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Abstract The performance of blind equalization algorithm is closely related to the

characteristics of the channel. Eigenvalue spread of the channel can reflect the influence of

the channel on the input signal. The paper presents a method to distinguish eigenvalue

spread of the wireless channel by the correlation coefficient of the input vector. For

channels with different eigenvalue spread, based on the consideration of the complexity

and the performance, different blind equalization algorithms are chosen. At the same time a

decorrelation blind equalization algorithm is proposed. Simulations verify the effectiveness

of the proposed algorithms.

Keywords Blind equalization � Correlation coefficient � Eigenvalue spread � MCMA �
SWA

1 Introduction

Multipath propagation in wireless channel will results in intersymbol interference,

equalization is an effective way to reduce or remove this type of interference. In resource

limited or non-cooperative communication system, the blind equalization technique is the

first choice [1–4]. Different channels have different impacts on the transmitted signal, the

corresponding blind equalization algorithm should also be different if we take into account

the balance of the performance and computational cost of the algorithm [5]. Eigenvalue

spread can reflect the influence of the channel on the transmitted signal [6]. When the
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eigenvalue spread of the channel is high, the received signal will much more concentrate

on the direction of eigenvectors corresponding to the relatively bigger eigenvalues, which

results in the strong correlation of the signal. The transmitted symbols are usually uni-

formly distributed and uncorrelated, however, they become strong correlation through this

kind of channel, and the serious ISI results. On the contrary if the eigenvalue spread of the

channel is small, the channel has less effect on the symbols, and the ISI can also be small,

which means that a simple equalizer can be competent.

For blind equalization there is no training sequence, only the statistical information of

the sending signal is available. In order to achieve the purpose of equalization, an equalizer

usually constrains the statistical property of the output signal to be as same as that of the

input signal [1, 2]. For example, using the second order and four-order statistics of both

input signal and out signal a nonminimum-phase system can be completely equalized.

Commonly used algorithms for blind equalization are Bussgang class algorithm [7], such

as Sato algorithm and Godard algorithm [8–10]. CMA and MCMA, which belong to the

Godard algorithm, are widely used because of its low complexity, however their conver-

gence speed is relatively slow [4, 11–14], especially for high order modulation signal. In

[15] a super-exponential convergence algorithm is presented, this algorithm uses the high-

order statistics of the equalizer output signal to realize the equalization under the condition

of the input signal with non-Gauss distribution. Although the algorithm converges faster,

its complexity is high [5]. From the point of computation complexity and performance

CMA (or MCMA) and SWA resemble the adaptive algorithm LMS and RLS [5, 16].

Generally speaking, the former has low computational complexity at the expense of worse

performance, and the latter is just the inverse. In [6] it is shown that with the increase of the

eigenvalue spread LMS algorithm will slow down the convergence rate and increase the

steady-state error. On the contrary, RLS algorithm is relatively not sensitive to the

eigenvalue spread. Therefore, according to the analogy of adaptive filter algorithm and

blind equalization algorithm, we need to select different blind equalization algorithms with

regard to the different eigenvalue spread of the channel.

In this paper, the eigenvalue spread of the channel is described, channel is distinguished

by the value of the eigenvalue spread. As the calculation of eigenvalue spread involves the

matrix decomposition which has high complexity, the paper proposes a way to substitute

the matrix decomposition according to the correlation coefficient of the input signal vector.

We show that value of the correlation coefficient can reflect the difference of the eigen-

value spread. On the basis of this, with the consideration of the performance and com-

putational complexity the different equalization algorithms are selected. When the

eigenvalue spread is small MCMA algorithm is used, on the contrary when the eigenvalue

spread is high SWA algorithm is selected. If the eigenvalue spread is moderate, one of

them or other improved algorithms can be chosen according to the consideration of per-

formance and complexity. A new MCMA algorithm based on the decorrelation is proposed

whose performance and complexity is between those of MCMA and SWA.

