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Abstract Human activity recognition (HAR) systems aim to provide low-cost, low-power,

unobtrusive and non-invasive solutions to monitor and collect data accurately for human-

centric applications, such as health monitoring, assisted living and rehabilitation. Although

wearable sensor_based HAR systems have been demonstrated to be effective in the lit-

erature, they raise various concerns such as energy consumption and hardware cost. In this

work, we examine the pattern of radio signal strength variations in different activity classes

in absence of sensor hardware. We present a performance comparison analysis by setting

up two testbeds to compare a sensor_based with a radio_based HAR system over a range of

variable metrics such as the number of sensor nodes, and the nodes and the sink node

placement with respect to the accuracy and the energy efficiency. Wearable HAR datasets

are constructed based on our reported testbeds. The main contributions of this work are in

two folds: (1) when eliminating the use of accelerometers in the radio_based system,

beside the reduced hardware cost, prolonged lifetime of the HAR system by nearly 30%

can be achieved while maintaining the accuracy. The impact of the selected overlapping

window size (WS) is also investigated with respect to the accuracy level in both systems

over a range of activity classes. (2) The impact of the node placement on the accuracy

indicates a higher dependency to the number of nodes, the nodes and the sink node

placements in the radio_based system due to the dependency of the results to the distance.
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1 Introduction

In recent years, we have witnessed a rapid surge in assisted living technologies due to an

increasing aging population which motivates developments of new ubiquitous health

monitoring systems. One of the important services that can be offered is monitoring the

physical well-being of humans remotely and continuously for early and quick detection of

anomalies.

The human activity recognition (HAR) systems can be implemented using either

ambient or wearable sensor nodes. In the former case, the ambient HAR system utilises

information collected from either sensor node attached to various objects (such as passive

infrared or ultrasound sensor nodes placed on beds and doors) or camera systems capturing

video from living spaces. In the latter case, the HAR system can be fulfilled by inferring

information that is gathered from a set of wearable sensor nodes that are placed on the

human body. Incorporating ambient sensor nodes, specifically video cameras, for HAR

systems are extensively studied [1]. The downsides of such techniques are the costly video

processing power, privacy issues, and limited indoor operational site [2].

The aforementioned limitations motivate the use of wearable sensor nodes that can be

employed to provide inexpensive and wearable HAR systems. These systems can be

trained to recognise specific predefined activities or movements such as fall detection [3] to

overcome the privacy issue. Wireless body area networks (WBANs) use a set of minia-

turised and wearable battery operated sensor nodes which consist of sensing, processing,

and transmission units [4]. The successful implementation and realisation of WBAN for

remote activity monitoring depends on numerous rising challenges. Among these chal-

lenges, recognition accuracy and system lifetime of at least 1 week are the most important

ones.

In this paper, we aim to investigate the possibility of eliminating the sensor board to

increase the system lifetime and reduce the hardware cost while maintaining the recog-

nition accuracy. Therefore, we demonstrate how to establish a pattern of the radio signal

strength to determine the activity classes which is the basis of the radio_based HAR

system.

The rest of this paper is organised as follows: Related works for sensor_based and

radio_based HAR systems are reviewed in Sect. 2. The HAR system framework is

described in Sect. 3. Section 4 describes our experimental testbed to evaluate and compare

the radio_based with the sensor_based HAR system. Collected results and analysis from

our HAR system testbeds are presented in Sect. 5. Finally, Sect. 6 concludes the paper and

highlights future research directions.

2 Related Work

In the context of the HAR for healthcare applications, there are a number of low-cost and

non-invasive solutions for a continuous all-day and anyplace activity monitoring using

wearable sensor nodes. There are two main approaches identified for the wearable HAR

systems: Sensor_based and radio_based HAR systems. In this section we address chal-

lenges for HAR systems, present existing solutions for each category and link them with

the aims and contributions of this work.

The main challenges for the HAR wearable systems are the system lifetime and the

recognition accuracy. Increasing system lifetime can be realised by optimising the
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sampling rate in the sensing, processing and transmission process which may impact on the

recognition accuracy [54]. Additionally, the number and node placements, processing

power, extracted features, and battery type can affect the system lifetime and the accuracy.

Previous research has mainly focused either on energy efficiency [7–13, 69] or the

recognition accuracy [14–20]. Rezaie and Ghassemian [21] showed the trade-off between

the main two challenges which delivered a more thorough performance analysis of the

HAR systems. In this work, we also consider both challenges to evaluate the two HAR

systems in our analysis.

