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Abstract Transmission Control Protocol (TCP) provides connection oriented and reliable
transport layer services. Mobile Adhoc Networks (MANETSs) are autonomous and
infrastructure less wireless networks. A significant amount of performance degradation is
found when TCP is used with the MANETS as compared to the wired networks. TCP suits
well with the wired networks, where majority of the packet losses are due to network
congestion. MANETs have various other issues like transmission errors, dynamic
topologies, link layer contentions. Transmission errors or contention issues are responsible
for channel losses. Dynamic topologies are responsible for route failure losses. This review
focuses on discussion of traditional TCP variants and various losses in MANETs. TCP
variants for MANETSs are explained which are classified into cross-layer approaches and
layered approaches. A review of a set of TCP variants based on loss handling approach is
given according to loss differentiation, loss prediction and loss avoidance approaches. The
main purpose of this review is to define existing issues and future directions for
improvement of TCP for MANETS.
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1 Introduction

Transmission Control Protocol (TCP) is one of the most widely deployed transport layer
protocols of TCP/IP protocol suite. Data link layer cares of node to node delivery; network
layer cares of source to destination delivery where the transport layer cares of end to end
delivery. TCP ensures delivery between two processes running on two different commu-
nicating end devices. TCP has three way handshaking mechanism for connection man-
agement. As a part of connection oriented service, it supports stream communication and
full duplex communication. Stream communication ensures that the delivery is exactly in
the same order in which the data was sent. Full duplex communication facilitates bidi-
rectional communication in a single TCP connection. TCP ensures reliable communication
with congestion control, flow control and error control. Congestion control restricts the
transmission rate as per the level of congestion in the network. Flow control restricts the
transmission rate as per the capacity of the receiver. Error control uses acknowledgement
based retransmissions to handle lost, corrupted or discarded packets [1, 2].

In recent years, wireless networks have became very popular because of freedom from
physical connections. Mobile Adhoc Networks (MANETS) are wireless networks too. They
support device mobility so that users can continue communication while changing their
locations. They are adhoc networks as they have no permanent and fixed infrastructures in
terms of internetworking devices like routes, access points etc. MANETSs can be used to
form networks on temporary basis when permanent setup is either not required or not
feasible like at disaster recovery camps. MANETS can also be used to form temporary
networks at small places such as cafeterias and conferences. A MANET can be formed by a
set of devices connected with each other through their wireless transmission ranges only.
Every device plays two roles; as a communicating device as well as a forwarding device.
Mobility keeps the network topology dynamic; frequently changing which makes routing
difficult [3, 4].

TCP was initially introduced for the wired networks where network congestion is the
primary cause of packet losses. TCP works on the assumptions which are suitable for wired
networks only. Wired networks have less chances of packet losses due to other issues like
transmission errors and route failures as compared to the network congestion. TCP mainly
focuses on congestion control and considers any packet loss as a cause of network con-
gestion only. Subsequently, it reduces the transmission rate to avoid further network
congestion. TCP’s default interpretation of any packet loss as a cause of network con-
gestion suits well with the wired networks but not with the wireless networks. Broadcast
nature of wireless networks often causes packet losses due to transmission errors and
contention issues. As MANETS support dynamic topology, device mobility and network
partitions may loss packets due to route failures. TCP’s inability of differentiating losses
and to act accordingly degrades overall performance. Many approaches have been pro-
posed for performance improvement of TCP when used with MANETs [5-7].

This review focuses on exploring the challenges while using TCP with MANETS. This
review discusses various TCP variants which have been proposed so far. This review is
organized as follows. Section 2 discusses basis of TCP and various traditional TCP vari-
ants. These variants are classified based on the approach of handling congestion. Reactive
and proactive TCP variants are explained. Section 3 discusses various losses which affect
TCP’s performance. TCP variants for MANETS are classified into cross layered and lay-
ered approaches. Section 4 discusses TCP variants based on cross layered approaches
according to the losses they handle. Section 5 discusses TCP variants based on layered
approaches according to the losses they handle. Section 6 discusses recent TCP variants
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based on the way they handle losses. Loss differentiation, loss prediction and loss
avoidance based TCP variants are explained. Section 7 is for simulation. Sections 8 and 9
are conclusions and future directions. TCP is a byte oriented protocol. In this paper Packet
term is used to refer to a TCP segment for easier understanding.

2 Traditional TCP Variants
2.1 TCP

Transmission Control Protocol (TCP) acts as a logical vehicle to transfer data between two
processes running on two different devices. TCP is a byte oriented protocol which assigns a
32-bit number called byte number to each of the bytes being sent. To ensure ordered
delivery, TCP uses 32-bit number as a sequence number of every packet being sent which
is the byte number of the 1st byte inside that packet. Receiver acknowledges successful
reception of a packet by sending an ACK-Acknowledgement to the sender. An ACK
contains the 32-bit number called acknowledgement number which is set to the sequence
number of the next expected byte and so of the sequence number of the next expected
packet [1].

TCP performs congestion control, flow control and error control for reliable commu-
nication. Congestion control finds suitable transmission rate as per the level of network
congestion. Flow control finds suitable transmission rate as per the receiver’s buffer
capacity. The actual transmission rate is set to the minimum of these two values. Some
packets may get lost or corrupted due to transmission issues like attenuation, distortion,
noise etc. some packets may get discarded due to congestion. Error control identifies and
retransmits such packets based on missing acknowledgements [1].

The transmission rate and receiver rate are decided with the help of byte oriented sliding
window at sender side and receiver side respectively. Sender TCP decides the size of
Congestion Window (Cwnd) with the help of congestion control. Receiver TCP decides the
size of Receiver Window (Rwnd) for the flow control. Rwnd is the rate at which the
receiver is able to receive without overflow of at its buffers. Cwnd cares about overall
overload of the network. Rwnd cares about overload of the receiver only. Receiver sends
value of Rwnd to the sender as a part of TCP Header in an ACK. TCP sender sets the actual
Transmission windowWnd to minimum of Cwnd and Rwnd to ensure congestion control as
well as flow control [1].

Wnd = Minimum|Cwnd, Rwnd] (1)

In reality, Cwnd < Rwnd most of the time.

TCP is ACK-Clocking protocol where the rate of ACKs is used to decide the rate of
transmission. The more ACKs sender receives, the more packets it sends. The relationship
between the transmission rate and ACK rate is decided by Additive Increase Multiplicative
Decrease (AIMD) scheme of Standard TCP. Many variants have been proposed which
modify AIMD scheme for performance improvements [1].