The paper is organized as follows. In Sect. 2 the system model and the classic algorithm

is introduced. The proposed algorithm is presented in Sect. 3. In Sect. 4 simulations are

given to certify the effectiveness of the proposed algorithm. Finally conclusion is given in

Sect. 5.
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2 System Model and Classic Algorithms

A simplified blind equalization diagram is shown in Fig. 1. The signal u(n), assumed

independent and identically distributed, is transmitted through an unknown channel. The

symbol ha denotes the total channel response (including transmitting filter receiving filter

and wireless channel), The symbol v(n) represents the channel noise which is supposed to

be white and Gaussian distribution. The input and output of the equalizer are denoted by

x(n) and y(n) respectively. w(n) represents the weight of the equalizer. The decision signal

is given by the symbol û nð Þ. The error signal is denoted by the symbol e(n).

The received signal at time n is

x nð Þ ¼ ha � u nð Þ þ v nð Þ ð1Þ

where the symbol ‘‘�’’ denotes a convolution process.

Assuming the ideal equalizer tap coefficient vector is Wopt, the following formula

should be satisfied.

W� � ha ¼ dn ð2Þ

where dn denotes the impulse signal. In practice the equalizer is commonly implemented

by a finite-length filter, the equalizer with truncated length can produce error, which results

in the residual ISI.

2.1 CMA Algorithm

The most typical blind equalization algorithm is Godard type algorithm whose cost

function is as follows [17]

J nð Þ ¼ E y nð Þj jp�Rp

� �2h i
ð3Þ

where Rp ¼
E s nð Þj j2p½ �
E s nð Þj jp½ � , p is a positive integer, s(n) is the transmitted symbol. The symbol E[�]

denotes the expectation operation.

y nð Þ ¼ WH n� 1ð ÞX nð Þ ð4Þ

where X nð Þ ¼ x nð Þ x n� 1ð Þ � � � x n� N þ 1ð Þ½ �T is the equalizer input vector, N repre-

sents the length of the equalizer.

Assume p = 2, we get the constant modulus algorithm [18, 19], the cost function of

CMA is

Channel
ha(n)

Equalizer
W(n)

decision

Blind algorithm

u(n) ( )û n( )x n

( )v n

( )y n

( )e n

Fig. 1 Diagram of the blind equalization
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JC nð Þ ¼ E y nð Þj j2�Rc

� �2
� �

ð5Þ

Rc ¼
E s nð Þj j4
h i

E s nð Þj j2
h i ð6Þ

The stochastic gradient-descent minimization of (5) yields the following algorithm.

W nð Þ ¼ W n� 1ð Þ þ l � e nð ÞX� nð Þ ð7Þ

e nð Þ ¼ Rc � y nð Þj j2
� �

� y nð Þ ð8Þ

From (5) we see that the purpose of the CMA is to minimize the distance between the

modulus square of the equalizer output and the constant Rc. From another point of view the

equalizer restricts the constellation of output symbol located on the circle with the radius

yRc. The CMA algorithm is simple and easy to implement, but its cost function contains

only the amplitude information of the signals. Therefore the CMA is not sensitive to the

phase deflection. To solve the phase ambiguity a phase correction algorithm is required.

MCMA algorithm is one of the improved CMAs [20], also known as MMA, and it

restricts the amplitude square of the real and the imaginary parts of the equalizer output

separately. Similar to the CMA we can get the error function of the MCMA.

e nð Þ ¼ yR nð Þ R2;R � y2R nð Þ
� �

þ j � yI nð Þ R2;I � y2I nð Þ
� �

ð9Þ

where yR(n) is the real part of y(n) and yI(n) is the imaginary part. The constant value of

real and imaginary parts of MCMA are given by

R2;R ¼
E s4R nð Þ
� 	

E s2R nð Þ½ � ð10Þ

R2;I ¼
E s4I nð Þ
� 	

E s2I nð Þ½ � ð11Þ

where sR(n) and sI(n) are real and imaginary parts of the symbol s(n) respectively. MCMA

cost function includes not only the amplitude information of output signal, but also the

phase information. Compared with CMA, MCMA has not phase ambiguity problem and

generally has a faster convergence rate.

2.2 SWA Algorithm

Although the MCMA is better than CMA from the convergence point it still converges

much slower under some channels, especially seriously distorted channels.

The cost function of the SWA is given by [3].