In sensor_based solutions, the sampling rate of the sensor nodes (e.g. accelerometers) is

often considered to be fixed. For instance, Yan et al. [22] proposed an activity-based

strategy for continuous HAR system, namely adaptive accelerometer-based activity

recognition (A3R), considering a fixed sampling rate and classification features which were

adapted in real-time. The collected data using a single mobile handset showed that an ideal

conditional activity-based strategy could achieve an energy saving of about 50%. French

et al. [23] focused on the impact of the sampling rate. They evaluated different selected

sampling strategies including a baseline uniform sampling strategy and a probability based

sampling when a transition occured. This method required a prior dataset including

activities similar to A3R method to be collected and processed in order to calculate the

probability of transitions. Rezaie and Ghassemian [48] proposed a feedback controller

algorithm for dynamically adjusting the sampling rate. Their proposed algorithm nearly

doubled the lifetime of the HAR system under study while the accuracy of detection was

maintained at the same level. Ghasemzadeh et al. [24] formulated coverage problem in the

context of activity monitoring. Their method focused on the minimum number of sensor

nodes that produced full activity coverage set. This solution reduced the number of sensor

nodes while maintaining an acceptable accuracy for the HAR system.

The position and the number of sensor nodes were thoroughly studied by Atallah et al.

[30] and Yang et al. [31] which showed that the recognition accuracy was decreased by

using smaller subsets of sensor nodes and the position depends on the class and the level of

activities under study. Studies conducted by Zhang et al. [32], Chavarriaga et al. [33], and

Kale et al. [34] highlighted the impact of misplacement of sensor nodes with respect to

(w.r.t) the degree of rotation. Kale et al. [34] confirmed that - 15� to ? 15� misplacements

in each axis could be tolerated in the HAR systems.

Beside the HAR systems utilising the accelerometer information, sensor-free solutions

exist where the HAR systems rely on the radio signal strength to detect the activities. For

this purpose low power/low range wireless technologies such as Zigbee (based on the IEEE

802.15.4), WiFi (IEEE 802.11), Bluetooth (IEEE 802.15.1), and RFID (IEEE 802.15.4f)

can be employed [25]. Compared to the discussed sensor_based HAR systems [26],

radio_based HAR systems only exploit wireless communication features. Thus, no phys-

ical sensing module (e.g. accelerometer) is needed, which relaxes the device deployment

requirement, reduces the energy consumption for the sensing and the data transmission,

and better protects the users’ privacy.

Based on different radio parameters, measurements, characteristics and processing

requirements, we divide the published radio_based HAR systems to the ZigBee radio_-

based, and other radio_based HAR systems. Geng et al. [27] used a measurement system

that consisted of a vector network analyser (VNA, Agilent E8363), a pair of low-loss wired

cable, and a pair of small size ISM quarter wavelength antenna to recognise a set of

activities for firefighters. Their selected features [27] were based on the characteristics of

the on-body RF signal propagation channel. While they analysed an in-house-made

radio_based system measuring the movements of four places on the body, we have
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conducted a comparison study of the radio_based and the sensor_based HAR system in this

work. Scholz et al. [28] also detected activities (i.e. standing, sitting, lying, walking and

empty room) from radio signal strength indicator (RSSI) using sophisticated software

defined radio devices in order to obtain frequency domain features using IEEE 802.15.4

wireless technology. They investigated three methods; device-free, device-bound and

ambient monitoring and only employed one sensor on the body and eight transceivers were

placed in the room. Qi et al. [29] presented another on-body RSSI measurement system

using the IEEE 802.15.4 nodes placed on the wrist and the ankle of case studies. They

reported system performance in terms of the accuracy, latency, and battery lifetime w.r.t

packet delivery ratio, delay and power consumption over different overlapping WSs and

the tenfold cross-validation technique.

In this paper, we have also applied smoothing windows; however, we have applied

overlapping windows to investigate the recognition accuracy. We have applied a more

realistic validation process to improve our work by applying more number of nodes and

investigating the sink node position. Furthermore, the improvements investigated in the

radio_based HAR system, are deployed and compared with the sensor_based HAR system.

3 Har System Framework

The sensor_based HAR system works based on measuring the acceleration variation of

different body parts which are collected from the sensor nodes placed on the case study. A

sample of such variations collected from acceleration of the right wrist over different

activities is depicted in Fig. 1a. The variation of the x-axis accelerometer information

depicted in Fig. 1a can highlight how different activity levels are captured: The signal

variations in activities such as lying down and sitting (for the sensor node on the right

Fig. 1 a Acceleration and b RSSI variation collected from node placed on the right wrist over different
activities
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wrist) are relatively lower than in the case of brushing. For other activity classes such as

running, the signal fluctuations are relatively higher compared to activities such brushing

and walking.