2.2 AIMD Scheme

TCP is based on Additive Increase Multiplicative Decrease (AIMD) scheme. AIMD
scheme increases or decreases transmission rate as per the level of network congestion.

@ Springer



1794 H. K. Molia, A. D. Kothari

AIMD has three phases: Slow Start to increase transmission rate exponentially, Congestion
Avoidance to increase transmission rate linearly. Congestion Detection and Recovery to
reduce transmission rate with a predefined factor [I1, 2].

2.2.1 Slow Start

TCP sender enters into the 1st phase of AIMD scheme called Slow Start after connection
establishment. It sets initial value of Cwnd to 1 or 2 packets only. The main purpose of
starting with a small value of Cwnd is to avoid sudden overwhelming of a network without
analyzing present status of congestion. TCP increases Cwnd by 1 after receiving every
ACK successfully. As Cwnd is increased with every ACK, on the successful completion of
each round of transmission (after transmitting entire Wnd successfully), Cwnd becomes
double. Thus Slow Start phase shows exponential growth of transmission rate as trans-
mission rate depends on Cwnd. Slow Start Threshold (SSThresh) restricts the exponential
growth. Once Cwnd reaches SSThresh, TCP sender enters into the next phase of AIMD
scheme called Congestion Avoidance [1, 2, 8].

2.2.2 Congestion Avoidance

Just like Slow Start phase, Congestion Avoidance phase increases the transmission rate but
less aggressively. TCP increases Cwnd linearly rather than exponentially. TCP increases
Cwnd by 1 after completion of every round of transmission, after every Round Trip Time
(RTT) rather than after every ACK. The main purpose of moving from Slow Start phase to
Congestion Avoidance phase is to keep increasing transmission rate slowly [1, 2, 8].

2.2.3 Congestion Detection and Recovery

TCP predicates network congestion using Retransmission Time Out (RTO). After sending
a few packets of total size equal to of Wnd, TCP waits for ACK, maximum for the duration
of RTO. If TCP does not receive ACK within time, RTO time out occurs which is
considered as an indication for loss of all or few of the transmitted packets due to network
congestion. On RTO time out, TCP immediately comes out of Slow Start or Congestion
Avoidance phase and Congestion Detection and Recovery phase is started. As RTO time
out occurs due to unavailability of a required ACK, it is assumed that the ACK was not
available either due to any of the following reasons [1, 2, 8].

e The packet was discarded by an intermediate device due to network congestion so it
could not reach to the receiver.

e The packet was received successfully but was corrupted and so discarded by the
receiver.

e The packet was received successfully. Receiver had sent ACK also. But sender could
not receive ACK because of loss,corruption or discard of ACK during transmission.

In either of the above cases, the undelivered packets need to be retransmitted. TCP sets
SSThresh to half of the current Cwnd, Cwnd to the initial size and enters into Slow Start
phase. Based on the current Cwnd, packets are retransmitted [1, 2, 8]. AIMD scheme is
shown in Fig. 1.

The AIMD phases discussed in this section are of standard TCP. Many TCP variants
have been proposed by introducing modifications of phases or introducing new phases
[1, 2, 8].
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Fig. 1 TCP’s AIMD scheme [1]

TCP variants can be classified based on the approach of handling network congestion.
Reactive TCP variants are based on congestion detection and recovery approach. These
variants use information of packet losses for decision making. RTT is less accurate as only
one timer is maintained per TCP connection. Proactive TCP variants are less aggressive in
terms of increasing transmission rate as their approach is Congestion Avoidance. These
variants use information of packet delays for decision making. RTT estimation is more
accurate as fine grained timers are used to track delay for every sent packet [1, 2, 8].

2.3 Reactive TCP Variants
2.3.1 TCP Tahoe

TCP Tahoe [9, 10] follows standard TCP’s AIMD scheme. Tahoe introduces Fast
Retransmission phase to detect congestion even before RTO timeout. A receiver may
receive packets out of order. With every out of order received packet, receiver sends an
ACK requesting for a packet which was expected as per the order. Sender counts how
many such ACKs are received asking for the same packet already transmitted earlier.
These ACKs are called duplicate ACKs as they are sent to request for a same packet more
than once. When the count of duplicate ACKs becomes 3, Tahoe activates Fast Retrans-
mission phase. Fast Retransmission retransmits the requested packet, sets SSThresh to half
of Cwnd, sets Cwnd to initial size and switches to the Slow Start phase. Tahoe takes the
same action when either 3 duplicate ACKs are received or RTO timeout occurs. Tahoe
introduces Fast Retransmission phase to detect congestion earlier than RTO timeout event.

2.3.2 TCP Reno

TCP Reno [9, 10] modifies Tahoe by differentiating both the events: 3 duplicate ACKs
and RTO time out. Reno considers arrival of 3 duplicate ACKs as a weaker possibility of
congestion by assuming that the network is not completely congested as the receiver is still
receiving packets for which duplicate ACKs are generated. At the same time, RTO time
out event is considered as a stronger possibility of congestion. For both the events, it is
necessary to reduce transmission rate but not equally. Tahoe reduces the transmission rate
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completely and moves to the Slow Start phase for both of these events. Reno reduces
transmission rate completely when RTO time out occurs but halves transmission rate when
receives 3 duplicate ACKs. Reno introduces an another phase called Fast Recovery. Reno
moves to the Slow Start phase when RTO timeout occurs and to the Fast Recovery phase
when it receives 3 duplicate ACKs.

On detection of 3 duplicate ACKs, Reno sets SSThresh to half of the current Cwnd. It
sets Cwnd to SSThresh 4+ 3. Here 3 is added as 3 packets left the network for which
receiver has generated duplicate ACKs. Reno retransmits the oldest unacknowledged
packet corresponding to the set of 3 duplicate ACKs and enters into the Fast Recovery
phase. Reno exits Fast Recovery phase and moves to the Congestion Avoidance phase only
once it receives an ACK, acknowledging a few or all of the sent packets. During Fast
Recovery phase, for every duplicate ACK, Reno increments Cwnd by 1 and sends a new
packet. On exit of Fast Recovery phase, Reno sets Cwnd to the value of SSTresh to start
with the Congestion Avoidance phase. The main purpose of staying in Fast Recovery phase
is to ensure that the packets are started being received properly.