J nð Þ ¼
Xn

k¼0

kn�k yn;k


 

2�Rc

� �2

ð12Þ

A robust algorithm is derived in [5] as follows
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W nð Þ ¼ W n� 1ð Þ þ e� nð ÞR�1
xx nð ÞX nð Þ

Rc � aSWA � Cs
1;1

ð13Þ

e nð Þ ¼ y nð Þj j2�Rc

� �
� y nð Þ ð14Þ

where Rxx(n) is the autocorrelation matrix of X(n), aSWA is a constant parameter.

The inverse matrix of the Rxx(n) can be calculated by iteration

R�1
xx nð Þ ¼ 1

k
R�1
xx n� 1ð Þ � R�1

xx n� 1ð ÞX nð ÞXH nð ÞR�1
xx n� 1ð Þ

kþ XH nð ÞR�1
xx n� 1ð ÞX nð Þ

� �
ð15Þ

where k is the adjustment factor, C1,1
s = E[|s(n)|2],for complex data aSWA = 2 [5].

3 Principle of the Proposed Algorithm

3.1 Eigenvalue Spread of the Channel

If the channel length is Lh, (1) can be rewritten as

x nð Þ ¼
XLh

k¼1

ha;ku n� kð Þ þ v nð Þ ð16Þ

Suppose the length of the equalizer satisfies N[Lh, ignoring the channel noise the

input signal vector of the equalizer at time n can be written as follows

X nð Þ ¼

x nð Þ
x n� 1ð Þ

..

.

x n� N þ 1ð Þ

0

BBBB@

1

CCCCA

¼

ha;1 ha;2 ha;3 � � � ha;Lh 0 0 � � � 0

0 ha;1 ha;2 � � � ha;Lh�1 ha;Lh 0 � � � 0

..

. ..
. ..

. . .
. ..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 0 ha;1 ha;2 � � � ha;Lh

0

BBBB@

1

CCCCA

u n� 1ð Þ
u n� 2ð Þ

..

.

u n� N � Lhþ 1ð Þ

0

BBBB@

1

CCCCA

¼HaU

ð17Þ

The autocorrelation matrix of X(n) is given by
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Rxx ¼E XXH
� 	

¼E HaUU
HHH

a

� 	

¼HaE UUH
� 	

HH
a

¼E UUH
� 	

HaH
H
a

¼E UUH
� 	

r 0ð Þ r 1ð Þ � � � r Lh� 1ð Þ 0 � � � 0

r 1ð Þ r 0ð Þ � � � r Lh� 2ð Þ r Lh� 1ð Þ � � � 0

..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

.

0 0 � � � 0 0 � � � r 0ð Þ

0

BBBBBBB@

1

CCCCCCCA

¼r2uRr

ð18Þ

In (18), Rxx is a symmetric matrix of N 9 N, E[UUH] = ru
2 is the variance of input

signal, r(s) =
P

k=1
Lh-sha,k

* * ha,k?s, s 2 [0, Lh - 1], is the autocorrelation function of the

channel.

Using eigenvalue decomposition for matrix Rr we get

Rr ¼ QrKQ
�1
r ¼ Qr

kRr ;1 0 � � � 0

0 kRr ;2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � kRr ; N

0

BBB@

1

CCCA
Q�1

r ð19Þ

where Qr is the eigenvalue vector matrix, kRr ;i ; i ¼ 1; 2; . . .; N are the eigenvalues of Rr

which satisfy kRr ;1 � kRr ;2 � � � � � kRr ;N , the minimal eigenvalue of Rr is kmin ¼ kRr ;1, the

maximal eigenvalue is kmax ¼ kRr ;N ,we get the eigenvalue spread.

v Rrð Þ ¼ kmax

kmin

ð20Þ

From (18) and (19), as ru
2 is a positive constant, the eigenvalue relationship between

matrix Rxx and matrix Rr is given by

kRxx;i ¼ r2u � kRr ;i; i ¼ 1; 2; . . .; N ð21Þ

From (20) and (21) we see that the eigenvalue spread of Rr and Rxx is same, and it is

independent of the input signal.

