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Abstract Blind universal steganalysis has been the choice of Steganalysers owing to it’s

capability to detect stego images without any prior information about the embedding

method. Universal steganalysis is a two class optimization problem and the detecting

efficiency depends on the feature set chosen from the stego and clean images. Though

extracting all possible features of an image may lead to more efficiency the classification

suffers due to large dimension of feature set. To overcome the problem of dimensionality

appropriate feature reduction techniques need to be employed. This paper presents a blind

universal image steganalysis technique that extracts the noise models of adjacent pixels of

an image. The exact model construction involves the formation of four dimensional co-

occurrence matrices of the quantised and truncated noise residues. From the 106 sub

models 34,671 features have been extracted and further reduced by a novel unsupervised

optimization technique to identify the most appropriate features for classification. The

classifiers implemented include Support Vector Machines (SVM), Multi Layer Perceptron

(MLP) and three fusion classifiers based on Bayes, Decision Template and Dempster

Schafer fusion schemes. It has been identified that MLP performs better than SVM but is

not superior to fusion classifiers. Comparing all the classifiers, Decision Template based

fusion method gives the best classification accuracy (99.25%). Thus the proposed unsu-

pervised optimization method combined with Decision Template fusion classification

scheme provides the best classification of stego and clear images as compared to the

existing research work.
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1 Introduction

Steganography is the art of concealed communication in digital media. Image steganog-

raphy has gained moment in the recent past as the very existence of the secret data is

undetectable in an image. The strength of the steganographic technique lies in the property

of statistical undetectability [1] of the secret information. Steganalysis is the identification

of an image with secret information and is a two class optimization problem with the

outcome as either stego image or cover image. Identifying the image features that were

altered due to steganography is a crucial task as different steganographic methods alter

different parameters of the image. Modern blind image steganalysis intends to extract as

many features as possible to get a rich set of features and classify them. Though a rich data

set is expected to give more accuracy in identifying stego images, they suffer from

dimensionality problem. Hence feature set optimization to discover the pixel changes has

become the prime requirement. Recent steganographic methods preserve the pixel

dependencies of the cover image [2] and hence image steganalysis methods use increased

number of pixel dependencies as feature vectors. In recent past, spatial domain steganalysis

of images using SPAM features (686 features) have been used by Penvy et al. [2] to attack

LSB matching steganographic schemes, cross domain features (1234 features) have been

employed to attack the YASS [3]. Holub et al. state that while the scope of steganalysis

with low dimensional feature set seems ineffective [3] the need for a large feature set has

become inevitable.

This research work intends to capture all possible statistical dependencies among pixels

in spatial domain as noise models. The low amplitude noise components have small

dynamic range and hence increase the SNR between the stego image and the cover image.

Statistically represented as joint probability distribution or co-occurrence matrices, these

noise residues are modeled as multiple sub models of the images resulting in a large feature

set. To overcome the problem of space and time complexity due to this large data set and to

identify the specific pixel changes in stego images, an unsupervised clustering based

optimization technique has been proposed. The reduced feature set is classified with

individual classifiers (SVM and MLP) and a fusion classifier system with Bayes, Dempster

Schafer and Decision template fusion schemes. The proposed method has been tested for

Universal distortion method of steganography in spatial domain given by Holub et al. [4].

The next section of this paper discusses about the steganographic scheme in universal

distortion method, followed by the feature extraction. Later the unsupervised optimization

process is explained followed by the classification scheme along with the experimental

results.

