Cryptography Communication Protocol in IoT
Convergence Cloud Environment

This chapter covers these: Mutual authentication between a user and gateway, Message
management technique for saved data, and Proposed encryption communication protocol in
a cloud computing-based IoT convergence environment.. The domain consists of Gateway,
MS:Management Server, Cloud Computing Server, and Application. The table of abbrevi-
ations for user registration of the proposed environment, session key generation, data man-
agement technique and message communication protocol is as presented in Table 1.

3.1 User Registration and Session Key Creation

The parameters created during user and gateway registration are a secret key, public key,
identification value, and a random signature value; the exchange parameters are user and
gateway’s identification value, signature value, and a key creation parameter. In addition,
MS:SECURITY is shared by the user and gateway before they are registered. First, the
user is verified with verification value (user ID, user random value) from MS:SECURITY
before transmitting the encrypted user verification value from IoT based gateway. Then,
gateway creates V_SK1 based on user verification value confirmation and monomorphic
password, the verification value of gate way is sent to MS:SECURITY. MS:SECURITY
verifies verification value of gateway and saves it. Through monomorphic password based
 (Evalpk(·, c, c*) =) calculation of user’s gateway parameter and gateway’s parameter, V_
SK2 is created. c⃗⊗ ����⃗c ∗ . The details of identification value parameter exchange and verifi-
cation process in a cloud computing-based IoT environment are as shown in Fig. 2.

User registration and signature value request: Using an application, a user transfers a
registration request message from MS: OSS, which requests the user’s identification value
and signature value. Creation of user identification value and signature value: The user cre-
ates Nonce_USER (Nonce ∊ Rq

m) value in Rq
m and creates CA_1 and CA_2 using a homo-

morphic cryptogram algorithm.

User identification value and verification request: The user transfers the cryptogram
(CA_1||CA_2) created from MS:OSS. After that, MS:OSS transfers the verification request
message received from the user to MS:SECURITY and makes a verification request.
Verification of identification value: MS:SECURITY detects CA_2 of the received mes-
sage and decodes the RLWE-based completely homomorphic algorithm with the secret
key of MS:SECURITY. After decoding, it performs XoR calculation on the extracted
Nonce_USER and compares, analyzes, and verifies the user’s identification value. {If
Exist_USER_ID = USER_ID}.

(3-1)
CA_1 = ERLEW-PUB-G(USER-SK⊕ME:SECURITY)||ERLWE-PUB-G(Nonce-USER)

(3-2)CA_2 = ERLEW-PUB-S(Nonce-USER⊕ USER-ID)||ERLWE-PUB-S(Nonce-USER)

605A Design of Secure Communication Protocol Using RLWE-Based…

1 3

User identification and verification response: MS:SECURITY transfers a user identi-
fication and verification response message to MS:OSS. The MS:OSS which received the
response message transfers the cryptogram (CA_1) received from the user and requests
a gateway identification and signature value. Confirmation of user secret key: Using the
received message as a secret key, the gateway performs RLWE-based completely homo-
morphic algorithm decoding and XoR calculation with MS:SECURITY shared previously
and acquires the user’s secret key.

After parameter verification, MS:OSS saves the signature value created between the
gateway and user based on the parameter. After that, the user creates V_SK2 based on
MS:SECURITY_SK of gateway and the user’s USER_SK. The key creation and user reg-
istration process in a cloud computing-based IoT environment is as shown in Fig. 3.

V_SK key creation: The gateway calculates the confirmed user’s secret key and the
secret key of the gateway calculates Tensor Product to create V_SK1 key. After that,