Using the raised cosine channel [6] as an example, the length of channel is 3, and the

impulse response is given by

hn ¼
1

2
1þ cos

2p
C

n� 2ð Þ
� �� �

n ¼ 1; 2; 3

0 others

8
<

:
ð22Þ

The minimax eigenvalue spread of the channel for different channel parameter C is

given in Table 1.

It can be seen from Table 1 that the larger the parameter C is, the higher the eigenvalue

spread is. When the signal is transmitted through the channel with higher eigenvalue spread

the output signal will concentrate the eigenvectors corresponding to the larger eigenvalues,
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which results in the serious ISI comparatively. Under this condition different equalization

algorithms should be chosen according to the eigenvalue spread with the consideration of

the balance of the complexity and performance.

3.2 Algorithm to Identify the Eigenvalue Spread of the Channel

The eigenvalue spread of the channel reflects the influence of the channel to the input

signal. According to (19) and (20) computing the eigenvalue spread of the channel involves

the computation of the correlation matrix and eigenvalue decomposition, and this means a

high computation complexity. The paper presents a method by calculating the correlation

value of the equalizer input to distinguish different channels.

At time n - 1 and n the input signal vector is

X n� 1ð Þ ¼ x n� 1ð Þ x n� 2ð Þ � � � x n� Nð Þ½ �T ð23Þ

X nð Þ ¼ x nð Þ x n� 1ð Þ � � � x n� N þ 1ð Þ½ �T ð24Þ

The correlation coefficient between X(n) and X(n - 1) is as follows

corr nð Þ ¼ XH nð ÞX n� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XH nð ÞX nð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XH n� 1ð ÞX n� 1ð Þ

p ð25Þ

Taking the sliding average of correlation coefficient instead of its instantaneous value

we get a smoothing version of the correlation coefficient.

c nð Þ ¼ c n� 1ð Þ þ corr nð Þ
2

ð26Þ

For the raised cosine channel with different C the corresponding correlation coefficient

of the equalizer input signal is shown in Fig. 2. The transmitted signal is 16QAM. The

length of the input vector is 11.

Combining Table 1 and Fig. 2, it is clear that for channels with different eigenvalue

spread the correlation coefficient of the equalizer input vector can reflect this difference.

Therefore we can use correlation rather than matrix decomposition to estimate the

eigenvalue spread of the channel.

3.3 Algorithm Selection for Different Channels

It is shown that, compared with LMS algorithm, the RLS algorithm has better performance

(low steady-state error or fast convergence speed) in the high eigenvalue spread channel

[11]. The RLS algorithm, however, is complex because of calculation of the inverse

matrix, whose complexity is about O(N2). The LMS algorithm, on the contrary, has a small

computation complexity, which is about O(N), and performs well in small eigenvalue

Table 1 Eigenvalue spread for
different parameter C

C 2.8 3.0 3.1 3.2 3.3 3.6

kmin 0.4056 0.2686 0.2136 0.1656 0.1256 0.0435

kmax 1.8605 2.2007 2.3761 2.5516 2.7263 3.2377

v 4.5866 8.1945 11.1238 15.4082 21.7321 74.3908
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spread channel. From the analogy of blind equalization (CMA and SWA) and adaptive

algorithm (LMS and RLS) we draw the conclusion that with the consideration of com-

plexity and performance CMA is more suitable for the small eigenvalue spread channel

and SWA is on the contrary. Compared with the CMA, the MCMA algorithm, with the

same order of magnitude complexity, corrects phase ambiguity problem and performs

better under the same channel, so it is more widely used [13]. Table 2 lists the computation

complexity of SWA and MCMA.

Compared with MCMA, SWA involves the matrix inversion, which whitens the input

signal, resulting in O(N2) order of complex multiplication in exchange for the improved

performance especially under the high eigenvalue spread channel.

Using the algorithm proposed in this paper, we can distinguish the different eigenvalue

spread of the channel by calculating the correlation coefficient of the input vector.