2.3.3 TCP NewReno

TCP NewReno [11] improves TCP Reno. At any moment there will be a set of packets in
transmission called outstanding packets. Any ACK which acknowledges only few of the
outstanding packets is called a partial ACK. A Full ACK acknowledges all the outstanding
packets. Reno comes out of the Fast Recovery phase either on receiving a partial ACK or a
full ACK. There is a possibility that more than one packet from the same set of outstanding
packets are not received. Reno performs well if there is one packet loss per set of out-
standing packets. In other cases, it behaves almost similar to the Tahoe. Once Reno enters
Fast Recovery phase, it waits for a fresh ACK (partial or full but no duplicate). In a set of
outstanding packets, corresponding to the 3 duplicate ACKs of the 1st oldest undelivered
packet, Reno enters into the Fast Recovery phase. For rest of the undelivered packets of the
same set of outstanding packets, RTO timeous may occur where Reno behaves just like
Tahoe by switching to the Slow Start phase. In some cases, Reno reduces the transmission
rate more than once corresponding to the multiple undelivered packets belonging to the
same set of outstanding packets.

NewReno modifies the Fast Recovery phase by processing all the duplicate ACKs. For
Ist set of 3 duplicate ACKs, it retransmits the requested packet. For every next duplicate
ACK, it retransmits the requested packet immediately without waiting for two more
duplicate ACKs. With every retransmission, retransmission timer is reset so earlier RTO
time outs can be avoided. NewReno keeps incrementing Cwnd by 1 with every duplicate
ACK to send fresh packets in addition of the retransmissions until all the outstanding
packets are acknowledged. NewReno switches to the Congestion Avoidance phase once all
the outstanding packets are acknowledged.

NewReno avoids unnecessary reduction of the transmission rate for the undelivered
packets belonging to the same set of outstanding packets. A set of undelivered packets
make holes in the ordered sequence of packets. Fast Recovery phase is used for the hole
filling purpose. As NewReno avoids unnecessary RTO timeouts, it maintains high
throughput when multiple holes with multiple packets within some holes need to be
processed. NewReno outperforms Reno specially in the cases of high error rates.

@ Springer



TCP Variants for Mobile Adhoc Networks: Challenges... 1797

2.4 Proactive TCP Variants
2.4.1 TCP Vegas

TCP Vegas [12] is a proactive TCP variant which uses packet delay information to
predicate congestion. Vegas is less aggressive as compared to NewReno as far as increase
in transmission rate is concerned. The main goal of Vegas is to identify the difference
between the expected throughput and the actual throughput to increase or decrease current
transmission rate linearly. Standard TCP increases transmission rate until queue overflows
and discards a few packets causing network congestion. Subsequently standard TCP
detects congestion and reduces the transmission rate. Vegas reduces the transmission rate
before such event occurs to avoid congestion. Vegas introduces five novel techniques as
explained below.

Accurate RTT Calculation

Vegas tries to avoid congestion by detecting it at an incipient stage by analyzing the
increasing RTT values. Tahoe, Reno and NewReno estimate one value of RTT per
transmission window. Vegas estimates RTT per packet. Thus RTT estimation is more
accurate in Vegas. Vegas records system time for each of the sent packets. On receiving an
ACK, RTT is calculated using the current time and recorded sent time. Accurate RTT
calculation is used to calculate time out value more precisely. At the same time, the
decision of retransmission can be done in more timely way.

Retransmission Requirement Detection

On receiving a duplicate ACK, Vegas checks whether the difference between the current
time and the recorded sent time for the requested packet is more than time out value or not.
If it is so then Vegas retransmits the requested packet immediately without waiting for
additional duplicate ACKSs. This helps to avoid timeout for the cases when either the
window is too small or the losses are too high and so three duplicate ACKs could not be
generated or received.

On receiving a non-duplicate ACK which acknowledges a few (not all) outstanding
packets and is 1st or 2nd ACK after a retransmission, Vegas checks whether the difference
between the current time and the recorded sent time for the next outstanding packet is more
than time out value or not. If it is so then Vegas retransmits the next outstanding packet
immediately without waiting for any duplicate ACKs. This helps to detect any further lost
packet without waiting for the duplicate ACKs.

Window Size Policy

Vegas decreases the transmission rate by decreasing window size when the losses are
happened at the current transmission rate. Any loss which is belonging to previous
transmission rate is not considered for window size reduction. Vegas decreases trans-
mission rate if the lost packet was sent after most recent window decrease.

Congestion Avoidance Mechanism

Vegas finds the difference between the expected throughput and the actual throughput. The
number of bytes in transmission is called extra bytes. Vegas tries to maintain sufficient
amount of extra bytes which neither cause network congestion nor under utilise available
bandwidth. Expected throughput is calculated with reference of BaseRTT which is
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minimum of all RTTs so far. Actual throughput is calculated with reference of most recent
RTT. Window_Size is the size of Cwnd.

Exp_Throughput = Window _Size/BaseRTT
Act_Throughput = RTT _Len/RTT
Diff = Exp_Throughput — Act_Throughput

—~ o~
A~ W
=

When Diff is negative, BaseRTT is set to most recent RTT. Two thresholds « and f§ set
the lower and upper boundaries of extra bytes respectively. If Diff <o, Cwnd is incre-
mented by 1. If Diff > 5, Cwnd is decremented by 1. No change is made if o < Diff < f. In
real life implementations, o and f§ define minimum and maximum number of required extra
buffers to hold extra bytes.

Modified Slow Start Mechanism

Reno’s Slow Start is very aggressive as it increases transmission rate exponentially every
RTT. To avoid all of sudden congestion during Slow Start phase and to calculate the actual
throughput efficiently, Vegas increases transmission rate exponentially every other RTT.
When actual throughput falls below threshold y, Vegas moves to the Congestion Avoid-
ance mechanism.