(3-3)VerifyUSER-SK⊕ME:SECURITY = USER-SK

Table 1 Abbreviations of the proposed communication protocol

Abbreviation Description

Nonce_User User generated random numbers in the application
User_SK User’s Secret_Key
SECURITY_SK Secret_key of MS:SECURITY
V_SK1 Secret_Key created through fully homogeneous tensor product in gateway based on

parameter values for user and gateway
V_SK2 Secret_Key created through fully homogeneous tensor product in application based on

parameter values of user and gateway
GATEWAY_ID Identifier of gateway
SIG_G Signature value generated by gateway
SIG_User User signature value created by application
GATEWAY_SK Secret_Key of gateway
G_DATA Data collected from IoT-based devices
CCS_ID Cloud computing server identifier
SIG_CCS Signature value generated by cloud computing server
SIG_C·S Signature value generated based on parameters of users, gateways, and cloud servers

with hashtrips
User_Info User information
User_ID User identification
ERLWE_PUB_O Encryption is performed using the open key of the MS:OSS of the fully semi-active

password-based
ERLWE_PUB_S Encryption is performed using the open key of the MS:SECURITY of the fully semi-

active password-based method
ERLWE_PUB_G Cryptographically encrypts GATEWAY with the disclosure key of a fully semi-active

password-based
ERLWE_PUB_A Encryption is performed using the open key of a fully semi-synchronous password-

based application
ERLWE_PUB_C Encrypts cloud computing servers with fully homogeneous passkey-based encryption
Evalpk(+, c, c*) Co-operation of fully semi-current cryptographic algorithms
Evalpk(·, c, c*) Multiplexing of fully semi-current cryptographic algorithms

606 B.-W. Jin et al.

1 3

XoR calculation is performed on the gateway’s identification value and the secret key of
MS:SECURITY, and RLWE-based completely homomorphic algorithm encryption of
MS:SECURITY is performed to create a cryptogram. Encryption is then performed on V_
SK1 and creates CG_1 through connection. XoR calculation is performed on the gateway’s
secret key and MS:SECURITY’s secret key, which are encrypted with the user’s open key
to create CG_2. After that, the authentication information and index between the user and
gateway are created and saved.

Gateway identification value response and signature value request: By attaching the
cryptogram created in 7, the gateway transfers the response message to MS:OSS. After
receiving the message, MS:OSS transfers the request message of gateway identification,
verification, and signature value. Verification of identification value and the creation of
signature value: MS:SECURITY decodes CG_1 received and acquires the gateway’s iden-
tification value and V_SK1. After that, it performs XoR calculation on the user and gate-
way’s identification value and user’s random value and then creates a signature value. It
connects the created signature value with the identification value of gateway and encrypts
them using the open key of MS:OSS to create CS_1.

(3-4)User ⋅ Gateway_Auth_Value = CA_1� ⊗ CG_2

U ⋅ G_Index = (Gateway_ID⊕ USER_ID)

Storing User ⋅ Gateway_Auth_Value||U ⋅ G_Index

(3-5)SIG_USER = ERLWE-PUB-S((USER-ID)⊕ User-Nonce)

Fig. 2 Key setting and identification parameter exchange process between user and gateway in cloud centric
IoT environment

607A Design of Secure Communication Protocol Using RLWE-Based…

1 3

Gateway identification value and signature value response: MS:SECURITY transfers the
response message according to the request from MS:OSS by attaching the cryptogram cre-
ated in 9. Saving signature value based on hash tree: MS:OSS decodes the received crypto-
gram CS_1 and confirms signature value (SIG_USER) and the gateway identification value.
After that, it performs XoR calculation on the gateway identification value and user identifica-
tion value, performs AND operation on the confirmed signature value, and creates SIG_G.
MS:OSS creates CO_1 by encrypting with the gateway’s open key and creates CO_2 by
encrypting with the user’s open key.

Transfer of signature value: The signature value of MS:OSS transfers the signature value
created based on hash tree to the gateway by attaching the cryptogram created in 11 After that,
MS:OSS attaches the cryptogram created in 9 and 11 and transfers the user registration com-
pletion and signature value to the user.

(3-6)CS_1 = ERLWE-PUB-O(SIG-USER)||Gateway-ID)

(3-7)SIG_G = EPUB-S(Gateway-ID⊕ USER-ID⊕ SIG-User)

(3-8)CO_1 = ERLWE-PUB-G(SIG-G)

(3-9)CO_2 = ERLWE-PUB-A(SIG-USER)

(3-10)CO_2 = EPUB-S(Gateway-ID⊕ USER-ID⊕ SIG-User)

Fig. 3 Key generation and user registration process in cloud centric IoT environment

608 B.-W. Jin et al.

1 3

Verification of identification value and the creation of V_SK2: The user decodes the cryp-
togram received and confirms the secret key and signature value of gateway. After performing
Tensor Product on the gateway’s secret key and user’s secret key, V_SK2 is created.

