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Abstract Localization is a significant challenge in the area of wireless sensor networks

(WSNs). Distance Vector Hop (DV-Hop) algorithm is most preferable algorithm due to its

low cost, distributed nature, and its feasibility for all kinds of sensor networks, but it suffers

from high localization error. In order to reduce the problem of high localization error for

2-dimensional and 3-dimensional WSNs, two Nature Inspired Algorithm based improved

variants have been proposed. The first one uses Grey-Wolf optimization (GWO-DV-Hop)

to identify a better estimate of average distance per hop and second one, a weighted Grey-

Wolf optimization (Weighted GWO-DV-Hop), finds average distance per hop as computed

by each beacon node using grey wolf algorithm and then, a weighted approach is applied

by each node to get weighted average distance per hop (weights based on distance from

each beacon) so as to consider impact of all types of beacons. The results prove the

superiority of proposed algorithms over traditional DV-Hop in terms of localization error.

Keywords Wireless sensor networks � Localization � Grey wolf algorithm � Average
distance per hop � Localization error

1 Introduction

Wireless sensor network (WSN) is an undeniably essential innovation that attracts con-

siderable research interest [1]. A typical WSN comprises large number of nodes with

implicit sensors which are engaged in sensing the events that occur in the surrounding

environment [2]. Localization is crucial challenge in WSNs, as location information of an

event is also required along with the sensing information in several types of applications,
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such as wild life surveillance, fire surveillance, water quality monitoring, intrusion

detection, health monitoring and precision agriculture etc. In these applications, the esti-

mation/event information is not much use unless the location where the event has taken

place is available [3]. Localization algorithms determine the position of nodes by

exploiting knowledge of absolute positions of few nodes called beacons. GPS can be used

as solution for localization, but it is not a feasible solution because of its size, energy

consumption and high cost.

The localization algorithms are of two kinds: range-based or range-free [4]. Range-

based algorithm [5–9] gives high precision due to use of special equipment which increases

its cost, although its estimates are affected by noise and multi-path fading. On the other

hand, range-free algorithms [10–14] require connectivity information and no specialized

hardware, thus they are cost effective. Most of the researchers have paid higher attention

towards range-free rather than range-based technique due to its low cost. In previous

studies, localization algorithms mainly focus on 2D space, but generally, nodes are

deployed in 3D space for many applications. Thus, localization technique should be

developed for 3D space to make it more realistic. Among range-free algorithms, DV-Hop

algorithm is extremely popular because of its simplicity, cost-effectiveness, and robust-

ness, but still it has low accuracy. Therefore researchers are still working on improving this

algorithm.

In this paper, we put forward the application of Grey-Wolf-based optimization tech-

nique with DV-Hop algorithm in both 2D and 3D WSN. We have proposed two algorithms

that use Grey-Wolf-based optimization technique. Simulation results prove that Grey-

Wolf-based optimization technique if merged with DV-Hop, results in high localization

accuracy.

The paper is structured as: Sect. 2 discusses the localization problem. Section 3 gives

the introduction of DV-Hop algorithm and its error analysis. Section 4 discusses the

overview of Grey-Wolf optimization. Section 5 is followed by implementation of proposed

algorithms. The simulation is presented in Sect. 6. Then, Sect. 7 discusses concluding

remarks and future work.

2 Problem Statement

Localization is the process of obtaining absolute coordinates of nodes in a WSN [15]. In

this problem, we take a WSN having N total nodes. There are three varieties of nodes.

(a) Beacon nodes—Those that know their position.

(b) Settled nodes—Those that initially are unaware of their location, but then are able to

get this information by applying localization technique.

(c) Unsettled nodes—Those that are unaware of their location.

Assuming there are m beacon nodes and n unsettled nodes (m is at least 10% of N), the

localization problem is to convert these n unsettled nodes to settled ones.

3 Related Work

Here, we present a brief overview of DV-Hop and its various improved versions proposed

in the literature.
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3.1 Traditional DV-Hop Localization Scheme

DV-Hop was first put forwarded by Niculescu et al. [11] in 2003. It is a distributed hop

counting technique. The symbol table used for DV-Hop Algorithm applied for 3D space is

given in Table 1.