Therefore a corresponding threshold can be given, according the threshold different blind

equalization algorithm will be selected. The diagram of the algorithm is shown in Fig. 3. If

the eigenvalue spread is relatively small, for example c(n)\ Th, where Th represents the

threshold, MCMA is chosen. On the contrary if c(n)[ Th SWA will be chosen. We can

0 500 1000 1500 2000 2500 3000 3500 4000

0.1

0.2

0.3

0.4

0.5

0.6

number of iteration

c(
n)

C=2.6
C=2.8
C=3.1
C=3.2
C=3.3
C=3.6

Fig. 2 Correlation for raised cosine channel with different C

Table 2 Calculation complexity
of SWA and MCMA

Computation SWA MCMA

Multiplication

Complex multiplication N2 ? 3 N ? 1 2 N

Real multiplication 2 N ? 2 6

Real division 2 N ? 2 0

Addition

Complex addition N2 ? 3 N - 1 2 N - 1

Real addition 2 3
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also set two thresholds, Th1 and Th2, Th1\Th2, if c(n)\ Th1 MCMA is selected, if

c(n)[ Th2 SWA is selected, in other conditions one modified algorithm, whose com-

plexity and performance lies between that of SWA and MCMA, can be selected.

When the eigenvalue spread is moderate, such as Th2\ c(n)\ Th1, an improved

MCMA is proposed in the following section.

3.4 Decorrelation MCMA (DMCMA)

From the previous analysis, the correlation of signal will be enhanced through the high

eigenvalue spread channel, which will lead to the slow convergence of MCMA. The SWA

converges faster, mainly due to the input signal is whitened by the inverse autocorrelation

matrix. Therefore the convergence rate can be improved by decorrelation of the equalizer

input.

At time n, the correlation coefficient of equalizer input vector X(n) and X(n - 1) can be

defined as [21]

aðnÞ ¼ XHðnÞXðn� 1Þ
XHðn� 1ÞXðn� 1Þ ð27Þ

here a(n)X(n - 1) denotes the correlation part of X(n) and X(n - 1). Decorrelation is to

reduce the correlation between the adjacent input vector. After decorrelation we get the

new equalizer input.

XdecorrðnÞ ¼ XðnÞ � aðnÞXðn� 1Þ ð28Þ

The flowchart of DMCMA algorithm is shown in Table 3.

For each iteration, the complex and real multiplication of DMCMA algorithm is

5 N and 6 respectively, the addition of complex and real numbers is 5 N - 3 and 3

respectively, floating division is 2. The computational complexity of decorrelation MCMA

algorithm is between that of SWA and MCMA. Due to the decorrelation, its convergence is

faster than MCMA, but will be slower than SWA.

Calculation of 
correlation 
coeffient

Selection  
mode

SWA

others

MCMA

X(n)

Fig. 3 Diagram of the proposed algorithm
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4 Simulation and Performance Analysis

This section uses the raised cosine channel for simulation, the transmitted signal is

16QAM. The length of equalizer is 11. Th1 = 0.4, Th2 = 0.45, which corresponds to the

eigenvalue spread approximately equaling to 8 and 15 respectively.

Performance is evaluated by the mean square error (MSE) and residual intersymbol

interference (ISI) [9–14]. The MSE and ISI are defined as follows.

(1) Mean square error

MSE nð Þ ¼ h �MSE n� 1ð Þ þ 1� hð Þ � û nð Þ � y nð Þj j2 ð29Þ

where h is forgetting factor, usually h = 0.99.

(2) Intersymbol interference

ISI nð Þ ¼
P

ha;w nð Þ


 

2 �max ha;w nð Þ



 

2

max ha;w nð Þ


 

2

ð30Þ

where ha,w(n) = ha � W(n).

Case 1 Channel with C = 3.0

The step size for MCMA and DMCMA is set to 2.5 9 10-5 and 2.8 9 10-5 respec-

tively. The parameter k for SWA is set to 0.9995.

The result is shown in Fig. 4. We can see that the three algorithms perform relatively

same. It is obvious that under this channel MCMA should be selected if the algorithm

Table 3 The flow chart of the decorrelation MCMA algorithm
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complexity and performance are taken into account. According Table 1 the eigenvalue

spread of this channel is 4.5866.

Case 2 Channel with C = 3.1

The step size of MCMA and DMCMA is set to 2.5 9 10-5 and 2.8 9 10-5 respec-

tively, k = 0.9995. Figure 5 shows the simulation result.