The radio_based HAR system establishes a pattern of the radio signal strength which

indicates the activity classes. The variation of the distance between the wireless transmitter

and receiver nodes placed on the body results in variation of the received signal strength

which is the basis of the radio_based HAR system. In the radio_based HAR system, a

periodical signal is being transmitted to measure the radio signal strength. Depending on

the communication technology in use, existing signals in the standard such as synchro-

nisation messages or periodical beacons can be considered to avoid injecting additional

signaling overhead. Link Quality Indicator (LQI) and RSSI parameters can be derived from

the received signal to build the signal pattern and extract required features. A sample of

RSSI variation over different activities collected from the right wrist is demonstrated in

Fig. 1b. The signal strength variations depend on the distance between nodes; i.e., signal

strength gets higher when the node placed on the right wrist gets closer to the sink node on

the waist. The signal variations can be used to recognise the class of the activities as in the

sensor_based HAR system. In the following, we describe the framework of the system in

more detail.

The HAR system framework comprises components for data acquisition, preprocessing,

segmentation, feature extraction and selection, training and classification, decision fusion,

and performance evaluation. In this section we present two phases of the HAR system

framework, i.e., training and recognition in details and describe functional stages as

depicted in Fig. 2. In the first stage of training of the sensor_based HAR system, raw

acceleration signals are acquired using multiple sensor nodes placed on different parts of

the body which later be processed in the sink node to extract the features. The function of

the second stage of HAR system, the preprocessing stage, is to synchronise and remove

artifacts to prepare the acquired signals for feature extraction. Preprocessing of

Fig. 2 General HAR system framework
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acceleration signals include calibration, normalisation, and synchronisation. Preprocessed

data along with its activity class (the associated ground truth) constitutes a data sample.

The data segmentation stage identifies the preprocessed data samples that are likely to

contain information about activities (often referred to as activity detection or spotting). In

this work, we use the sliding window approach [35] in the data segmentation stage. In this

approach, a window slides over the time series of data samples to extract a data segment

which is subsequently used for the feature extraction stage. Length of the sliding window

determines the number of data samples that contributes in the feature extraction stage. In

the HAR context the size of the window is determined by varying the WS and analyzing

the performance based on the tested WS values [29, 36–40]. Three approaches exist for

feature extraction from segmented time series data: Intuitional [41], statistical and wavelet

[42]. We use a commonly used statistical approach and derive features directly from the

time-varying data (e.g., accelerometer, RSSI or LQI) signal. The feature selection stage

employs wrappers, embedded or filter based methods [43] to select features from the

derived ones in the previous stage. We apply a filter feature selection method to select the

most relevant features which contain useful information about the different classes in the

data. The set of selected features extracted from our testbed (as listed in Table 1) as well as

the associated activity classes (as listed in Table 2) which form the training set are then fed

to a classification algorithm. The degree of complexity of classification algorithms varies

from a threshold-based algorithm to more advanced algorithms, such as decision tree,

hidden Markov models, neural networks and machine learning techniques [44]. We employ

C4.5 decision tree classifier [45] which builds a hierarchical model in which features are

mapped to tree nodes, and edges represent the possible features’ values. C4.5 is the most

widely used decision tree classifier and is based on the concept of Information Gain (IG) to

select the features that should be placed in the higher tree nodes (i.e., closest to the root).

Feature f IG measures the amount of information that the feature reveals about the activity

classes. IG is measured by the entropy reduction and defined as follows:

IGðf Þ ¼ EðTÞ � EðT jf Þ

where T is the training samples that remains in the training set by traversing the decision

tree from the root node down to the node f, E(T) is the entropy of T and E(T|f) is the entropy

of T conditioned on the f and are calculated as follows:

Table 1 Features extracted from
the data collected by each node

Feature Description

Amp Amplitude of signal segment

Med Median of signal segment

Mean Mean value of signal segment

Max Maximum amplitude of signal segment

P2P Peak to peak amplitude

Var Variance of signal segment

Std Standard deviation

RMS Root mean square power

S2E Start to end value
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EðTÞ ¼
X

c2C
PðcÞLog2PðcÞ

EðT jf Þ ¼
Xn

i¼1

PðfiÞEðT jfiÞ

EðT jf Þ ¼
Xn

i¼1

PðfiÞ
X

c2C
PðcjfiÞLog2PðcjfiÞ

where n is the number of different values for the feature f, PðfiÞ and P(c) are the probability
of having value fi and c for the feature f and activity classes C, respectively, and C is the set

of activity classes in the T.