This algorithm works in three phases for 3D space that are described as follows:

Phase 1: All beacon nodes pass packets containing their coordinate information (xi,yi,zi)

along with their id i, hop count(hopi, initially set to 0) to all other nodes within their

communication range. All the nodes maintain their own hop count table containing ids,

position information and hop counts of all beacons in the network with the help of these

packets. The receiving node first increments the hop count value and then updates it in its

table for given beacon i if it is the first packet received from beacon, otherwise it verifies

the hop count value from its table and if the received incremented value is smaller than the

value stored in the table, then the node replaces the stored value by received value. This

phase allows every node to know minimum hop counts from every beacon in the network.

Phase 2: After the first phase, all the beacons reckon average distance in one hop

(AvgHopSizei) by utilizing Eq. (1).

AvgHopSizei ¼
Pm

j¼1i 6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � xi
� �2þþ yj � yi

� �2þ zj � zi
� �2

q

Pm
i¼1i 6¼j hopj

ð1Þ

where i is the id of beacon i, (xi,yi,zi), (xj,yj,zj) are coordinates of beacons i and j, j lies

between 1 to m(j = i), hopj is the hop count of beacon j from beacon i.

Then, they send one more packet containing calculated AvgHopSizei to all other nodes.

A receiving one (assuming having id u) computes approximate distances (dj) from each

beacon node j by multiplying AvgHopSizei of its nearest beacon i by hop count (hopj)

obtained from its hop count table [Eq. (2)].

dj ¼ AvgHopSizei � hopj ð2Þ

Phase 3: This is the last phase applied by unsettled nodes to move to settled status. They

apply trilateration/multilateration method to get their absolute coordinates. The whole

process is explained below:

Let the coordinates of unsettled node u and beacon Bj be (xu,yu,zu) and (xj,yj,zj)

fj 2 1;mð Þg. The following system of equations can be formed:

Table 1 Symbol table for DV-
Hop algorithm

Symbol Description

i Identity of all nodes (in number format)

(xi,yi,zi) x, y and z coordinates of nodes

hopi Hop count from beacon i

AvgHopSizei Average hop distance computed by beacon i

N Count of nodes in WSN

n Count of unsettled nodes

m Count of beacons
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xu � x1ð Þ2þ yu � y1ð Þ2þ zu � z1ð Þ2¼ d21
xu � x2ð Þ2þ yu � y2ð Þ2þ zu � z2ð Þ2¼ d22

� � �
..
.

xu � xmð Þ2þ yu � ymð Þ2þ zu � zmð Þ2¼ d2m

9
>>>>>=

>>>>>;

ð3Þ

Equation (4) can be derived from Eq. (3).

�x2m þ y21 � y2m þ z21 � z2m � d21 � d2m ¼ 2� xu � x1 � xmð Þ þ 2� yu � yuð Þ þ 2� zu � z1 � zuð Þ
x22 � x2m þ y22 � y2m þ z22 � z2m � d22 � d2m ¼ 2� xu � x2 � xmð Þ þ 2� yu � y2 � yuð Þ þ 2� zu � z2 � zuð Þ

..

.

x2m�1 � x2m þ y2m�1 � y2m þ z2m�1 � z2m � d2m�1ð Þ � d2m ¼ 2� xu � xm�1 � xmð Þ þ 2� yu � ym�1 � yuð Þ þ 2� zu � zm�1 � zuð Þ

9
>>>=

>>>;

ð4Þ

The matrix form of Eq. (4) is Eq. (5) as given below:

AXu ¼ B ð5Þ

where A ¼ 2�

x1 � xm y1 � ym z1 � zm
x2 � xm y2 � ym z2 � zm

..

. ..
. ..

.

xm�1 � xm ym�1 � ym zm�1 � zm

2

6
6
6
4

3

7
7
7
5
; Xu ¼

xu
yu
zu

2

4

3

5; and

B ¼

x21 � x2m þ y21 � y2m þ z21 � z2m � d21 � d2u
x22 � x2m þ y22 � y2m þ z22 � z2m � d22 � d2m

..