From the Fig. 5 it is clear that the MCMA converges relatively slow compared the other

two. SWA converges almost as same as DMCMA finally even though it performs better

before convergence. According Table 2 the eigenvalue spread of this channel is 11.1238.

Under this channel the DMCMA should be selected.

Case 3 Channel with C = 3.2

The parameters for SWA is k = 0.9995. The step size for MCMA and DMCMA is

2.5 9 10-5 and 2.8 9 10-5 respectively. The result is shown in Fig. 6. Different from

Case 2 in this case the performance of the three algorithms has relatively obvious dif-

ference. The eigenvalue spread of this channel is 15.4082, this will results in a relatively

strong correlation of the input signal. That is why both SWA and DMCMA converge faster

than MCMA. Compared with DMCMA SWA performs relatively better but not remark-

ably. In this case if complexity is more important than performance, DMCMA should be

selected, otherwise SWA is chosen.

Case 4 Channel with C = 3.3

The parameters for SWA is k = 0.9996. The step size for MCMA and DMCMA is

2.0 9 10-5 respectively. The result is shown in Fig. 7. It is clear that SWA obviously

Fig. 4 Performance curve for channel C = 3.0
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converges faster than the other two. The eigenvalue spread of this channel is 21.7321. The

result shows that SWA is more suitable for large eigenvalue spread channel.

Case 5 Channel with C = 3.6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-15

-10

-5

0
M

SE
(d

B
)

SWA
MCMA
DMCMA

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-30

-20

-10

0

IS
I(

dB
)

number of iteration

SWA
MCMA
DMCMA

number of iteration

Fig. 5 Performance curve for channel C = 3.1

0 2000 4000 6000 8000 10000 12000
-15

-10

-5

0

number of iteration

M
SE

(d
B

)

SWA
MCMA
DMCMA

0 2000 4000 6000 8000 10000 12000
-30

-20

-10

0

number of iteration

IS
I(

dB
)

SWA
MCMA
DMCMA

Fig. 6 Performance curve for channel C = 3.2
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SE
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MCMA
DMCMA

0 0.5 1 1.5 2
x 10

4

-30

-20

-10

0

number of iteration
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I(
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)

SWA
MCMA
DMCMA
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Fig. 7 Performance curve for channel C = 3.3

0 2000 4000 6000 8000 10000 12000 14000 16000
-10

-5

0

5

M
SE

(d
B

)

SWA
MCMA
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0 2000 4000 6000 8000 10000 12000 14000 16000
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MCMA
DMCMA
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Fig. 8 Performance curve for channel C = 3.6
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The parameters for SWA is k = 0.9982. The step size for MCMA and DMCMA is

6 9 10-5 and 8.5 9 10-5 respectively. The result is shown in Fig. 8.

From Table 1 we see that the eigenvalue spread of the channel with c = 3.6 is larger

than 74. It is obvious a relatively big number, and which means the received signal will

become strong correlation. This also explains why the three algorithms perform differently

with a significant level. Among them SWA converges fast, and MCMA is worst. Under

this channel SWA is selected with priority.

Through simulations we can see that with the consideration of complexity and per-

formance MCMA should be used under small eigenvalue spread channel, for example

v\ 10. When the eigenvalue spread become relatively high, such as v[ 20, SWA should

be used. When the eigenvalue spread is moderate, some modified MCMA should be

selected. For different channels the eigenvalue spread can be estimated by the calculating

the correlation coefficient of the input vector. By comparing with the threshold different

algorithms will be selected for different eigenvalue spread channels.

5 Conclusion

The performance of the different blind algorithms are not only related to the algorithm

themselves but also the channel characteristics. The eigenvalue spread of the channel can

reflect the impact degree of the channel on the transmitted signal. The calculation of the

eigenvalue spread of the channel, however, has high complexity because of matrix

decomposition involved. This paper presents a method to distinguish different eigenvalue

spread channel by calculating the correlation value of the equalizer input vector. On this

basis, for different eigenvalue spread channel, considering the performance and compu-

tational complexity the corresponding blind equalization algorithm is selected. Besides the

commonly used algorithm the new algorithm based on decorrelation is presented whose

complexity and performance lie between the SWA and MCMA. Simulations verify the

applicability of the proposed algorithm.
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