If the feature f is a continuous feature, C4.5 splits training set based on a threshold (tf )

into two subsets Tleftðtf Þ and Trightðtf Þ, where feature f in in Tleftðtf Þ training set has a value

less than or equal to (tf ) and in Trightðtf Þ training set has a value greater than (tf ). C4.5

selects the threshold values in such a way that minimises the entropy of data. The entropy

of data for feature f and threshold (tf ) is calculated as following:

HðTjfiÞ ¼
jTleftðtf Þj

jT j EðTleftðtf ÞÞ þ
jTrightðtf Þj

jT j EðTrightðtf ÞÞ

The produced decision tree created based on the measured IG is then constructed by a set

of rules which classify the training set. Once the training phase is completed, to detect the

activities, same set of functionalities (i.e., data acquisition, preprocessing and data seg-

mentation) are performed over similar data collected from cases under study. The selected

features in the training phase are extracted in the recognition phase to classify the activities

based on the classification technique used in the training phase. In our testbed, each of test

data samples is classified using the set of rules constructed in training phase.

4 HAR System Testbeds

To evaluate the described HAR systems in Sect. 3, we set up two testbed experiments. In

this section, we provide the testbed details w.r.t the hardware specifications of the deployed

nodes, data collection process, and ethical considerations.

Table 2 List of activity classes
and their durations

Activity Duration (min) Activity group

Standing 3 Very low level activity

Sitting 10 Very low level activity

Lying down 12 Very low level activity

Brushing 1 Low level activity

Eating 2 Low level activity

Walking 1 Medium level activity

Running slowly 1 High level activity
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4.1 Testbed Setup

In this work, we investigate and compare two HAR systems, i.e., (1) a radio_based HAR

system using the RSSI and the LQI and (2) a sensor_based HAR system using

accelerometer sensory data. To achieve these goals, radio_based and sensor_based systems

are implemented in our research lab in the form of a WBAN based wearable HAR system.

General description of the above mentioned testbeds are as following: The WBAN

based HAR system is comprised of Sun SPOT [46] nodes manufactured by Oracle (for-

merly Sun Microsystems), as shown in Fig. 3. The Sun SPOT nodes are either in form of a

sensor or a sink node. While sensor nodes contains a processor, radio, sensor board, and

battery, and the sink node only contains processor and radio board. Both sensor and sink

nodes use a 32 bit ARM9 micro-processor running the Squawk VM and the IEEE 802.15.4

compliant radio unit. IEEE 802.15.4 radio unit provides information about the received

signal. The effect of distance on the radio signal strength can be measured by the packet

success rate, the RSSI, and the LQI provided by the radio board. The LQI is a metric

introduced in IEEE 802.15.4 that measures the error in the incoming modulation of suc-

cessfully received packets (i.e. packets that pass the CRC criterion). The LQI metric

characterises the strength and quality of a received packet and is provided by CC2420 [47].

Each sensor node can be embedded in an environment and perform sensing tasks and

communicate with the sink node over wireless links. The sink node can be connected to an

external server such as a smart phone or a laptop through a USB interface to collect the

information transmitted by the sensor nodes. In our testbed, we place four nodes on the

body of a case study; two nodes on the right and the left wrists, one on the chest and the last

one on the left thigh as illustrated in Fig. 3. These nodes communicate with the sink node

placed within the sensor nodes transmission range. We have selected this setup based on

the investigation of the related works (as described in Sect. 2) which lead us to the

suggested configuration by Atallah et al. [30] for the wearable accelerometers framework.

For short range WBAN communication systems to achieve a signal strength greater than

- 80 dB over a distance of 5 m, the radio transmission power is set to level 7 (defined in

the Sun SPOT radio) where the radio power transmission is equal to - 15 dBm and

consumes current out 9.9 mA based on Mallinson et al. experiments [48].

Fig. 3 The Sun SPOT nodes placement
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Beside the described general testbed setup, the specific setup for the radio_based and the

sensor_based HAR testbed are highlighted as followings:

In radio_based HAR testbed each node contains a battery, a processing, and a radio

board. In this testbed, a periodical signal with 12 Hz frequency is being transmitted to

measure the radio signal strength based on the RSSI and LQI. Built in sensor units are

switched off for this testbed.

In sensor_based HAR system, each node requires an additional sensor board (i.e. an

accelerometer). Each sensor node senses accelerometer data with a 12 Hz sampling rate

and transmit the sensed data to the sink node.