3 TCP Variants for MANETSs
3.1 TCP and Losses
3.1.1 TCP’s Limitation

TCP ensures reliable delivery with its congestion control, flow control and error control
mechanisms. These mechanisms work with the assumptions suitable for the wired net-
works only. Wired networks have fixed topologies with dedicated networking devices like
routers to manage the traffic. When a router is not able to handle more packets, it starts
discarding. Such situation is called network congestion. Wired networks get majority of the
packet losses due to congestion as compared to the losses due to link failures or
lost/corrupted packets due to transmission errors. TCP is able to decide the most suit-
able transmission rate, accordance with the present status of congestion. As TCP was
initially introduced for wired network, it strongly follows this assumption by considering
any loss as a cause of network congestion only. TCP reduces transmission rate and re-
transmit lost packets on noticing congestion as discussed in section TCP variants. When
TCP is deployed in wireless networks, a significant amount of performance degradation is
found as it is not able to adopt itself with the issues related with wireless communications.
Wireless networks are different than wired networks because of broadcast nature and
inherent wireless transmission issues. Moreover wireless networks like MANETS support
dynamic topologies with no dedicated networking devices. Wireless networks often suffer
from packet losses or corrupted packets due to wireless transmission issues like attenua-
tion, noise, fading, contention. Mobility of devices makes routing difficult and may par-
titions a network into two or more halves causing losses due to route failures. TCP’s
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inability to differentiate various losses to act accordingly is one of the most critical issues
of wireless networks specially of MANETs [5-7].

3.1.2 Route Failure Losses

Device mobility changes the network topology continuously, making it dynamic. Battery
powered devices may shutdown all of sudden. Some devices may leave network all of
sudden. Routing in dynamic topology is always challenging as it experiences frequent
route failures. Routing protocols such as AODV, DSR are specially written to deal with
dynamic routing in MANETSs. Dynamic topology may partition a network into two or more
halves where no devices from one half could communicate with any other device in any
other halves due to limited transmission ranges. A route gets failed when a device playing a
role of a forwarding device moves out of range or shutdown. Subsequently, a new route
needs to be reestablished. Packets are often discarded by a device causing a route fail. As it
takes time to reestablish a new route, TCP sender may experience a retransmission time
out. Subsequently, TCP sender reduces the transmission rate completely and retransmits
the oldest unacknowledged packet. In case of a route failure, TCP sender should neither
reduce the transmission rate nor retransmit immediately. Once a new route is reestablished,
it should retransmit the lost packets [5-7].

3.1.3 Congestion Losses

MANETSs may experience network congestion due to limited bandwidth and buffering
capabilities. A device starts discarding packets when it is running out of space while
buffering packets. TCP performs congestion control through its AIMD scheme to reduce
transmission rate to cope up with congestion. TCP variants for MANETS introduce dif-
ferent ways for detection of congestion [5-7].

3.1.4 Channel Losses and Contention Issues

Wireless transmission is more vulnerable to transmission impairments like attenuation,
noise, distortion, interference which loss/corrupt packets. Lost packets never reach to the
receiver while corrupted packets are discarded by the receiver which are not possible to
recover. TCP works at the transport layer from where it can not predicate possibility of
such losses accurately. Lost or corrupted packets generate holes in the receiver window.
Subsequently, TCP receiver sends duplicate acknowledgements asking such packets.
Duplicate acknowledgements are considered as weak possibility of congestion for which
TCP sender starts retransmission after reducing transmission rate by half and switches to
the Congestion Avoidance phase. When packets are not lost due to congestion, unnecessary
reduction of transmission rate degrades overall performance by under utilizing available
bandwidth [5-7].

Most of the wireless networks implement contention based protocols for allowing
devices to communicate. Packets may get lost or corrupted because of various contention
based issues like collision, hidden and exposed station problems. At the transport layer
such issues could be classified as inter-flow interference and intra-flow interference. Inter-
flow interference refers to the packet loss issue across multiple TCP flow. Intra-flow
interference refers to the packet loss issue inside a single TCP flow—Issues between Data
flow and ACK flow or in a bidirectional data flow [5-7].
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3.2 Classification

TCP variants for MANETS can be classified according to the level of network awareness
into cross layered approaches and layered approaches. A cross layered approach based
TCP receives information for decision making from any of the lower layers like network
layer or link layer. TCP uses this information without trying to collect it itself. These
variants are complex to write as well as violate layer independency concept of TCP/IP
protocol suite. These variants are based on Green box concept as the network communi-
cates its state to the transport layer for decision making purpose. A layered approach based
TCP collects information for decision making itself without being dependent on any of the
lower layers. These variants are simple to write as implementation for layer interaction is
not required. These variants are based on Black box concept as there is no information of
network state is provided other than collected from congestion control statistics. Grey box
concept based TCP variants estimate bandwidth related statistics from the transport layer
itself. TCP Vegas is based on grey box concept. The following sections discuss TCP
variants based on these approaches as well as based on what type of losses they try to
handle [5-7].

4 Cross Layered Approaches
4.1 Introduction

TCP is a transport layer protocol ensuring connection oriented and reliable end to end
delivery. TCP is not able to get present status of a network other than of congestion.
Network layer gets information about route failures. Link layer gets information about
transmission errors and contention issues. As discussed in Sect. 1, TCP’s performance is
degraded due to inability of differentiating various losses to act accordingly. TCP considers
any loss as a cause of congestion because of the unavailability of information regarding
other type of losses happened at lower layers. Cross Layered approach based TCP allows a
lower layer to provide decision making information to the TCP working at transport layer.
Route failure losses could be handled by interaction between Network layer and TCP.
Channel losses and contention issues are handled by interaction between Link layer and
TCP. This section discusses cross layered TCP variants based on type of issues they
handle.

4.2 Route Failures Losses
4.2.1 TCP-F

TCP-F [13] (TCP-Feedback) informs a sender about a route failure with RFN-Route
Failure Notification message. On receiving RFN, TCP enters into the snooze state to pause
further transmission until a failed route is restored or a new route is established. It
invalidates all timers to avoid unnecessary timeouts. It stores values of other variables like
window size and retransmission timer to resume transmission later on. It starts RFT-Route
Failure Timer to wait for restoration of a route. TCP sender remains in snooze state until it
is notified for a new route with Route Reestablishment Notification (RRN). The main
motive is to avoid time out, reduction of transmission rate and retransmission by invoking
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congestion control mechanisms unnecessarily. An intermediate node which detects a route
failure sends RFN back to the actual sender. If any intermediate node which receives RFN
has an alternate route to reach to the receiver, it may discard RFN and starts routing on a
new route. In absence of availability of any alternate route, RFN reaches to the sender.