.

x2m�1 � x2m þ y2m�1 � y2m þ z2m�1 � z2m � d2m�1 � d2m

2

6
6
6
4

3

7
7
7
5

Equation (5) can be transformed to Eq. (6) as follows:

Xu ¼ ATA
� ��1

ATB ð6Þ

Equation (6) is solved to obtain the coordinates of the node by using Least Square (LS)

method.

The algorithm is exceptionally prominent algorithm as it is very simple, feasible,

scalable and applicable for nodes having less than 3 neighbour nodes. The nodes that are

having less than 3 neighbours can also be localized using this algorithm due to its dis-

tributed nature. But its accuracy is affected by several factors.

The algorithm has served as motivation for many range free localization algorithms.

Extensive research has been done in enhancing its accuracy. In [16], Tomic proposed three

distinct kinds of algorithms (iDV-Hop1, iDV-Hop2, and Quad DV-Hop). The first two

algorithms add one more step which includes geometry techniques which consider the

impact of nearest beacon to increase the accuracy. The third algorithm replaces the third

phase by applying non-linear method called quadratic programming solver to increase the

accuracy. Two more improved methods were proposed in [17] by Song et al. that has

utilized weighted method in place of lateration method in third phase. In second algorithm,

he used a non-linear method called hyperbolic algorithm in the third phase. The first

algorithm reduces the complexity of DV Hop with a small improvement in accuracy,

whereas, second approach improves the accuracy to a large extent. In [18], Zhang intro-

duced two algorithms which apply weighted approach in the final phase. Both algorithms

choose the weight that is inversely proportional to number of hops. The concept in these
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algorithms was that the beacon which is closer to the node should have higher role than the

beacon that is far from it. Both these algorithms achieve higher accuracy. In [19], Fang

added a compensation coefficient to correct distance between beacons and regular nodes.

An improvement was made in [20] by optimizing location of node in third phase of DV-

Hop algorithm by applying genetic algorithm which results in higher accuracy. In [21], Gui

et al. introduced a small low computational step as fourth phase to improve the accuracy of

algorithm. Gui et al. also proposed another algorithm in [21] which replaces third phase

with very complex method selecting 3 best beacons for each particular node to determine

its location. In [22], Shahzad et al. computed the optimal value of max_hop that is used by

node to determine its location. If the beacons are within this max-hop value, then only that

beacon is selected by the node to get its location, otherwise it is discarded.

In [23], Wang et al. introduced a weighted algorithm which also uses Genetic algorithm

and simplex method in its third phase to solve the problem of high localization error of

weighted DV-Hop. Experiments prove that localization accuracy is improved significantly

by applying hybrid algorithm of genetic algorithm and simplex method in third phase of

DV-Hop algorithm. Kumar et al. [24] also proposed an improved algorithm which uses an

improvement term to refine the hop-size of anchor nodes in second phase of DV-Hop and

uses unconstrained optimization technique in place of least square method in third phase to

attain better localization accuracy.

These entire algorithms have tried to improve localization accuracy to some extent, but

still there is scope to improve the accuracy further. Based on this fact, we are proposing an

improved variant of DV-Hop by refining the value of average hop distances computed by

all beacons which is the root cause of localization error.

4 Error Analysis of DV-Hop Localization Scheme

The main factor which contributes most to localization error is the error in computing

average hop distance by each beacon. The beacon i compute its exact distance from any

beacon j (dj) by applying following Eq. (7).

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �2þ yi � yj

� �2þ zi � zj
� �2

q

ð7Þ

If AvgHopSizei is average distance per hop for beacon i, then its approximate distance

(d1j) from beacon j is product of hopj and AvgHopSizei [Refer Eq. (3)]. The error ei is the

difference in these two values (ei= dj - d1j). The optimized AvgHopSizei should reduce

the value of ei as small as possible. To reduce this error in computing average hop size,

grey wolf optimization algorithm is applied.

The objective function used in grey wolf optimization is described as follows:

min ei ¼
Xm

j¼1;j 6¼i

ðdj � d1jÞ

0\ AvgHopSizei � max dj

ð8Þ

where d1j ¼ AvgHopSizei � hopj. The problem is to find optimum value of average hop

size of beacon i by minimizing the above function.