In experiments conducted for both the sensor_based and the radio_based testbeds, we

aim to identify seven activities (as listed in Table 2) that represent both activity intensive

and non-intensive scenarios. The level of activities can be categorised based on the rates

associated to them. We also categorised the level of activities based on the activity levels

described by Atallah et al. [30] to capture a range of activities of daily living. The selected

duration of each activity set proportionally to the normal daily activity duration of the

elderly activities as shown in Table 2.

We have performed a set of controlled experiments using five average height case

studies out of which there are two healthy females and three healthy male subjects. All case

studies are right handed subjects. Although significant care is taken to place all the sensor

nodes at similar positions for all case studies, there are some inevitable variations during

the sensor nodes placement phase which can be overcomed by running the test for a

numbers of trials. Case studies are given predetermined sequences of the seven afore-

mentioned activities to follow for a predefined period of time as presented in Table 2. The

length of each daily activity is scaled down to 30 min and each repeated five times by five

case studies participated in experiments to maintain a 95% confidence interval. Each of the

seven activities are detected using a set of features which are listed in Table 1. To evaluate

the recognition accuracy, we temporally correlate activities with the sequence provided to

the case studies and employ the J48 decision tree classifier of the Weka toolkit [49] as the

selected classifier.

4.2 Data Collection Protocol

The data collection requirements on the accuracy, reproducibility and feasibility according

to the quality of experience of users have led us to the selected number of subjects and the

length of activity classes. The quality of experience of the users depends on the size,

number and the position that the nodes are placed. Limited power supply of the nodes is the

main restriction to allow nodes to run for couple of days as preferred. Furthermore, related

published works are summarised in Table 3 which includes our testbed parameters (last

row) for better comparison of results.

4.3 Testbed Experiments

We conduct three sets of experiments to analyse the radio_based HAR system to: (1)

demonstrate the system performance w.r.t the accuracy of the pattern recognition and

evaluate the trade-off with the power consumption of wireless wearable sensor nodes and

(2) investigate the impact of sink node position on the recognition accuracy.

The location of the sink node (either on the waist or on the desk) does not have any

impact on the results of the sensor_based HAR system. Hence, a set of data is collected for

the sensor_based and two sets of data are collected for the radio_based HAR system to
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Table 3 Example of HAR system acceptable accuracy based on accelerometers data

References Sensor placement # of
activity
classes

Average
classification
accuracy (%)

# of
case
studies

Data
collection
time

Bao et al. [50] Wrist, ankle, thigh, elbow, hip 20 84 20 24 h

Mathie et al.
[51]

Waist 5 98.9 26 65 min

Karantonis
et al. [52]

Waist 2 90.8 6 NA

Olgun et al.
[53]

Wrist, chest, hip 6 92.13 3 81 min

Parkka et al.
[54]

Wrist, chest 5 83.3 17 34 h

Pirttikangas
et al. [55]

Thigh, necklace, wrists 5 91.5 13 585 min

Minnen et al.
[56]

Chest, right thigh, on the barrel
of the field weapon, wrists,
right hip

14 90 1 3.3 h

Salarian et al.
[57]

Trunk, shanks (IMU sensor) 14 – 9 NA

Chen et al.
[58]

Wrist 8 93 7 112 min

He et al. [59] Pocket 4 92.25 11 44 min

Yang et al.
[60]

Wrist 8 95 7 112 min

Yeoh et al.
[61]

Thigh, waist 4 100 5 NA

Bonomi et al.
[62]

Lower back 7 93 20 NA

Hanai et al.
[63]

Chest 5 93.91 1 2 h

Altun et al.
[64]

Knees,wrists, chest 19 87–99 8 32 h

Cheng et al.
[65]

Neck, chest, leg, wrist
(electrodes)

11 77 3 33 min

Gjoreski et al.
[66]

Thigh, waist, chest, ankle 5 91 11 825 min

Chamroukhi
et al. [67]

Chest, thigh, ankle 7 90.3 6 30 min

Bayat et al.
[68]

Pocket, hand 6 91.15 4 * 19 min

Gao et al. [69] Chest, waist, thigh, side 5 96.4 8 NA

Gupta et al.
[70]

Waist 7 98 7 * 126 min

Moncada-
Torres et al.
[71]

Chest, thigh, ankle 16 89.08 6 67.46 min

Mass et al.
[72]

Trunk (IMU and barometric
pressure sensor)

4 90.4 12 360 min
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explore the impact of the sink node position. In the first round the sink node placed on the

desk and in the second round on the waist. The average distance when the sink node is on

the desk varies between 2:5� 2m and the average is reduced to 60� 50 cm when the sink

node is placed on the waist. We firstly investigate the impact of the radio_based HAR

system on energy consumption. To reduce the cost and size of the wearable HAR system,

we investigate the recognition accuracy when placing the radio board on the body to

measure RSSI and LQI. Then a discussion on the results of recognition accuracy analysis is

presented.