3.2 Design of Data Management Technique

This part will describe the data storage and management process in a cloud computing ser-
vice domain. Gateway extracts generated signature value from user and gateway registration
process from previous phase and data that is collected in real time from device and transfers
it to CSS:DB. Then, CSS:DB transfers verification value of gateway from MS.SECURITY.
MS:OSS verifies the value and saves the signature value based on hash tree. CSS:DB that is
verified with verification value conducts monomorphic password(Evalpk(+, c, c*) = c ⊕ c*)
with data received by gateway to manage data. Figure 4 shows the block diagram of message
management technique.

Extraction of signature value: Gateway performs RLWE-based completely homomorphic
encryption on the collected data with V_SK1.

Collected data transfer: The gateway transfers the cryptogram created in 1 from a
cloud computing server. The cloud computing server decodes the received cryptogram,

(3-11)V_SK2 = USER-SK⊗ Gateway-SK

(3-12)CG_1 = ERLWE-PUB-CSS(Gateway-ID||SIG-G)||G-DATA

Fig. 4 A design of message management method in cloud centric IoT environment

609A Design of Secure Communication Protocol Using RLWE-Based…

1 3

confirms the linked Gateway ID and signature value (SIG_G), and encodes them using
MS:SECURITY’s open key and creates CCD_1.

Request Gateway Identification value and verification Process: In the cloud comput-
ing server, the MS:OSS generates a message containing the identification and signature
value verification request by attaching the password generated by the MS:OSS. MS:OSS
transmits the identification verification value request from MS: SECURITY SECURITY
by EDC_1. Verification of signature value: MS:SECURITY decodes the received message
and confirms the identification value of cloud computing server, identification value of
gateway, and the signature value (SIG_G). After, it performs XoR calculation on the identi-
fication value of cloud computing server and gateway, encodes them with an open key, and
creates a signature value (SIG_CSS) between the cloud server and gateway.

Identification value verification response and signature value saving: MS:SECURITY
transfers the response message according to the request by attaching the cryptogram cre-
ated in 4. MS:OSS, which receives the message, decodes the received cryptogram and con-
firms the cloud server’s identification value and signature value (SIG_CSS). Using hash
tree base, it creates a signature value (SIG_C·G) as well as CC_1 and CC_2 cryptograms
using RLWE-based cryptogram algorithm.

Gateway identification value response and data saving: MS:OSS transfers the response
message according to the cloud computing server request by attaching the cryptogram
created in 5. After that, cloud computing server decodes the received cryptogram (CC_1,
CC_2) and confirms its identification value. The server creates index (IN_C·G) based on
completely homomorphic addition.

3.3 Proposed Design of Encryption Communication Message Protocol

This part designs a message communication protocol using the signature value and key created
in the previous part. The user logs into CSS:DB. CSS verifies user information and requests
the ID value from the user. The user generates the ID value and verifies the ID value from
MS:OSS. The signature value is verified after requesting and receiving the signature value
from the gateway. Then, after verifying the signature values of the user and gateway, the data
are verified by performing the sum operation based on fully homomorphic encryption. Lastly,
the data are sent from the user by encrypting V_SK1·2. Figures 5 and 6 show the details of the
communication protocol in a cloud computing-based IoT convergence environment. Login: A
user extracts the signature value (SIG_USER), creates CA_1 and CA_2 cryptograms using the
open key of MS:OSS, and transfers the cryptograms to (CSS) cloud computing server.