2 Steganographic Scheme

The lack of accurate model leads to different methods of steganographic embedding in

images. Steganography in images pertain to JPEG and spatial domains. Spatial domain

image steganography demands the embedding cost to be high in smooth areas and low in
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noisy areas. Recent algorithms define the embedding distortion as normalized weighted

values of higher order statistical differences of pixels [5–7]. Wavelet Obtained weights

(WOW) intend to assess the image content in terms of aggregated directional residuals of

high pass filters [5]. This wavelet based steganographic system has high resistance against

rich model based steganalysis [6]. A modification of this WOW as the sum of relative

changes between stego and cover images is presented as SUNIWARD (Spatial Universal

Wavelet Relative Distortion) [4]. This steganographic scheme is used in this research to

create the stego images. SUNIWARD intends to embed information in noisy or textured

regions by quantifying the output with directional filter banks to resist steganalysis based

on rich models. The additive approximation of SUNIWARD is considered in this paper as

it uses stabilized filter banks. The choice of the directional filters and the stabilization

constant determines the best setting for the SUNIWARD. The directional filter bank is

constructed as a set of three linear shift invariant filters with kernels K1, K2, K3 which

evaluate the directional residual (smoothness) of an image (I) in three directions, viz.

horizontal, diagonal and vertical. The residual has n19n2 elements as it is the mirror

padded convolution of the kernel with the image I. The kernels are obtained from the one

dimensional wavelet decomposition filters (low pass—h and high pass—g) [4] as below,

K1 ¼ h � gT ; k2 ¼ g � hT ; K3 ¼ g � gT ð1Þ

The choice of the wavelet based directional filters provides good de-correlation and

energy compactification when their residuals coincide with the undecimated (1st level)

wavelet decomposition of an image into the two dimensional LH, HH and HL sub bands.

The steganographic distortion function used is the sum of relative changes of all wavelet

coefficients given by,

D I; Jð Þ ¼
XXX

Wxy Ið Þ �Wxy Jð Þj jð Þ= / þ Wxy Ið Þj jð Þ ð2Þ
where ‘∝’ is the stabilization constant and is always non negative. The distortion D(I,J) is
small when the wavelet coefficient of cover image (I) is large compared to that of the stego

image (J). This occurs in the edges and textured regions. Apart from stabilizing the

numerical computation, ∝ also affects the content adaptivity of the embedding algorithm.

A small value of ∝ leads to high sensitivity and undesirable embedding change proba-

bilities. A large value of ∝ gives smooth embedding change probabilities, enabling

SUNIWARD to embed into cover image. These situations prompt the choice of a moderate

value for ∝. For an embedding or distortion function, the cost involved in changing an

element of cover image from Ixy to Jxy is Cxy(I, Jxy) ≜ D(I, Ixy Jxy). The distortion function

depends on Syndrome Trellis Code which is a standard tool in steganography. When I = J,
Cxy = 0. The additive approximation of Eq. (2) based on this distortion is,

Da I; Jð Þ ¼
XX

Cxy I; Jxy
� �

Ixy 6¼ Jxy
� � ð3Þ

Here the value of [Ixy ≠ Jxy] is equal to 1 when [Ixy ≠ Jxy] is true and is equal to 0 when

[Ixy ≠ Jxy] is false. For high frequency components, the embedding cost in SUNIWARD is

higher as it avoids embedding in zeros.
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3 Proposed Steganalyzer

3.1 Feature Extraction

Feature model selection is a crucial task for steganalysis as the classification accuracy

depends on the intrinsic nature of the features that undergo changes during steganography.

The choice of the image features should be in spatial domain as the steganographic

scheme used is in spatial domain (SUNIWARD). As steganography changes only few

pixels in cover images, it would suffice to model these changes, in the form of noise

components. Also, framing a single model and enlarging it leads to many under populated

bins [8]. This necessitates the need for an appropriate model built from many sub models.

This research work uses the sub models of the noise components of pixels. As supported by

literature, modeling the noise residual seems to be advantageous as the dynamic range of

the pixel values reduce giving way for effective statistical evaluations [9–12]. The noise

models proposed by Kodovsky et al. [11] form the basis for extracting the feature set in this

research work. These are the spam features by Du [13] in horizontal and vertical directions.

The residual noise components are calculated from high pass filters for specific neigh-

borhood and specific residual order.