4.4 Ethical Considerations

The research protocol is approved by the ethical committee of Shahid Beheshti university.

Case studies have signed an informed consent form to reflect their agreement to participate

in the study. For privacy preservation, the demographic data is recorded not to reveal the

identity of the case studies.

5 Experimental Results and Analysis

For wearable HAR systems, three sources of energy consumption are identified, i.e. sen-

sory, processing and radio boards power consumption. In this section, we aim to look at the

sensory board energy consumption. Furthermore, we have compared the performance of

the radio_based and the sensor_based HAR systems w.r.t the the recognition accuracy and

the energy consumption.

5.1 Performance Metrics

We define the main performance metrics in this subsection, namely energy and accuracy.

Energy consumption metric Due to the limited energy in the battery operated wireless

nodes, energy consumption is one of the main bottlenecks, hence calculated to evaluate the

performance of the proposed methods. We measure the energy consumption of nodes as

the result of sensing, processing and transmission [3] by utilising the sun SPOT API which

provides us the remaining battery charge of nodes in milliAmpere-hours. We calculate the

energy that is consumed during each experiment as follows:

Table 3 continued

References Sensor placement # of
activity
classes

Average
classification
accuracy (%)

# of
case
studies

Data
collection
time

Rezaie and
Ghassemian
[73]

Chest, right-wrist, left-wrist,
thigh

7 99 20 250 h

Our testbed Chest, right-wrist, left-wrist,
thigh

7 Reported in
Sect. 5

5 12 h
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e ¼ Q � V � 3:6

where Q is the depleted battery charge in milliAmpere-hours during experiment and V is

the battery voltage of nodes in Volts.

Recognition accuracy metric We use accuracy and true positive rate (TPR) as perfor-

mance metrics to evaluate the decision tree ability to classify each of the activities. The

accuracy is computed as ratio of sum of the true positives and the true negatives to the total

number of samples in the training set. The TPR is computed as the ratio of the true

positives to the total number of samples in the training set. Based on the example of multi-

class confusion matrix shown in Table 4, the recognition performance metrics are calcu-

lated as follows:

AccuracyðakÞ ¼
Nkk þ

Pn
i¼1;i6¼k

Pn
j¼1;j 6¼k NijPn

i¼1

Pn
j¼1 Nij

Overall Accuracy ¼ 1

n

Xn

i¼1

AccuracyðaiÞ

TPRðakÞ ¼
NkkPn
i¼1 Nki

where Nij is the number of data samples using label ai but recognised as activity class of aj,

and classified as activities aj and n is the number of activity classes.

5.2 Energy Consumption Analysis

As discussed before, the radio_based HAR system is investigated due to lower hardware

and energy cost. In this subsection, we examine the trade-off parameters for the reduced

energy level in the radio_based HAR system. Table 5 shows the amount of energy con-

sumption saved in the radio_based HAR system. An overall 30% energy consumption

improvement is achieved in the expense of 1.5% reduction in the recognition accuracy rate

for the 30 min experiments. This shows that the radio_based HAR system can achieve a

longer lifetime with a similar accuracy level considering a scenario where four nodes are

placed on the body and the sink node is on the case study’s waist. While the energy

consumption should be improved, the impact of the solutions on other performance metrics

such as accuracy needs to be explored.

5.3 Sliding Window Size Selection

To size of sliding window is one of the influencing factors that affects the overall HAR

system accuracy. We explore the impact of the sliding WS on our analysis to select a

Table 4 An example of confu-
sion matrix used in this work

Actual activities Classified activities

a1 a2 � � � an

a1 N11 N12 � � � N1n

a2 N21 N22 � � � N2n

� � � � � � � � � � � � � � �
an Nn1 Nn2 � � � Nnn
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suitable WS for the rest of our analysis. In our testbed, based on sampling frequency and

the duration of the activity classes, a range of sliding WS should be selected between 2 and

720 samples (1 min as the minimum activity duration sampled with 12 Hz) so that it

extracts the features for HAR system. We have taken a range of 5–300 for the sliding WS

to select one which the accuracy does not improve much after this point. As discussed in