(3-13)

CCD_1 = ERLWE-PUB-S(Gateway-IDSIG-G)⊕ CCS-ID)||ERLWE-PUB-S(CCS-ID)

(3-14)SIG_CSS = ERLWE-PUB-S(Gateway-ID⊕ CCS-ID)

(3-15)CS_1 = ERLWE-PUB-O(SIG-CSS⊕ CCS-ID)||ERLWE-PUB-O(CCS-ID)

(3-16)CC_1 = ERLWE-PUB-C(SIG ⋅ G)||(CCS-ID⊕ Gateway-ID)

(3-17)CC_2 = ERLWE-PUB-G(Gateway-ID)||ERLWE-PUB-O(SIG-C ⋅ G)

(3-18)IN_C ⋅ G = ERLWE-PUB-O(Gateway-ID)⊕ ERLWE-PUB-O(SIG-C ⋅ G)

(3-19)CA_1 = ERLWE-PUB-O(User-Info)||SIG-USER

610 B.-W. Jin et al.

1 3

(3-20)CA_2 = ERLWE-PUB-C(User-Info)||USER-ID

Fig. 5 A design of communication protocol in cloud centric IoT environment-1

Fig. 6 A design of communication protocol in cloud centric IoT environment-2

611A Design of Secure Communication Protocol Using RLWE-Based…

1 3

Confirmation of identification value and signature value request: The cloud server decodes
CA_2 transferred and confirms the identification value. After that, it performs encryption
algorithm with the open key of MS:OSS and creates CCD_1.

Signature value request and detection: To verify the information and identification value
transferred to the cloud server, MS:OSS requests the signature value from the user. After
receiving the request message, the user extracts a random value and creates cryptogram
(CA_3) using the open key. Then the user creates CA_4 using the gateway open key and trans-
fers the response message to MS:OSS.

Gateway signature value request and extraction: MS:OSS receives the data from user and
requests the signature value from the gateway. After that, the gateway performs encryption
with the user’s open key and creates cryptogram (CG_1). Also, the gateway creates crypto-
gram (CG_2) with its open key and sends a response message.

Signature value verification: MS:OSS receives the signature value from the gateway and
decodes cryptogram (CG_2, CCD_1). The identification value and signature value (SIG_G)
of the gateway are confirmed in CG_2. CCD_1 confirms the cloud identification value, user
identification value, and the user’s signature value as the cryptograms transferred from the
cloud computing server. With the SIG_G of confirmed parameter based on hash tree, the sig-
nature value (SIG_CG) is verified.

Verification of identification value: MS:OSS verifies the signature value and transfers a
verification request message to MS:SECURITY by attaching the cryptograms (CG_1, CA_4).

Verification of identification value between the user and gateway: MS:SECURITY per-
forms Tensor Product on the cryptograms (CG_1, CA_4) and verifies the mutual authenti-
cation value based on Evalpk (·, c, c*) = ⇀c⊗ (

⇀

c
∗) , the completely homomorphic cryptogram

algorithm.

(3-21)CCD_1 = ERLWE-PUB-O(CCS-ID||USER-ID||SIG-USER)

(3-22)CA_3 = ERLWE-PUB-S(User-ID)||USER-Nonce)

(3-23)CA_4 = ERLWE-PUB-G(USER-SK)||ME:SECURITY-SK)

(3-24)CG_1 = ERLWE-PUB-A(Gateway-SK⊕MS:SECURITY)

(3-25)CG_2 = ERLWE-PUB-G(SIG-G⊕ Gateway-ID)||Gateway-ID)

(3-26)CG_2 = ERLWE-SEUCIRTY-O((SIG-G⊕ Gateway-ID)||(Gateway-ID))

(3-27)N�SIG_G = EPUB-S(Gateway-ID⊕ USER-ID||SIG-USER)

(3-28)ConfirmsE�SIG-G = N�SIG-G

(3-29)CG_1 = ERLWE-PUB-G(Gateway0-SK⊕MS:SECURITY)

CA_4 = ERLWE-PUB-G(USER-SK)||ME:SECURITY-SK)

CG_1⊗ CA_4 =
⇀

c⊗ (
⇀

c
∗) = User ⋅ Gateway_Auth_Value,

U ⋅ G_Index = (Gateway_IDUSER_ID)

SearchingUser ⋅ Gateway_Auth_Value||U ⋅ G_Index

If Calculate (User ⋅ Gateway_Auth_Value) = Exist(User ⋅ Gateway_Auth_Value)

612 B.-W. Jin et al.

1 3

Identification value verification response and signature value extraction:
MS:SECURITY transfers a verification response request message from MS:OSS. MS:OSS
extracts a hash tree-based signature value, connects it with the identification value of gate-
way, and encrypts it using the open key of cloud computing server to create cryptogram
(CS_1).