Pij ¼ ~Qij qij
� �� rQij ð4Þ

where Pij is the residual, ρij is the neighborhood of Qij, ~Qij (·) is a predictor of rQij on the

neighborhood and {Qij+ρij} is the support of the residual. The chosen residuals are further

truncated after quantization as in Eq. (5) for better dynamic range of the residuals,

Pij ¼ T Pij=s
� � ð5Þ

where T is the truncation function and s is the quantization step size. Quantization enhances
the embedding changes in the spatial discontinuities to be more obvious in the noise

residuals. The feature model construction is based on the co-occurrence matrices of

neighboring noise residuals which depends on the choice of the truncation constant T,
spatial distribution of the noise residuals and the order of the co-occurrence matrices. Since

the pixel correlation falls off at a faster rate in diagonal direction, only correlation between

horizontal and vertical pixels are considered in this work. The maximum co-occurrence

order is chosen as 4 and the value of T is kept small. The loss of information due to

truncation with small T is compensated by considering several sub-models with varying s.
For a co-occurrence matrix of dimension 4, indices being d=(d1, d2, d3, d4) Ѓ4, Ѓ4 being

{− Ѓ, …, Ѓ}4, the number of elements in the co-occurrence array is (2Ѓ+1)4 = 625.

Considering the horizontal co-occurrence matrix, the dth element in the array is given as,

A
ðhÞ
d ¼ 1= Nð Þ f Pij; Pi; jþ1; Pi; jþ2; Pi;jþ3

� ��� ��Pi;jþk�1 ¼ dk; k ¼ 1; 2; 3; 4g ð6Þ
here N is the normalization constant assuring Ad(

h)=1. The analogy of defining the vertical

co-occurrence is similar to that of horizontal co-occurrences. For a fixed value of T and

fixed order of co-occurrence, finding the sub-models depends on the selection of the

predictor ~Qij (·) and the quantization step size s. In order to capture the noise differences

between nearby as well as distant pixels, the residual order is taken from 1 to 3 for a chosen

neighbourhood. The direction of the neighbourhood is in horizontal and vertical directions

for spam features. For a first order spam feature the noise residue is given by Nxy = Ix,y+1−
Ixy and for a second order spam feature the noise residue is given by Nxy = Ix,y−1+Ix,y+1−
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2Ixy where Ixy is the central pixel for which the residual is being calculated. The extracted

residuals can be grouped into six categories—the immediate neighbours (1st), a linear

quadratic model (2nd and 3rd), the spatial discontinuities as 393 edge (4th), circularly

symmetrical kernel as 595 edge (5th) and square kernel (6th).

Better populated models are created by reducing the number of sub models based on the

symmetries of the residuals. Some residuals are non directional i.e. the residual value does

not change even when the image is rotated 90°. If the residual value changes, they are

directional. All non directional residuals are symmetrical as their horizontal and vertical

co-occurrence matrices can be added to form a single matrix. Non symmetrical (direc-

tional) residuals produce two co-occurrence matrices one for horizontal direction and one

for vertical direction. Each residual is associated with a specific symmetry index (µ)
representing the different residuals that can be obtained by rotational mirroring of the

image before computing residuals. To reduce the dimensionality and increase the statistical

robustness, the non symmetrical residuals of same symmetry index, µ are added. Spam

features are also considered for square kernels [6]. These square and edge kernels provide

better noise estimates in textures where spatial discontinuities are more. The spam features

calculated thus are reduced (duplicates removed) by sequential symmetrisation [6] to have

only the unique features. The extraction of the minmax residuals involves more than two

linear filters. Each filter corresponds to horizontal or vertical directions and the final

residual is based on the minimum or maximum of the filter outputs.

The number of co-occurrence matrices for each of the six categories are calculated as—

22 co-occurrence matrices for the 1st category, 12 co-occurrence matrices for the 2nd, 22

co-occurrences for the 3rd, 2 co-occurrences for the category square and 10 each for edges

(595 and 393). Based on these computations 78 co-occurrence matrices each with 625

elements are used to build the required feature sub models. Since symmetrisation is the key

for increasing the population of the co-occurrence bins, it requires care in implementation.