On receiving a RRN, TCP sender enters into the active state by flushing all the unac-
knowledged packets. The main reason is to avoid keep waiting for those packets which
were most likely discarded due to a route failure. These packets are retransmitted as per the
size of sender window. Value of RFT is set to the worst time required for a route
reestablishment so far. RFT prevents sender from being in snooze state indefinitely. On
expiration of RFT, TCP retransmits all the unacknowledged packets by moving from
snooze state to the active state which may generate a large burst of traffic all of sudden. On
receiving RRN, TCP resumes transmission with its old state which may not be suitable for
the new route. An intermediate node which has earlier sent a RFN may send a RRN on
availability of the same or alternate route. It discards all future RRN messages for the same
connection.

4.2.2 TCP-ELFN

TCP-ELFN [14] (TCP with Explicit Link Failure Notification) informs sender about a
route failure to avoid unnecessary activation of congestion control. ELFN could be
implemented with “Host Unreachable” message of [CMP-Internet Control Message Pro-
tocol. If routing protocol supports route failure messages, the information of “Host
Unreachable” message could be piggybacked with them. To identify a connection,
information of sender and receiver (addresses and ports) and TCP sequence number are
piggybacked. On receiving ELFN, TCP sender enters into the standby mode by pausing
further transmission. TCP sender remains in standby mode until a failed route is restored or
a new route is established. TCP sender periodically checks for availability of a route using
a probe packet. On receiving an ACK for a probe packet, it comes out of standby mode and
continues transmission.

TCP with ELFN is evaluated based on different values of the interval between probe
packets, modification of RTO and Cwnd (once a new route is found) and different types of
packets being used for probing purpose. If the interval between probe packets is very large
then it may delay transmission even if a route is already available. If the interval between
probe packets is very small then it may start sending probe packets before a route is
available causing further issues like congestion. So the interval should be chosen carefully
as a function of RTT. On route restoration, TCP can resume with its old state or modify
value of Cwnd and/or RTO to their default values to start exploring a new route. It has been
seen that modifying RTO to its default value improves throughput. A probe packet could
be an oldest unacknowledged packet or a new packet. It has been seen that there is no
significant effect on selecting either of these for the probing purpose.

4.2.3 TCP-BuS

TCP-BuS [15] (TCP-Buffering capability and Sequencing information) uses Associativ-
ity-Based Routing (ABR). When a node moves out of the radio ranges of the neighboring
nodes, a route failure occurs. A node detecting a route failure has to initiate a route
reconstruction process to discover a partial route to reach to the destination. A node sends a
Localized Query (LQ) message for this purpose. Any downward node uses Route
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Notification (RN) message to invalidate old partial path. The destination replies to LQ
message with a REPLY message. It has four mechanisms discussed below.

Explicit Notifications

Pivot node (PN) detects a route failure being an intermediate node in a route from sender to
the receiver. A route failure causes receiver unreachable from the PN. PN sends Explicit
Route Disconnection Notification (ERDN) message to the sender to inform about a route
failure. On receiving ERDN, TCP enters into standby mode (to pause transmission). PN
sends Explicit Route Successful Notification (ERSN) message to the sender to inform
about restoration of a route. On receiving ERSN, TCP enters into active mode (to resume
transmission).

Extended Timers

There are two categories of affected packets due to a route failure. A few packets may get
discarded by the node which caused a route failure. A few packets may get buffered at
intermediate nodes between a sender and a PN. TCP sender experiences timeout for these
packets due to unavailability of acknowledgements. To avoid unnecessary activation of
timeout based congestion control, TCP BuS doubles RTO value on receiving ERDN
message. By this time, TCP expects restoration of a new route.

Selective Retransmissions

There may be a few packets which are lost on a route from sender to the PN. These packets
are not retransmitted until timeout occurs. Selective retransmission identifies such packets
(lost on a route from sender to PN) and retransmit to PN for the buffering purpose. Once a
route between PN and receiver is restored, PN starts transmission of buffered packets. The
main purpose of this mechanism is to maintain ordered sequence of buffered packets at PN
with retransmission of missing packets if any.

Avoid Unnecessary Fast Retransmissions

On a route failure, some packets may get lost on a route from PN to the receiver. Once a
partial route between PN and receiver is restored, PN starts sending buffered packets.
Buffered packets are probably next to the lost packets (lost on a route from PN to the
receiver). Receiver may notice a hole of missing packets for which it sends duplicate
acknowledgements. Sender may react to these duplicate acknowledgements by activation
of fast retransmissions unnecessarily. TCP-BuS avoids fast retransmissions by sending
information of lost packets to the sender. ERDN keeps information about the highest
sequence number of a buffered packet at PN. ERSN keeps information about the highest
sequence number of received packet at receiver. Sender can find the missing sequence of
packets from this information and retransmit without waiting for duplicate
acknowledgements.

Incoming_SEQ refers to the sequence number of incoming packet. ERDN has an
argument ERDN_GEN_SEQ which is set to the packet which source will need to send
once a route is restored (Next packet from the highest in-order received packet at PN).
ERSN has an argument LAST_ACK which is set to the sequence number of the highest in-
order received packet at the destination. For example, if source has sent packets up to 14
and it receives ERDN(10), packets from 10 to 14 are considered as buffered at PN after
detection of a route failure. On receiving ERSN(6), Source assumes that the packets 7, 8
and 9 are lost due to route failure. Subsequently source retransmits these packets and
continues with transmission of fresh packets from 15 onwards. Meanwhile, packets from
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Fig. 2 TCP-BuS [15]

10 to 14 are transmitted by PN. So this way, TCP BuS avoids unnecessary activation of fast
retransmission due to out of order delivery of packets. The process is shown in Fig. 2 [15].

4.2.4 Adhoc TCP

ATCP [16] (Adhoc TCP) is a thin layer between IP and TCP. ATCP detects route failures
with ICMP messages and congestion with Explicit Congestion Notification (ECN).
Duplicate acknowledgements and RTO timeouts are used to detect channel losses. ATCP is
a sender side modification which introduces four states: Normal, Disconnected, Congested
and Loss.

In Normal state, TCP follows AIMD scheme. ATCP monitors network state based on
ICMP messages and ECN marked packets. Disconnected state is related with ICMP
message. Congested state is related with ECN marked packet. Loss state is related with
duplicate acknowledgements and RTO timeout.

In Disconnected state, ATCP puts TCP into persist mode to pause transmission until a
route is restored. TCP continuously probe the network and ATCP switches to the normal
state once a probe packet is acknowledged. On route restoration, TCP does not continue
transmission with the old transmission rate but Cwnd is set to its initial size to explore new
route to find most appropriate transmission rate. In Congested state, ATCP allows TCP to
follow AIMD based congestion control. ATCP returns to the normal state on transmitting a
packet.