Transfer of data verification completion message: MS:OSS attaches the cryptogram
(CS_1) created during 8 from the cloud computing server and transfers the verification
completion message. Data verification and transfer: The cloud computing server decodes
the received message and confirms the gateway identification value and signature value. It
then creates an index value based on it and searches data by referring to the identification
value of gateway. After that, the cloud computing server compares and analyzes the index
with the index created in the previous part. Finally, the cloud computing server transfers
the corresponding data after comparison and analysis to the user.

4 Simulations or Evaluation

4.1 Efficiency Evaluation

To conduct comparison and analysis with the existing cryptogram IoT environment, the
performance analysis environment used Java (Jdk 1.8.0_31)-based Mysql 5.7.18, SQL
developer, and Eclipse Software in Intel Core2 Quad CPU Q9400 2.66 GHz, 4.00 GHz,
Windows 7 Ultimate K 62bit OS environment. A performance analysis was conducted on
mutual authentication and verification among message encryption, message decode, and
between user and gateway. The speed of existing encryption system (T-DES with RSA in
IoT, AES with RSA in IoT, AES with ECC in IoT) and the proposed encryption commu-
nication protocol (Ring Learning with error-based completely homomorphic cryptogram
protocol) is shown in Fig. 7. The proposed encryption communication protocol confirmed a
30 ms improved speed for encryption compared to the 3DES-symmetric key-based encryp-
tion communication protocol and about 6.1 ms improved speed of decode performance in
the AES encryption communication protocol. In an open key-based ECC encryption proto-
col, the encryption speed of 0.2 ms and decode speed of 0.4 ms were confirmed. To apply
to each environment the study equally set the information, verification information and sig-
nature value of user to 1024 bit, 1024 bit, 160 bit each, and used key value of encrypted
algorithm applied to each environment to conduct performance analysis. In previous com-
parative analysis, when conducting RSA verification based T-DES data transfer, the study
used RSA2048, Triple-Des, when conducting RSA verification based AES data encryp-
tion, the study used RSA2048, Triple-Des and RSA2048, AES-CTR, and when conducting
ECC verification based AES data encryption, the study used ECC(233bit), AES-CCMP.

The graph comparing the speed of authentication and verification between user and
gateway is as in Fig. 8. After creating a key, mutual authentication was carried out based
on the user’s information and identification value and the gateway’s identification value,

(3-30)CS_1 = ERLWE-PUB-C(SIG-C ⋅ G||Gateway-ID)

(3-31)CS_1 = DRLWE-SECURITY-C(SIG-C ⋅ G||Gateway-ID)

Searching IN_C ⋅ G

ComparisonCalculate (IN_C ⋅ G) = Exist(IN_C ⋅ G)

613A Design of Secure Communication Protocol Using RLWE-Based…

1 3

resulting in speed improvements by 21 ms compared to the existing RSA cryptogram
and 2 ms compared to ECC cryptogram. In addition, signature value verification was
performed during mutual authentication process based on the signature value created
in a cloud computing server and IoT-based Management Service Server. This showed
speed improvements by 23 ms from the existing RSA cryptogram and 10 ms from ECC
cryptogram. Also, there was case of not considering the space complexity as the per-
formance of volatile memory of recent PC specification was sufficient, but as device of
IoT environment requires limitation of performance, the study conducted comparative
analysis on usage of memory in accordance with message encryption. The difficulty in
accordance with message decoding of proposed password protocol is learning with error
problem, which adds error value when conducting coding process with other key, not a
secret key which makes it safe from differential attack.