Both sign symmetry and direction symmetry are used depending on the type of residue.

The rules adopted in symmetrising the spam features are,

�Ad ¼ Ad þ A�d ð7Þ

Ad = �Ad þ �Adn ð8Þ
where d=(d1, d2, d3, d4) ϵ Ѓ4, dn = (d4, d3, d2, d1) and − d = (− d1, − d2, − d3, − d4).

Symmetrisation based on this removes the duplicates and gives only 169 elements from

625 elements. The minmax residuals possess directional symmetry and satisfy the relation

min (X)=− max(X) for a finite set X ⊆ R. The rules for symmetrising minmax residuals are,

�Ad ¼ Amin
d þ Amax

�d ð9Þ

Ad ¼ �Ad þ �Adn ð10Þ
where Ad

min is the min co-occurrence and A-d
max is the max co-occurrence for a specific

symmetry index µ. This reduces the dimensionality from 62592 to 325. Thus sym-

metrisation reduces the sub models from 78 to 45. These 45 sub models are due to 12

models from 1st category, 12 from 3rd category, 7 from 2nd category, 2 from square, 6

each from the edges (595 and 393). Finally, the sub models due to spam residuals are 12

each with 169 elements and the sub models due to minmax are 33 each with 325 elements.

So the total dimension of the extracted feature set due to spam and minmax features is

34,671 as in Table 1. The extracted high dimensional feature set has well populated bins.
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For better results, low value of truncation coefficient is considered and the relation between

the residue order r and the quantization step s has to be s ϵ [r, 2r]. This large feature set has
been derived for the best values of s and r.

3.2 Unsupervised Optimization

In the above extracted features, though under populated bins have been eliminated, the

final dimensionality of the feature set is large. To avoid this curse of dimensionality in

terms of computational time and classification accuracy, optimization of the feature set

becomes essential [6]. Many statistical feature reduction techniques like Principle Com-

ponent Analysis (PCA), Fisher Linear Discriminant (FLD) [14] and Projections of

residuals [15] have been used in past. With the intuition of obtaining the best possible

features for steganalysis a novel unsupervised optimization technique has been proposed to

optimize the feature set for better classification. Unsupervised algorithms help in finding

structures in data which describe the data in a compact manner [16]. These methods

depend only on the input data to find the structures in data and hence are called as

unsupervised.

In a high dimensional space, validation of the optimization can be examined in terms of

distance based cluster plots [17]. When all data points are in same physical units, Euclidean

distance can be used to cluster data. Clustering can be done with Vector Quantization

based on codebook vectors with cluster centers [13]. A subset of codebook vectors is

associated with each cluster. Grouping of image features (cluster points) are based on the

Euclidean distance between each input feature vector and the center cluster according to

the nearest neighbor function.

The algorithm works for 4 clusters and each feature model acts as the input space, the

optimized output feature vector has dimension 848 (reduced from 34,671). The measure

used for minimum distance clustering is the pair wise Euclidean distance measure. The

clusters obtained are exclusive with no overlapping. This method adapts the cluster centers

in the feature space and tries to minimize the mean distance between a data point and this

location. The measuring metric for Euclidean distance

D2
e ¼ x1�x2ð Þ x1�x2ð Þ ð11Þ

This optimization gives a feature reduction ratio of 93.35% while maintaining the useful

and valid information in the data. For each image, a feature vector of dimension 848 is

Table 1 The different categories of spatial features

Category Number of sub models SPAM features MinMax features

1st 22 29338 20 9 325

2nd 18 3 9 338 15 9 325

3rd 33 3 9 338 30 9 325

3 9 3 15 3 9 338 12 9 325

5 9 5 18 6 9 338 12 9 325

Total 106 models 5746 28,925

Total no. of features 34,671 features

6 A. C. Johnvictor et al.
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obtained by concatenating the optimized features from each noise sub model. Distribution

of image data in cluster space before and after optimization is shown in Figs. 1 and 2.