When ATCP finds a third duplicate acknowledgement for a packet or when RTO timer
is about to timeout, it puts TCP into persist mode and switches to Loss state. The reason is
to avoid activation of congestion control. TCP retransmits all unacknowledged packets. On
receiving a new acknowledgement, ATCP switches TCP to Normal state. The main 7
events of TCP Adhoc are listed below.
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The process is shown in Fig. 3 [16].
4.2.5 TCP-ECIA

TCP-ECIA [17] (TCP-Exploiting Cross-layer Information Awareness) uses ELFN mes-
sages to handle route failures. On receiving an ELFN message, TCP sender enters into the
freeze state. It is obvious that an intermediate node experiencing a route failure may discard a
few data packets or ACK packets. The lost packets may cause timeouts at the TCP sender once
it comes out of the freeze state after route restoration. TCP-ECIA tries to avoid these timeouts
with its two mechanisms. Any intermediate node experiencing a route failure uses any of
these two mechanisms based on type of packets it needs to discard. EPLN-Early Packet Loss
Notification is used to inform TCP sender about discard of data packets. BEAD Best Effort
ACK Delivery message is used to inform TCP receiver about discard of ACK packets. EPLN
and BEAD messages contain sequence numbers of all dropped packets. On receiving an
EPLN message, TCP sender disables retransmission time out timer and retransmits discarded
packets with lowest sequence number on route restoration. On receiving a BEAD message,
TCP receiver resends an ACK with highest sequence number on route restoration. DSR
protocol is used to implement EPLN and BEAD mechanisms.

The process of Early Packet Loss Notification is shown in Fig. 4 [17]. A node A starts a
TCP connection with node E using the route A—-B—C—-D-E. On failure of link C-D, C
selects alternate route C—-F—G—E. After a while, node F detects a link F-G is fail. As there
is no alternate route can be found, F has to drop the packets. F sends a message with packet
drop information to C, Msgl (F, C). As this message is not from the TCP sender, Node C
finds route to the TCP sender (A) from its cache to send Msg2 (F,C) (It can be considered
as Msg2 (C,A) too) to A.

Disconnected

o (6)

M

Connected

3)
(@) (5

Congested Loss
 Congested_> @

4)

)

Fig. 3 Adhoc TCP [16]
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Fig. 5 BEAD mechanism of TCP-ECIA [17]

The process Best Effort ACK Delivery is shown in Fig. 5 [17]. A node E sends an ACK
to node A using the route E-D-C-B—A. On failure of link C-B, C select alternate route
CIHA. On failure of link [-H, Node I sends a message to node C, Msgl (I, C). As the
Notification_Message_1 is not from the TCP sender, node C sends a message to the TCP
sender—E, Msg2(C,E). This notification is received by node D. If D finds an alternate
route to node A, it uses it to forward the ACK, otherwise sends Msg2 (C, E) to Node E.

4.2.6 Comparison

Table 1 compares Cross Layered TCP variants to handle route failure losses.
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Table 1 Cross layered TCP variants—route failure losses

Sr. TCP variant Features Limitations
1 TCP-F [13] Explicit Notifications. Non-probing Expiration of route failure timer causes
Feedback method so it does not keep checking retransmission of all
for a new route. An intermediate unacknowledged packets which may
node may select alternate route generate issues like contention,
congestion, sudden traffic burst
2 TCP-ELEN [14]  Explicit Notifications. Probing based There is no Route reestablishment
Explicit Link method so it may find a new route process. Sender has to initiate route
Failure earlier than of TCP-F. There is no reestablishment by periodic probing
Notification Route reestablishment process, so the network
Intermediate nodes do not select
alternate route
3 TCP-BuS [15] Explicit Notifications. As a part of Not suitable for a network with
Buffering Route reestablishment process, frequent route failures due to
capability and Intermediate node may select complexity
Sequencing alternate route. Selective
information transmissions and extended timeout
mechanisms avoid unnecessary
congestion control during a route
failure. Avoids fast retransmissions
by keeping records of lost packets
during a route failure
4 Adhoc TCP [16] Combination of ICMP and ECN. ICMP There is no Route reestablishment

based notification is used to identify
route failure. ECN is used to identify

process. Sender has to initiate route
reestablishment by periodic probing

congestion. 3 Duplicate ACKs and the network
RTO events identify channel loss. A
new route is explored to find

suitable transmission rate

5  TCP-ECIA [17]
Exploiting Cross-

ELFN informs only sender about a
route failure. While ECIA informs

Information of packets to be
retransmitted is provided to sender

layer sender and receiver about a route and receiver but intermediate nodes
Information failure as well as about discarded do not buffer packets
Awareness packets

4.3 Congestion Losses
4.3.1 TCP-ECN

TCP with ECN [18, 19] (Explicit Congestion Notification) uses feedback from interme-
diate nodes having Random Early Detection (RED) based routing capability. RED enabled
nodes analyze average queue length to predict future congestion. RED enabled nodes drop
packets with a predefined probability based on the current value of its queue. Two
thresholds Min,.; and Max,. are set for a queue. Packets are dropped with a predefined
probability if average of queue length value is between Min,.; and Max,.;. Packets are not
dropped if average of queue length value is less than Min,,. All packets are dropped if
average of queue length value is greater than Max,;.

ECN is an extension of RED where an intermediate node marks packets instead of
dropping. Such marking is used as an explicit congestion signaling for the TCP receiver
and TCP sender. Packets are marked with a probability P if average of queue length value
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is between Min,. and Max,.. Packets are not marked if average of queue length value is
less than Min,.;. All packets are marked if average of queue length value is greater than
Max,;.

P = ((Avg — Ming;)/(Maxae; — Minger)) * Ppgax (5)

An intermediate node sets ECN bits of IP header to inform TCP receiver about future
possibility of network congestion. On receiving a packet with IP header’s ECN bits are set,
TCP receiver sets ECE Explicit Congestion notification Echo bit of TCP header of next
packet to inform TCP sender about congestion. On receiving an ECE marked packet, TCP
sender reduces the transmission rate by activation of congestion control. TCP sender
informs TCP receiver about reduction of transmission rate by setting CWR-Congestion
Window Reduce flag in next packet’s header. The rate of ECN marked packets can be used
as a parameter of congestion control mechanism. In [20], average number of ECN marked
packets is used to set receiver’s advertised window.