Fig. 7 Cryptography communi-
cation analysis exist system and
proposed cryptography com-
munication in cloud centric IoT
environment

0
5

10
15
20
25
30
35
40
45
50

T-DES with
RSA in IoT

AES with RSA
in IoT

AES with ECC
in IoT

Proposed
Cryptography

System
(RLWE In IoT)

Decryp�on Encryp�on

(Time : millisecond)

Fig. 8 Speed analysis mutual
authentication and signature
verification of exist cryptography
system and proposed cryptogra-
phy system

614 B.-W. Jin et al.

1 3

4.2 Safety Analysis and Security Evaluation

In this section, we analyze the efficiency of the proposed protocol and conduct a safety
analysis according to the vulnerability. We analyze the time complexity of encryption and
decryption in the proposed communication protocol, space complexity of message encryp-
tion, difficulties in decrypting encrypted messages, and attack success rate against random
attacks. Big-O notation is used for the complexity analysis process and the memories used
in space complexity are written as ω (Table 2).

1. Threat of user’s privacy exposure A risk on the infringement of user’s personal informa-
tion is increasing in an ICT environment. There is an enormous amount of data collected
through various IoT devices which are facing the risk of data leakage. To resolve this,
cryptogram was performed on user and gateway information with a completely homo-
morphic cryptogram technique to verify CG_1 ⊗ CA_4 = ⇀c⊗

⇀

c
∗ = User·Gateway_Auth_

Value, without decoding; to infer the safely decoded message, there is a difficulty for
the n-th equation on the Ring.

2. Threat from non-authorized access When an attacker steals user’s or gateway’s iden-
tification value and tries to access via MS Domain, MS:OSS performs verification on
the created signature value (SIG_G), while MS:SECURITY verifies user authentica-
tion information and calculates and confirms the value of Index (U·G_Index = (Gate-
way_ID·USER_ID)), preventing non-authorized access.

3. Middle and replay attack For an attacker to decode RLWE-based cryptogram algorithm
when trying to analyze the message he stole from the designed communication, noise
value (rMT) amplifies as encryption is attempted with a different key, not an entity’s
personal key, failing the middle attack.

4. Threat of message leakage The mutual authentication and access control technique in the
existing cloud computing-based is not appropriate to use in a cloud computing-based IoT
environment, and there is a security threat on information management. The proposed
cryptogram protocol has higher efficiency than the existing encryption algorithm (RSA,
ElGamal, ECC) as well as ensures higher message safety in terms of security. When the
encrypted message is leaked, d = 2048 q ≈ 260 is asked at Rq = Zq[x]/(xd + 1), which
makes decoding impossible.

5. Expandability on different devices The open key cryptogram (RSA, ECC) in the existing
IoT and cloud computing service methods has performance limitations or causes over-
head due to huge calculation load. A cloud computing-based IoT environment requires
light weight and high speed. While ABE (Attribute-based Encryption) can be applied, it
causes too many restrictions on DB and too much calculation load. The proposed cryp-
togram protocol manages data using RLWE-based Evalpk (+, c, c*) = c ⊕ c*), providing
expandability to different devices.

5 Conclusions

This research applied a RLWE-based, completely homomorphic cryptogram algorithm
to a cloud service -IoT convergence environment and designed a communication proto-
col, for the proposed encryption communication protocol. After performing authentica-
tion between user and IoT-based gateway, user registration was completed and key crea-
tion protocol was designed, and the data collected from device was transferred to a cloud

615A Design of Secure Communication Protocol Using RLWE-Based…

1 3

Ta
bl

e
2

 E
xi

st
cr

yp
to

gr
ap

hy
 a

nd
 p

ro
po

se
d

cr
yp

to
gr

ap
hy

 o
f e

ffi
ci

en
cy

 c
om

pa
ris

on

R
SA

El
ga

m
al

EC
C

Pr
op

os
ed

 c
ry

pt
og

ra
ph

y

Ti
m

e
co

m
pl

ex
ity

 o
f e

nc
ry

pt
io

n
M

es
sa

ge
O

(n
)