Sect. 4, in the radio_based measurements, the sink node once placed on the desk and once

on the case study’s waist, which impacts on the accuracy due to the relative distance of the

nodes during the activities. As shown in Fig. 4, when the sink node is placed on the desk,

the accuracy of the radio_based HAR system degrades. However, it is still above the

acceptable accuracy range of 95%. Since the sensor_based HAR system utilises the

accelerometers information it shows an overall higher accuracy rate compared to the

radio_based HAR system. Furthermore, the performance of the sensor_based HAR system

remains almost the same over the applied range of WS. However, the impact of WS

variation on the radio_based HAR system is significant. Improved accuracy rates for larger

WSs result in higher processing power consumption as well as an additional delay. As

overlapping window is applied in our analysis, different size of the sliding window does

not impact on the average delay and only influences on the initial recognition time. The 5 s

Table 5 Energy consumption comparison and measurement confidence level

HAR system Energy evaluation

Energy consumption (J/min) Confidence level (99%) Average lifetime (h)

Sensor_based 16.329 0.057 9.84

Radio_based 11.441 0.13 13.97

Fig. 4 Comparative analysis of the HAR system overall accuracy for the radio_based versus the
sensor_based HAR systems over different WS values

Comparison Analysis of Radio_Based and Sensor_Based… 787

123



initial delay corresponds to the WS of 50 samples per window and is acceptable for HAR

applications [74]. Considering the radio_based HAR system (when the sink node is placed

on the waist), the impact of WS for each activity is illustrated in Fig. 5. Moving from the

very low level to low level activities demonstrates a lower recognition accuracy rate

compared to the mid to high level activities. This observation can be justified due to the

lower number of changes in the signal strength in low level activities. As shown in Fig. 4,

since the overall accuracy improvment increases linearly till the WS equal to 50, we use

this value for the rest of our analysis. This results in a minimum accuracy of 97% and 5 s

initial delay in the HAR system.

5.4 Impact of Sensor Nodes Placement and the Sink Node Position

Considering the sliding window of 50 samples, we have further studied the impact of the

sink node placement as demonstrated in Fig. 6. Since the sensor_based HAR system

benefits from the features driven from the accelerometers, the accuracy level for the

sensor_based outperforms the radio_based HAR system for all activity classes. Further-

more, considering the standard deviation depicted in Fig. 6, the sensor_based system

confirms a higher confidence interval compared to the radio_based HAR system. For the

radio_based HAR system, the accuracy also depends on the sink node position, i.e. where

the sink node is placed on the body or placed on the desk. As shown in Fig. 6, when the

sink node is placed on the waist, the distance between the node placed on the body and the

sink node is less than when the sink is placed on the desk which results in higher sensitivity

to distance changes. In other words, the relative body movements are measured based on

the RSSI, can better distinguish the movements when sink is placed on the waist. This can

justify the higher accuracy level in our results when the sink node moves relative to the

nodes placed on the body for all activity classes.

We also examine the recognition accuracy with less number of measurement points on

the body to decrease the cost and the energy consumption. Figure 7 shows three scenarios;

i.e., 2, 3 and 4 measurement points on (a) the chest and tight, (b) the chest, thigh and right

wrist, and (c) the chest, thigh, right and left wrists, respectively for both sensor_based and

Fig. 5 Accuracy analysis for the radio_based HAR system (sink node on the desk) over different WS values
for different activity classes
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radio_based HAR systems. The recognition accuracy comparison of the radio_based HAR

system is presented in Fig. 7 for a combination of the sensor nodes placed on the body and

for all the activity classes. As shown in Fig. 7, in comparison with the sensor_based system

for all activities using four nodes, an average accuracy degradation of 1.5 and 2.5% is

observed when the sink node is placed on the waist and on the desk, respectively. The

recognition accuracy further degrades when less number of nodes are utilised for the HAR

systems. Nevertheless, for all cases are above 93%.

Fig. 6 Comparative analysis of the sensor_based and the radio_based (with different sink node positions)
HAR systems with WS = 50

Fig. 7 Impact of node placement on the overall accuracy analysis
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5.5 Activity Class Analysis

As the overall accuracy level, achieved in Sect. 5.4, shows higher performance where the

sink node is placed on the waist in the radio_based HAR system, we have further explored

this scenario in more details. Table 6 shows the true positive rate for different activities for

the three nodes placement scenarios. In very low level activities such as standing and lying

down, adding more than three nodes increases the true positive rate from 95.83 to 96.75%

and from 97.16 to 97.74%, respectively. However, in low level activities such as brushing,

this varies from 62.67 to 71.08%. Therefore, the additional hardware cost to place more

number of nodes impacts on the accuracy in higher activity classes in the radio_based

systems. For brushing, our experiments show that beside the number of nodes, the node

placement on the right hand wrist is required to capture the wrist movements. Therefore,

better node placements acquire a higher ratio of engaged nodes over the total number of the

placed nodes.