3.3 Classification Scheme

The optimized feature set is used to classify the image as a clear or stego image. Classi-

fication plays a crucial role in steganalysis. One of the most powerful classifier used by

many steganalysts is the Support Vector Machines (SVM) [11, 18–21]. SVM maps the

input vector onto a high dimensional feature space by non linear mapping [18]. Training in

SVM involves determining the decision boundary and minimizing the aggregate distance

(cost function) between the hyper plane and the support vectors. Configuring the SVM

depends on the chosen kernel, kernel parameters and the margin parameter value. The cost

function to be minimized is of the form,

FðxÞ ¼ ðl=2Þ wk k2þ1=L
X

1� y1foðx1Þj jþ ð12Þ

The hyper parameter µ is the weight change parameter which is used to maximize the

margin and minimize the margin errors. |1−ylfo(xl)|+ = max(0,x). The weight value is given
by

w ¼ 1=lð Þ
X

YlAlh ðxlÞ ð13Þ
the parameter Al is seldom non zero and hence give only few training samples. These

samples are called as support vectors and give a sparse w matrix. Multi Layer Perceptron

(MLP) is another classifier that gives good classification accuracy for images. MLP works

Fig. 1 Image data in search space before optimization
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on the principle of back propagation [21] with high response. In MLP, the weights (fitting

parameters) are adjusted so that the sum of square error between the target and the present

output is minimized. MLP learns by processing the N-dimensional input vector x such that

the error function is minimized to produce the M dimensional output vector. The error

function

E wð Þ ¼ 1=2
X

y xi;wð Þ � dik k2 ð14Þ
with y(xi,w) being the output, w the adaptive weight follows gradient algorithm for min-

imizing the error. The weight update equation for MLP is,

w k þ 1ð Þ ¼ w kð Þ þ qq kð Þ ð15Þ
where ρ is the adaptation coefficient and q(k) is the minimization direction in the kth
iteration.

Both these classifiers have their own inherent advantages and differ based on the

learning strategies [22]. However literature shows that fusion of classifiers gives better

classification accuracy than the individual classifiers [23].

Among the different classifier fusion schemes, this research work uses the fusion of

SVM and MLP classifiers with three different fusion schemes, namely Bayes method,

Decision Template scheme and Dempster Schafer method. The decision template fusion

scheme for a class j gives the average of the decision profiles of the elements in the training

set Y in the class j. The decision template of the class Y is a matrix whose (m, n)th element

is,

Fig. 2 Image data after Euclidean distance optimization

8 A. C. Johnvictor et al.
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DTjðm;nÞ Yð Þ ¼
X

F Yk;j
� �

DTm;n Ykð Þ=
X

F Yk;j
� �

; m ¼ 1; 2; . . .P; n ¼ 1; 2; . . .Q ð16Þ
where F(Yk,j) is the indicator function with value 1 if Yk is a member of the class and 0

otherwise. When an input vector is presented, the decision template calculates a similarity

measure, which acts as a support for the vector in that class. Similarity measure may be in

terms of consistency measure or inclusion indices.

Bayesian inference works on the conditional probability. It is highly scalable and has

maximum likelihood training. For classifier fusion, Bayes method takes the weights as

classifier’s posterior probability. Accordingly,

Class xð Þ ¼ argmax
X

P YkjTð Þ � P0Ykðy ¼ cijxÞ ð17Þ
here the probability of classifier Yk is P(Yk|T).

The Dempster Schafer fusion scheme is similar to decision template, but the output is in

terms of probable proximities rather than similarity measure between the decision profile

and the decision template. The proximity between the decision template DTj (for ith row

and jth class) and every classifier input Di xð Þ represented as a matrix norm is,

Dj;iðxÞ ¼ ð1þ DTj� Di xð Þk k2
Pð1þ DTk� Di xð Þk k2 ð18Þ

These three methods (Bayes method, Decision Template scheme and Dempster Schafer

method) are seen to be competitive with good classification accuracies compared to other

fusion strategies [23].