Consider a WSN network as shown in Fig. 1 in which there are three beacons B1, B2 and

B3 and unsettled node (UN) that wants to locate itself. All these beacons know their
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distances from each other after phase 1 of DV-Hop. Let the distances be 10, 20 and 30

respectively. B1 is 2 hops apart from UN, B2 is 3 hops apart from UN and B3 is 1 hop apart

from UN. Let the length of each hop be 5 m and B3 is 10 m apart from UN. In the phase 2,

all Beacon nodes compute their AvgHopSizes by applying Eq. (1).

AvgHopSize1 ¼
10þ 20

3þ 5
¼ 3:75

AvgHopSize2 ¼
20þ 30

5þ 4
¼ 5:56

AvgHopSize3 ¼
10þ 30

3þ 4
¼ 5:71

The beacon nodes pass average hop distances to all other nodes. The unsettled node

picks the first received average hop size and discards other. The UN node chooses average

hop size of B3 node as it is just 1 hop apart from it. Thus according to DV Hop phase 2, B3

is 5.71 m apart from UN, although actual distance is 10 m. Thus, localization error is

10 - 5.71 = 4.29 m, that is almost 40% of actual distance. Due to this high error, the UN

node localizes itself incorrectly. From above analysis, we infer that the localization error of

the DV-Hop is influenced by approximate calculation of average hop sizes by beacons.

Thus, to reduce localization error, the average hop sizes need to have better approximation.

5 Overview of the Grey-Wolf Optimization (GWO) Algorithm

Grey-Wolf optimization algorithm was proposed by Mirjalili et al. [25]. It is a new meta-

heuristic optimization technique inspired by hunting mechanism of grey wolves. The

reason to select this algorithm is that it is very simple, flexible and it tries to search entire

search space rather than selecting only local optima solution. In [25], the given algorithm

has been compared with other well known optimization algorithms for 28 benchmark

functions and it has been proved that grey-wolf is superior to other meta-heuristic opti-

mization algorithms. GWO algorithm depends on the classification of grey wolfs. The grey

wolves are of 4 kinds. The first category called alphas that are leaders to help in taking

choices about chasing, rest place, time to wake and many more. The next category is of

betas that are subordinates of alpha. The lowest in this hierarchy are omegas and deltas.

B1

B3 B2
UN

10
20

30

Fig. 1 Example of DV-Hop algorithm
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For GWO, we consider that the best solution is alpha (a). The next two best solutions

are beta (b) and delta (d). The rest solutions are omega ðxÞ. During hunting, the wolves

encircle the prey which can be depicted using following mathematical model:

D ¼ C � Xp ið Þ � X ið Þ ð9Þ

X iþ 1ð Þ ¼ Xp ið Þ � A � D ð10Þ

where i is the iteration, A and C are coefficient vectors, Xp is the position of prey and X is

the position vector of grey wolf. The vectors A and C are computed as follows:

A ¼ 2a � r1 � a ð11Þ

C ¼ 2 � r2 ð12Þ

where a is a vector which decreases linearly from 2 to 0 and r1, r2 are random vectors in

range from 0 to 1.

In GWO, it is assumed that the alpha, beta and delta knows better about prey. Thus,

following formulas are proposed to get the location of prey.

D/ ¼ C1 � X/ � X; Db ¼ C2 � Xb � X; Dd ¼ C3 � Xd�X ð13Þ

X1 ¼ X/ � A1 � D/; X2 ¼ Xb � A1 � Db; X3 ¼ Xd � A1 � Dd ð14Þ

X iþ 1ð Þ ¼ X1þX2 þ X3

3
ð15Þ

The pseudo code of GWO is depicted in Fig. 2.

6 Proposed Algorithms

In this section, we present two algorithms, called Grey wolf optimization based DV-Hop

(GWO-DV-Hop), and weighted grey wolf optimization based DV-Hop (Weighted GWO-

DV-Hop). They work for both 2D and 3D space, although we describe below for 3D space

only.