M
es

sa
ge

O
(n

) +
 M

es
sa

ge
O

(1
)

M
es

sa
ge

·O
(1

) +
 M

es
sa

ge
·O

(1
)

M
es

sa
ge

·O
(1

)·O
(2

n)
Ti

m
e

co
m

pl
ex

ity
 o

f d
ec

ry
pt

io
n

C
(M

es
sa

ge
)O

(n
)

C
(M

es
sa

ge
)O

(n
) +

 C
(M

es
sa

ge
)O

(1
)

C
(M

es
sa

ge
)·O

(1
) +

 C
(M

es
sa

ge
)·

O
(1

)
C

(M
es

sa
ge

)·O
(1

)

Sp
ac

e
co

m
pl

ex
ity

 o
f e

nc
ry

pt
io

n
ω

iO
(n

)
ω

iO
(n

) +
 ω

iO
(n

)
2ω

i
ω

i

D
iffi

cu
lty

 d
ec

ry
pt

io
n

of
 e

nc
ry

pt
io

n
m

es
sa

ge
Pr

im
e

fa
ct

or
iz

at
io

n
pr

ob
le

m
D

is
cr

et
e

lo
ga

rit
hm

 p
ro

bl
em

D
is

cr
et

e
lo

ga
rit

hm
 p

ro
bl

em
Le

ar
ni

ng
 w

ith
 e

rr
or

 p
ro

bl
em

616 B.-W. Jin et al.

1 3

computing-based server and designed a technique to create and manage an index. Next, a
communication protocol was designed based on user registration, key creation procedure,
and data management technique, preventing the damages from data leakage and privacy
threat issues. This study designed user registration, key creation, message management
technique, communication protocol to prevent damages from data leakage and privacy
threats. It also effectively responded to data falsification by designing a hash tree-based
certificate management technique in signature value management.

The proposed encryption protocol sets user information, identification value, gateway
identification value, and cloud identification value, and we conducted performance analysis
and security evaluation with the existing encryption communication system. By consider-
ing various IoT-based devices, the study analyzed time and space complexity and confirmed
safety against differential attack. The study also analyzed safety against the threat of user’s
privacy exposure, unauthorized access, middle and replay attack, and message leakage, which
are existing vulnerabilities. The proposed encryption communication protocol provided flex-
ibility with the expandability of different devices, in contrast to the existing encryption com-
munication protocol. Thus, the encryption communication protocol proposed in this paper is
expected to solve vulnerabilities such as data leakage and infringement on user information.

References

 1. Park, J. (2014). Future of Internet of Things (1st ed.). ETNEWS.
 2. Choi, Kyung, & Kim, Mi-Hui. (2016). Reseach on convergence of internet-of-things and cloud com-

puting. JKCA, 16(5), 1–12.
 3. Nam, H.-J. (2017). Security and privacy issues of fog computing. KICIS, 1(42).
 4. Pyo, C. S., Kang, H. Y., Kim, N. S., & Bang, H. C. (2013). Trends and development prospects of

IoT(M2M). The Journal of Korean Institute of Communication and Information Sciences, 30(8), 3–8.
 5. Gentry, C. (2009). A fully homomorphic encryption scheme. Stanford University, Ph.D. Thesis.
 6. Cha, H.-J. (2015). Design of the secure data management system using homomorphic encryption.

KICTS, 4(15).
 7. Gentry, C., & Halevi, S. (2011). Implementing gentry’s fully homomorphic encryption scheme. In

Advances in Cryptology –EUROCRYPT, Lecture Notes in Computer Science (Vol. 6632, pp. 129–148).
 8. Kim, J.-H. (2013). Fully homomorphic encryption scheme without key. FHE, KICS, 5(38), 428–433.
 9. Kim, J.-H., You, S.-K., & Lee, S.-H. (2013). Fully homomorphic encryption scheme without key

switching. KICS, 38(5), 428–433.
 10. Yang, H., Kim, H., Tang, D., & Li, H. An Efficient Somewhat HE scheme over Integers and Its Varia-

tion. IETE Technical Review.
 11. Song, Y.-J., & Park, K.-Y. (2009). Homomorphic encryption technique for database outsourcing.