4.3.2 TCP-RCWE

TCP-RCWE [21] (TCP-Restricted Congestion Window Enlargement) differentiates con-
gestion loss and channel loss. RCWE uses ELFN messages to detect route failures. It
estimates network state based on variation in consecutive RTO Retransmission Timeout
values.

NetworkState = True, ifRTOpe,, < RTOoy4 (6)

NetworkState = False, ifRTOne,, > RTOoyq (7)

If current RTO is greater than previous RTO, it is considered as network congestion where
TCP continues transmission without increasing Cwnd. If current RTO is less than previous
RTO, TCP Cwnd increases Cwnd as per AIMD scheme. RCWE is a simple scheme which
tries to avoid congestion.

4.3.3 C3-TCP

C3-TCP [22] (Cross layer Congestion Control-TCP) interacts with link layer to decide suit
able transmission rate for Congestion Avoidance purpose. Every intermediate node partici
pates in the process of measuring available bandwidth and total delay from the link layer.

Bandwidth Measurement

In a wireless network, available bandwidth is shared among all the nodes which are present
in the range of sender and receiver. A node can measure available bandwidth (B=D/T) of a
link by finding time (T) to send data of size (D). Every node uses medium access mech-
anism such as Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) with
control signals like Request to Send (RTS), Clear to Send (CTS). C3 TCP uses queuing
delay, time required to acquire medium and time required for the data transmission for the
calculation of total time T.

T= Tout - Tin + Ttr (8)
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T, is the time a packet arrives at the link layer for transmission. 7, is the time a packet is
transmitted. 7,,, — T;, is the time representing queuing delay and delay for acquiring
medium. T}, is the time to transmit a packet and to receive corresponding ACK.

Delay Measurement TCP provides end-to-end delivery without having any information
about the network structure like number of hops, link status etc. Every TCP connection
works as a single data pipe between sender and receiver. TCP uses RTT to measure
forward delay (sender to receiver) and backward delay (delay in receiving an ACK) within
a pipe. In C? TCP, every node measures single hop forward delay which includes time
required to acquire medium and time required for the data transmission. Figure 6 [22]
shows IEEE 802.11 medium access mechanism.

C? TCP is implemented with modification of TEEE 802.11 MAC header’s options field
to propagate estimated bandwidth and delay information from sender to the receiver.
Bend—to—ena 18 the minimum of all bandwidth values estimated by intermediate nodes as it
indicates the bandwidth of the bottleneck link. D,,s—;—cnq 1S the total of all delay values
estimated by intermediate nodes. B.,j—to—end a0d Deyg—1o—eng are sent to the TCP sender as
a part of MAC header of a TCP ACK. C3 TCP adjusts transmission rate as per the received
bandwidth delay product. Figure 7 [22] shows how C* TCP estimates bandwidth and
delay. Bab is bandwidth between A and B. Dab is delay between A and B.

4.3.4 TCP-R

TCP-R [23]is implemented with ADV-CC routing. TCP-R compares throughput and RTT
with current value of Cwnd to decide cause of a RTO time out. TCP-R is used with Adhoc
Distance Vector with Congestion Control (ADV-CC). ADV-CC calculates queue size to
determine network congestion state. Every node shares such state with its neighbors and
with the source. This information helps sender in controlling the transmission rate. The
detail arithmetic is given in [23].

4.3.5 Comparison
Table 2 compares Cross Layered TCP variants to handle congestion losses.

Packet Arrival Time Transmission Begin Time Transmission End Time
Tin Tout Tend
I I |

Source

Backoff | I RTS | Data |

Destination
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|
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|
|
|
|
|
|
|
|
|
|
[ » '
L
|
|
'

o Td

Ttr
I
‘Queuing + Medium Access Delay

Actual Transmission Time

Fig. 6 IEEE 802.11 medium access mechanism [22]
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Calculate Bab Calculate Bbe Calculate Bed Here, B is Min Bandwidth
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Fig. 7 C3 TCP [22]

Table 2 Cross layered TCP variants—congestion losses

Sr.  TCP variant Features Limitations
1 TCP-ECN Intermediate nodes help in avoiding Not suitable for high mobility based
[18, 19] congestion. The rate of ECN marked networks where intermediate nodes
Explicit packets can be used as a parameter of are changed frequently
Congestion congestion control
Notification
2 TCP-RCWE Increase and Decrease of RTO value is ELFN messages are used to handle
[21] used to decide transmission rate. route failures. There is no
Restricted Implementation is easy and less improvement over TCP-ELFN as far
Congestion complex as only route failures are concerned
Window
Enlargement
3 CPTCP [22] It estimates end-to-end bandwidth delay (C® TCP is complex to implement for
Cross layer product from the data link layer. This wireless adhoc networks. It also
Congestion variant estimates transmission rate needs to be implemented at every
Control more accurately intermediate node for bandwidth
delay calculation
4 TCP-R [23] TCP is used with AODV’s variant Difficult to implement as routing
RTT based TCP Adhoc Distance Vector with protocol needs to be modified at
Congestion Control (ADV-CC) every node

4.4 Channel Losses and Contention Issues
44.1 TCTC

TCTC [24] (TCP based ConTention Control) addresses the issue of intra-flow contention.
Intra-flow contention refers to the self interference within a TCP connection. Self inter-
ference refers to the collisions across the packets belonging to the same TCP connection.
Self interference could be any of the following three categories.

e Self interference between TCP Packets (Data and ACK).
e Self interference between IEEE 802.11 Control Packets (RTS and CTS).
e Self interference between TCP Packets and IEEE 802.11 Control Packets.

Nodes participating in a single TCP connection may compete for the channel access at a
time. In such situations, a few packets might collide and lost. TCP’s intra-flow stability
refers to the transmission of limited number of packets which could be properly handled by
the network. Large number of outstanding packets may cause intra-flow contention issues.
Less number of outstanding packets may underutilize the available bandwidth. Intra-flow
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contention increases link layer retransmissions which increases retransmission by TCP due
to timeouts. TCTC finds the most suitable number of outstanding packets based on
available bandwidth and level of contention. The problem is shown in Fig. 8 [24].