4 Implementation and Results

4.1 Image Data Base

The image data base used for this research involves the BOSS (Break Our Steganographic

System) database which has two sets of database named the BOSS base and BOSS Rank

sets [24]. The BOSS Base has 1000 uncompressed raw images taken from different

cameras like Panasonic, Canon, EOS, Pentax, Nikon and Leica. The raw format of these

images is .cr2 or .dng and later converted to.png format. All these images are 5129512

gray scale images. For this work, 100 raw images from BOSS Base have been taken and

processed with the spatial steganographic method (described in Sect. 2) to create 100 stego

images. These stego images have the embedded information. The combined set of 200

images is used for feature extraction, optimization and then classification.

4.2 Experimental Frame Work

All algorithms are implemented with MATLAB. The embedding algorithm used to obtain

the stego image is the SUNIWARD simulator

Unsupervised Optimization for Universal Spatial Image… 9

123



Algorithm 1: Optimized Feature Extraction  

Input: 100 cover images and 100 stego images. 

Output: 848 features from 200 images. 

Start 

For i = 1 to number of cover images 

Read cover image  

Extract features (34671)    

Apply optimization algorithm 

 Select number of clusters 

Set minimum distance metric.

Run optimization and get output as 848 features. 

Repeat for all cover images 

For i = 1 to number of cover images 

Read cover image  

Create stego image for a specific payload 

Extract features (34671)    

Apply optimization algorithm 

 Select number of clusters 

Set minimum distance metric.

Run optimization and get output as 848 features. 

Repeat for all cover images 

Concatenate cover and stego features to get 200×848 features.

End  

Algorithm 2: Classification   

Input:  200×848 features

Output: Classification accuracies  

Start  

Set values of No. of classes  

Set values for partitions 

 Run classification algorithm 

  Do data partitioning 

  Perform training of classifiers 

  Perform testing of classifiers 

  Find classification accuracies  

Out the classifier accuracies 

End      

10 A. C. Johnvictor et al.
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The classifications based on Euclidean distance metrics is enumerated in Tables 2 and 3.

The classifier accuracy is the percentage of correct prediction of image (as either a stego

image or a clean image). Classification accuracy is

Accuracy ¼ TPþ TNð Þ= TPþ TN þ FPþ FNð Þ ð19Þ
where TP is True Positive, TN is True Negative, FP is False Positive and FN is False

Negative [25]. For the Euclidean distance optimization, the classification accuracies are

good for a payload of 0.5. Maximum accuracies occur for MLP and the fusion

scheme based on Decision Template. Comparing individual classifiers, MLP classifier

gives better results compared to SVM as indicated in Fig. 3 and Decision Template

classifier gives the best results among all compared classifiers as shown in Fig. 4.

Comparison of the best among individual and the best among fusion classifiers is shown

in Fig. 5.

Thus Euclidean distance based optimization with Decision Template fusion classifica-

tion scheme seems to be a good choice for better image steganalysis than the existing work.

The comparison of the results with the existing state of art is shown in Table 4.

Table 2 Classifier accuracies of
individual classifiers

No. of cluster Feature size Payload SVM MLP

K = 4 200 9 848 0.1 0.7232 0.9866

0.3 0.7368 0.9933

0.5 0.7201 0.9900

0.7 0.7200 0.9883

Average classification accuracy 0.725025 0.98955

Table 3 Classifier accuracies of fusion classifiers

No. of cluster Feature size Payload Bayes Decision template Dempster Schafer

K= 4 200 9 848 0.1 0.7232 0.9933 0.4998

0.3 0.7368 0.9917 0.5002

0.5 0.7201 0.9934 0.5000

0.7 0.7200 0.9917 0.5000

Average classification accuracy 0.725025 0.992525 0.5

Fig. 3 Comparison of SVM and
MLP

Unsupervised Optimization for Universal Spatial Image… 11
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5 Discussion and Conclusion