KIISC, 19(3), 80–89.
 12. Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2011). Fully homomorphic encryption without boot-

strapping. IACR Eprint Archive.
 13. Yang, H., & Kim, H. (2013). A fully homomorphic encryption scheme based on somewhat homo-

morphic encryption scheme with two integers. In Proceedings of KICS winter conference 2013 (pp.
76–77).

 14. Kim, S.-J., Kim, J.-M., & Cho, I.-J. (2012). Design of configuration management using homomorphic
encryption in mobile cloud service. KIICE, 16(10), 2217–2223.

 15. Kim, H.-S., & Lee, S.-W. (2013). Homomorphic encryption scheme and applications for cloud com-
puting security. SERSC, 10(2), 213–224.

 16. Cho, N.-S., & Hong, D.-W. (2008). Technical trend of the searchable encryption system. ETRI, 23(4).
 17. Stehle, D., & Steinfeld, R. (2010). Faster fully homomorphic encryption. Lecture Notes in Computer

Science, 6477, 377–394.
 18. Damgard, I., & Jurik, M. (2001). A generalization, a simplification and some applications of Paillier’s

probabilistic public-key system. In Public Key Cryptography—PKC (pp. 119–136).
 19. Gennaro, R., Gentry, C., & Parno, B. (2010). Non-interactive verifiable computing: Outsourcing com-

putation to untrusted workers. Lecture Notes in Computer Science, 6223, 465–482.

617A Design of Secure Communication Protocol Using RLWE-Based…

1 3

 20. Rivest, R., Addleman, L., & Dertouzos, M. (1978). On data banks and privacy homomorphism. In
Foundations of secure computation (pp. 169–177).

 21. Kolesnikov, V., Sadeghi, A., & Schneider, T. (2009). How to combine homomorphic encryption and
garbled circuits—Improved circuits and computing the minimum distance efficiently. In: Proceedings
of SPEED 2009 (pp. 100–121).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Byung‑Wook Jin received his B.S. degree in Multimedia Science from
ChungWoon University, Chungnam, Korea in 2011, and M.S. degree
in Computer Science from Soongsil University, Seoul, Korea, in 2013.
He is currently a Ph.D. Course in the Computer Science, Soongsil Uni-
versity. His research interests include Internet of Thing, Authentication
System, Network Security.

Jung‑Oh Park is a Professor of Department of Paideia, Sungkyul Uni-
versity, Korea. His research interests include: PKI and Ubiquitous
Computing. His research interests include Internet Of Thing, Authenti-
cation System, Network Security.

618 B.-W. Jin et al.

1 3

Hyung‑Jin Mun received his B.S., and Master degree in Mathematics
from ChungNam National University, Republic of Korea in 1996 and
2002. He received Ph.D. degrees in Computer Science from Chung-
Buk National University in 2008. He was an assistant professor and
associate professor in Yanbian University Science and Technology in
China, in 2009 and 2010. Currently, he works at Sungkyul University
as an assistant professor. His research interests include Personal Pri-
vacy, Access Control, Authentication, and Network Security.

	A Design of Secure Communication Protocol Using RLWE-Based Homomorphic Encryption in IoT Convergence Cloud Environment
	Abstract
	1 Introduction
	2 Related Work
	2.1 Analysis on Issues of IoT Convergence Paradigm and Security Requirements
	2.1.1 Device
	2.1.2 Data
	2.1.3 Service
	2.1.4 Security

	2.2 Algorithm of Completely Homomorphic Cryptogram
	2.3 Trend of Fully Homomorphic Encryption Algorithm in Cloud Environment

	3 Design of Proposed Cryptography Communication Protocol in IoT Convergence Cloud Environment
	3.1 User Registration and Session Key Creation
	3.2 Design of Data Management Technique
	3.3 Proposed Design of Encryption Communication Message Protocol

	4 Simulations or Evaluation
	4.1 Efficiency Evaluation
	4.2 Safety Analysis and Security Evaluation

	5 Conclusions
	References