Fig. 2 Steps used in the Grey wolf optimization algorithm
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6.1 GWO-DV-Hop Algorithm

The proposed GWO-DV-Hop localization algorithm works in three phases. The assump-

tions are: circular radio range, symmetric radio connectivity, no additional hardware, no

obstructions, lack of line-of-sight, no multipath and fading.

Phase 1: Calculating minimum hop counts from each beacon: Each node gets position

and minimum number of hop counts from each beacon by applying broadcasting mech-

anism. The phase is similar to the phase 1 of the traditional DV-Hop.

Phase 2: Refinement of Average Hop Distance by the beacon: In this phase, the beacons

calculate their average hop sizes by applying Eq. (1) and then compute their distances from

each beacon by applying Eq. (7). After this, the beacons use grey wolf algorithm to refine

average hop distances. The fitness function used to achieve optimized average hop distance

is mentioned by Eq. (8). This phase helps all the beacons to get their refined average hop

sizes. All these average hop sizes are broadcasted to all other nodes in the network who

then derive their distances from every beacon by taking the product of refined average hop

size of nearest beacon to the given node and minimum hop counts. This distance infor-

mation is used in the next phase. The steps of using grey wolf algorithm for obtaining the

optimum average hop size by every beacon are given in Fig. 3.

Phase 3: Converting the unsettled node to settled node: The unsettled nodes locate

themselves by applying lateration method [11] such as least square method as described in

Phase 3 of Sect. 3.1.

6.2 Weighted GWO-DV Hop Algorithm

Phase 1: Calculating minimum hop counts from each beacon: Same as in 6.1.

Phase 2: Refinement of Average Hop Distance by the beacon: Same as Phase 2 in

GWO-DV-Hop.

Phase 3: Converting the unsettled node to settled node: The unsettled nodes compute

their own average hop distance by considering impact of average hop distances of all the

beacons. The beacon that is closer to the node has higher weight than the beacon that is far

away from the node. The average hop distance computed by the node u is described using

Eq. (16).

AvgHopSizeu ¼
Pm

i¼1 wi � AvgHopSizeiPm
i¼1 w

ð16Þ

where wi ¼ 1
hopi

is the weight of each beacon i.

Then, the node u obtain its distances from every beacon (say with id i) by applying

Eq. (17).

di ¼ AvgHopSizeu � hopi ð17Þ

After obtaining all these distances from every beacon, the unsettled node settles itself by

applying lateration method [11] which uses least square method.
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7 Results and Analysis

This section presents a detail performance comparison of the proposed algorithm with the

state-of-art DV-Hop algorithm and discusses its performance by varying different network

parameters. Nest, complexity analysis of the proposed algorithm with the DV-Hop are

listed and discussed.

7.1 Performance Evaluation and Discussions

To evaluate the performance of the proposed algorithms, we implemented all the algo-

rithms and compared their performance on the basis of Localization Error (in %). The

algorithms are implemented in both 2D and 3D environment. The parameters used for the

simulation are described in Table 2 for 2D space and in Table 3 for 3D space. The

minimum communication radius for 2D is set to 15 m and for 3D is 20 m. It is observed

that the value of communication radius depends upon the node density. Smaller the node

Fig. 3 Phase 2 of proposed algorithm
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density, larger is the value of communication radius so that all the nodes are able to

communicate with each other. This is the reason that the minimum value of communi-

cation radius for 3D is greater than that used in 2D space. The percentage of beacons used

should be 10% of total nodes.

The localization accuracy [26–33] is formulated as follows:

localization error ¼ 1

n� r

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xa � xuð Þ2þþ ðya � yuÞ2 þ ðza � zuÞ2
q

ð18Þ

where n is the total number of unknown nodes, (xa,ya,za) are the actual coordinates and

(xu,yu,zu) are the estimated coordinates of unknown node and r is the communication radius

of sensors.

The localization accuracy enhances as the localization error reduces.

It can be seen from Figs. 4, 5, 6, 7, 8, 9, 10, and 11 that grey-wolf based perform better

in terms of localization accuracy. Figures 4, 5, 6, and 7, represent results for 2D space, and

Figs. 8, 9, 10, and 11 represent results for 3D space.