As steganalysis without prior knowledge of the steganographic technique is the need,

universal image steganalysis with a rich set of image features has been implemented and

tested in this work. All possible features of an image in spatial domain are extracted. The

changes in statistical dependencies among neighboring pixels have been modeled as noise

residuals to create the feature space. The exact model has been created with four dimen-

sional co-occurrence matrices of the quantised and truncated noise residues. A large

dimension feature set is extracted to get information about the embedding and is further

reduced by an unsupervised clustering based optimization technique to identify the most

appropriate features for classification. The classifiers implemented include the individual

classifiers SVM, MLP and three fusion classifiers (Bayes, Decision Template and

Dempster Schafer fusion schemes). It has been identified that MLP performs better than

SVM but is not superior to fusion classifiers. Comparing all the fusion classifiers, Decision

template based fusion method gives the best classification accuracy (99.25%). Thus the

implemented unsupervised optimization method for extracting best image features com-

bined with Decision template fusion classification scheme provides the best classification

of stego and clear images as compared to the existing work in this field. Future scope of

this research is steganalysis with genetic based optimization techniques as they select more

appropriate features for accurate classification.

Fig. 4 Comparison of fusion
classifiers

0.98

0.985

0.99

0.995

0.1 0.3 0.5 0.7Cl
as

si
fic

a�
on

  A
cc

ur
ac

ie
s 

Payload 

Comparison of MLP and 
Decision Template classifiers

MLP

Decision
Template

Fig. 5 MLP versus decision
template classifiers

12 A. C. Johnvictor et al.

123



T
ab

le
4

C
o
m
p
ar
is
o
n
o
f
th
e
re
su
lt
s
w
it
h
th
e
ex
is
ti
n
g
st
at
e
o
f
ar
t

S
te
g
an
o
g
ra
p
h
ic

d
o
m
ai
n

R
es
ea
rc
h
er

(s
)
n
am

e
T
y
p
e
o
f

fe
at
u
re

se
t

P
er
fo
rm

an
ce

m
ea
su
re

an
d

it
’s

v
al
u
e

M
et
h
o
d
o
f
cl
as
si
fi
ca
ti
o
n

V
al
u
e
o
f
er
ro
r

m
ea
su
re

P
er
ce
n
ta
g
e
ac
cu
ra
cy

S
P
A
T
IA

L
F
ri
d
ri
ch

an
d

K
o
d
o
v
sk
y
[6
]

3
4
,6
7
1

D
et
ec
ti
o
n
er
ro
r

E
n
se
m
b
le

w
it
h
F
L
D

6
%

9
4
.0
0
%

F
ri
d
ri
ch

et
al
.

[2
6
]

3
3
,9
6
3

D
et
ec
ti
o
n
er
ro
r

E
n
se
m
b
le

w
it
h
F
L
D

4
1
.4
%

5
8
.6
%

C
h
o
n
ev

an
d
K
er

[2
7
]

2
5
,0
0
0

C
la
ss
ifi
ca
ti
o
n
ac
cu
ra
cy

F
L
D

–
8
5
%

T
h
is
re
se
ar
ch

3
4
,6
7
1

A
v
er
ag
e
p
er
ce
n
ta
g
e

cl
as
si
fi
ca
ti
o
n
ac
cu
ra
cy

U
n
su
p
er
v
is
ed

o
p
ti
m
iz
at
io
n
an
d
si
n
g
le

cl
as
si
fi
er
s
(S
V
M
,
M
L
P
)

–
9
8
.9
5
%

F
o
r
M
L
P

U
n
su
p
er
v
is
ed

o
p
ti
m
iz
at
io
n
an
d
F
U
S
IO

N
cl
as
si
fi
er
s
(B
ay
es
,
D
ec
is
io
n
te
m
p
la
te
,

D
em

p
st
er

S
ch
af
er
)

–
9
9
.2
5
%

F
o
r
D
ec
is
io
n
T
em

p
la
te

fu
si
o
n
cl
as
si
fi
er

Unsupervised Optimization for Universal Spatial Image… 13

123



Appendix

See Figs. 6 and 7.

Fig. 6 Image features extracted
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