5.6 Impact of Radio Indicators

We have also explored the impact of radio signal indicators. Results presented in Fig. 8,

show that using LQI information results in a lower accuracy rate even with higher number

of measurement points. On the other hand, using RSSI or combining RSSI with LQI

measurements result in a similarly higher recognition accuracy level. Since LQI infor-

mation is also derived from RSSI measurement, feeding this parameter to the system does

not increase the accuracy in different node placements. LQI exhibits a very good corre-

lation with packet loss and is therefore a good link quality indicator. However, one of the

contributions of this paper is to show RSSI as an important metric if interference can be

distinguished from noise. Given that LQI is a supplementary metric, we should bear in

mind that it is only made available in IEEE 802.15.4-compliant devices. Therefore, the

RSSI which can be calculated based on the received signal strength in wireless tech-

nologies is advised to be exploited in the radio_based HAR systems.

To summarise the experimental observations discussed in this work, we have compared

the possibility of eleminating the commonly used accelerometer sensor in HAR systems

and observe the system performance in absence of the sensory information when using the

radio signal strength measurements. In the radio_based system, we observe that beside the

reduced hardware cost of the sensor considering a system with four nodes, sink node on the

waist, and WS 50, the lifetime of the systems is prolonged nearly 30% due to lower amount

of processing (sensing part) as well as lesser number of transmissions. While the energy

consumption is the main challenge of the wearable systems, the accuracy of the recognition

is of importance. Our investigations also show that an approximate recognition accuracy

degradation of 1.5% is negligible and acceptable compared to the energy consumption gain

(Table 7).

Furthermore, we have investigated the node placement impact on the accuracy and

reported a higher sensitivity to the number of nodes, node placements as well as sink node

placement in the radio_based system which is due to the dependency of the results on the

distance. Another influencing variable is the sliding WS for feature extraction and the IG

impact on the accuracy which is demonstrated to be higher in the radio_based system.

Therefore, while reducing the hardware and processing load helps the HAR system per-

form significantly better with respect to the energy efficiency, careful selection of the WS

and node placement is suggested in the radio_based HAR system.
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Fig. 8 Overall accuracy rate for different combination of RSSI and LQI information in the radio_based
HAR system

Table 7 Summary of the experimental observations

Sensor based sys-
tem

Radio based system

Hardware Requiremen Processing, sensing
and radio modules

Radio module

Measured input signals Acceleration RSSI

Size of sliding window 5 to 300 5 to 300

V
a
ri
a
b
le

s

# of placed nodes 2 to 4 2 to 4

Sink node position Fixed On the desk-On the waist

# of placed
nodes

Overall accuracy Overall accuracy

Sink node on
the desk

Sink node on
the waist

Recognition accuracy 2 ∼99.2% ∼97.7% ∼95%
3 ∼99.7% ∼96.3% ∼97.7%
4 ∼99.8% ∼97.4% ∼98.5%

Transmission load ∼6500 bps ∼1500 bps

Lifetime (Hours) 9.84 13.97

P
e
rf
o
rm

a
n
c
e

m
e
tr

ic
s

Sensitivity to the number of nodes Low High

Sensitivity to the size of sliding window Low High

Dependency to the sink position No Yes
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6 Conclusion and Future Work

In the wearable human activity recognition systems, multiple wearable nodes are used to

form a wireless body area network. System lifetime and recognition accuracy are the

most important challenges. We first set up a sensor_based HAR testbed for activity

recognition using accelerometer. Additionally, we investigate the impact of the radio

pattern variation in the absence of the sensor board for the HAR systems and compare the

collected results with the sensor_based HAR testbed. In this work, we use a sliding

window rather than a distinct window to allow a precise feature extraction. We

demonstrate that larger WSs result in a higher delay and processing complexity and

improves the accuracy level. Furthermore, we have investigated the use of IEEE 802.15.4

radio signal indicators (i.e., LQI and RSSI) for HAR systems for different activity levels.

We show the HAR system accuracy depends on the number of nodes, position of the

nodes, and the sensory information. Our implementation and analysis of both sen-

sor_based and radio_based HAR systems report a trade-off between energy-cost and

accuracy. Our results show a comparable recognition accuracy of 1.5% lower level and

30% reduced energy consumption rate for the radio_based HAR system compared with

the sensor_based one.
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