Figure 4 illustrates that the proposed algorithms reduces the localization error when the

percentage of beacon nodes is increased from 10 to 40% for WSN area 100 9 100 and

total nodes = 200. It is observed that the average localization error decreases as the per-

centage of beacon nodes increases in all the algorithms. This is due to the reasons that

when there are more beacon nodes in the network, percentages of nodes which have at least

four neighbouring beacons becomes greater and localization is done easily and accurately.

It is observed that if there is more than 60% of the beacon node, then the nodes localize

themselves very accurately. They are very near to the actual coordinates. It is seen from

Fig. 4. The localization error for GWO-DV Hop and Weighted GWO-DV Hop reduces

from 50 to 35% with the increase in beacon nodes from 20 to 80, whereas Original DV Hop

is reduced from 60 to 45%. Thus there is improvement of 10% in accuracy.

Figures 5 and 6 show the impact of total number of nodes and communication radius on

average localization error, respectively. If the network size considered is 100 9 100 m2,

then for Fig. 5 where the total nodes are increased from 200 to 450 with beacon percentage

Table 2 Simulation parameters
for 2D space

Simulation parameters Value

WSN area Vary from 100 9 100 to 300 9 300 m2

Total nodes (N) Vary from 200 to 450

Beacon nodes (m) Vary from 20 to 80

Total iterations 50

Communication radius (r) Vary from 15 to 35

Table 3 Simulation parameters for 3D space

Simulation parameters Value

WSN Area Vary from 100 9 100 9 100 to 300 9 300 9 300 m3

Total Nodes(N) Vary from 200 to 450

Beacon Nodes(m) Vary from 20 to 80

Total iterations 50

Communication radius(r) Vary from 20 to 40
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as 10% of total nodes, the localization error is reduced with both proposed algorithms from

42 to 35%. It can be noticed that both the proposed algorithms behave similarly, but better

than DV-Hop algorithm. It is also observed that localization accuracy depends upon
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beacon percentage. There is slight effect on localization accuracy even if total nodes are

varied, but the percentage of beacons remains constant. In Fig. 6, communication radius is

changed from 15 to 35 in 100� 100 m2 WSN area with 200 total nodes and 10% beacons.

The localization error is reduced by 5% with our proposed algorithms.
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Figure 7 shows the average localization errors of above said algorithms with different

border area in the 2D network. The border area is increased from 100� 100 to 300� 300

m2. It can be seen that with the increase in the border area with the same number of nodes,

the node density decreases, thus the localization error increases.

Figures 8 and 9 show the impact on localization error by changing the beacon nodes and

total number of nodes, respectively. The beacon nodes are tuned from 20 to 80 for 3D

network in Fig. 8 and total nodes are tuned from 200 to 350 for 3D network in Fig. 9 with

10% of beacon nodes. In the both cases, the proposed algorithms outperform the original

algorithm.

Figures 10 and 11 show the comparison by varying communication radius and border

area. Overall, it is obvious that the GWO-DV Hop performs best with least localization

error. The weighted GWO-DV Hop is better than DV-Hop and has slight higher error than

GWO-DV Hop algorithm.

7.2 Complexity Analysis of Proposed Algorithms

The complexity is considered in terms of communication cost and computation cost

[34, 35]. The Communication cost is total number of packets transmitted in the network.

There is no change in communication cost for the proposed algorithms.
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The Computation cost that is sum of mathematical operations required to run the

algorithms is shown in Table 4.

From Table 4, it is observed that the algorithms give higher accuracy with slight

increase in computation cost.

8 Conclusions

In order to reduce localization error of DV-Hop localization algorithm due to approximate

computation of average hop sizes by each beacon, Grey wolf optimization algorithm is

used to improve the estimate of the average hop size. Based on Grey wolf algorithm, two

algorithms are proposed. The first algorithm refines the second phase of DV-Hop by

obtaining refined average hop size. The second algorithm first applies grey wolf algorithm

and then weighted approach is applied to get better approximation of average hop sizes and

to consider the impact of every beacon. The simulation results prove that two algorithms

perform better than previous DV-Hop. The localization error is reduced by almost 10% by

applying grey wolf algorithm in second phase of DV-Hop.
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