Contention Window

TCTC is a receiver side modification to probe the network periodically for finding level of
contention in the form of contention delay. TCP receiver monitors the actual throughput
and level of contention during a probe period. TCP receiver maintains Contention Window
(Ctwnd) to represent level of contention in terms of number of packets. TCP receiver sends
minimum of Ctwnd (Preferred transmission rate based on level of contention) and Rwnd
(Preferred transmission rate based on receiver’s buffering capacity) to the TCP sender as a
part of TCP header’s WindowSize field. TCP Sender sets the transmission rate to the
minimum of WindowSize and Cwnd (preferred transmission rate based on network’s
congestion). TCTC’s probe process has four stages.

Fast Probe

Fast Probe is similar to the Slow Start phase of TCP. TCTC starts with this phase where
Ctwnd is increased exponentially (doubles every probe interval). TCTC switches to this
phase after recovering from severe contention phase.

Slow Probe

TCTC enters into the Slow Probe phase on detection of decreasing throughput and
decreasing contention delay as compared to the previous probe interval. This phase
increases Ctwnd linearly (1 packet every probe interval).

Light Contention

TCTC enters into the Light Contention phase on detection of increasing throughput as well
as increasing contention delay compared to the previous probe interval. This phase
decreases Ctwnd linearly (1 packet every probe interval).

Severe Contention

TCTC enters into the Severe Contention phase on detection of decreasing throughput but
increasing contention delay as compared to the previous probe interval. This phase sets
Ctwnd to its initial size of (2 packets). The selection of probe interval is a critical task. If it
is too large, TCTC will not able to adopt network changes quickly. If it is too small, TCTC
will keep changing Ctwnd frequently. Probe interval of one RTT is suitable for Ctwnd’s
stable measurement.

‘ 2 - High MAC Contention

‘ 1 - Network Overload %—‘ 3 - Link Layer Retransmission ‘
A I
' |
| Y

‘ 5 - TCP Retransmission |<— —| 4 - TCP Timeout / Fast Retransmit ‘

Fig. 8 TCP Issue [24]
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4.4.2 COPAS

TCP with COPAS [25] (TCP with Contention based PAth Selection) uses two mecha-
nisms to deal with intra-flow contention. Two disjoint routes (having no common inter-
mediate nodes) are used for forward (sender to receiver—Data traffic) and reverse
(receiver to sender-ACK traffic) traffic to reduce contentions inside a single TCP con-
nection. COPAS’s dynamic contention balancing mechanism keeps changing forward and
reverse routes based on corresponding level of contention.

Route Establishment

COPAS can be implemented with any of the reactive routing protocols such as AODV,
DSR. During route establishment process, every node has to broadcast Route Request
packet (RREQ). Every node keeps record of average number of times it has to backoff
while trying to broadcast RREQ. This information helps a node to measure level of
contention in its neighborhood. Average number of backoff attempts information is
propagated along with the RREQ packet to the receiver (TCP receiver to which a route
needs to be established). Receiver has a RREQ Collection timer in which it accepts all
RREQ to find multiple routes along with their contention levels. On expiration of this
timer, Receiver selects two routes based on two criteria: Disjointness and Routes with less
contention. Receiver replies with two RREP Route Reply packets with direction flag set to
inform sender about forward and reverse routes. Disjoint routes are also useful when one of
the routes is failed. Packets could be rerouted on another route until a failed route is
restored.

Dynamic Contention Balancing

Dynamic topology may change the level of contention in any route any time. A route with
less contention may experience severe contention later on. COPAS periodically measures
contention and initiate Route Construction if corresponding route is experiencing high
contention. Sender and receiver monitor the contention status of reverse and forward route
respectively. If either of these route experiences contention beyond a threshold, it is
replaced by a newly constructed and overall less contended route.

The problem is shown in Fig. 9 [25].

4.4.3 Comparison

Table 3 compares Cross Layered TCP variants to handle channel losses and contention
issues.

Destination

. ’ — A-B-D-E - Forward
<----- E-D-C-A - Backward

Fig. 9 TCP Issue [25]
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Table 3 Cross layered TCP variants—channel losses and contention issues

Sr. TCP variant Features Limitations
1 TCTC [24] Transmission rate is decided as per the A network may get under utilized or over
TCP based throughput and contention delay utilized if the time interval is not
ConTention experienced by receiver appropriate
Control

2 COPAS [25] It uses two distinct routes for forward  Applicable only with reactive routing

Contention and backward traffic to avoid protocols. As this method is completely
based PAth contention. It reduces Intra-flow independent of TCP, there is no
Selection contention efficiently improvement at TCP in absence of

contention issues

5 Layered Approaches
5.1 Introduction

Layered approach based TCP does not interact with lower layers to get decision making
information. There is no explicit feedback from any of the lower layers. TCP itself tries to
find out various issues which may arise at one of the lower layers. TCP being a transport
layer protocol, uses its own statistics to predict route failure, channel loss or contention
related issues. Layered approaches are simple to implement as well as do not violate layer
independence property of a layer based network.

5.2 Route Failures Losses
5.2.1 Fixed RTO

TCP with Fixed RTO [26] is a simple heuristic, implemented with TCP Reno to identify
possibility of a route failure. Traditional TCP increases value of RTO timer exponentially
(doubles on every timeout event). This process is called TCP’s exponential back off
mechanism. Fixed RTO assumes a route failure when there is no ACK is received between
two consecutive timeout events. In such situation, RTO is not increased and TCP continues
with its AIMD scheme. In other cases, Fixed RTO follows TCP’s exponential back off
mechanism to increase RTO value.

5.2.2 TCP-DOOR

TCP-DOOR [27] (TCP-Detection of Out-of-Order and Response) uses the order of
delivered packets to predict a route failure. On a route failure, a few packets are not
delivered in the same order in which they were sent. Frequent route failures cause
retransmissions of such packets which TCP receiver receives later on causing out-of-order
delivery. TCP sender and TCP receiver detects out-of-order deliverers of ACKs and data
packets respectively. DOOR considers out-of-delivery at TCP. TCP always provide
ordered delivery to the higher level application.
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Detection of Out-of-Order ACKs

TCP ACK’s sequence number specifies how much data has been received in order. Every
ACK has a sequence number which is larger than of any other previous ACKs. TCP’s
inherent monotonically increasing property of ACK numbering makes it easy to detect out-
of-order delivery. If a TCP sender receives an ACK with a sequence number smaller than
of any of the previously received ACKs, it is considered as an Out-of-Order delivery. As
ACKs are never retransmitted there is no possibility of out-of-order delivery due to
retransmissions. DUPACKSs-Duplicate acknowledgements carry same sequence number so
it is not possible to find out-of-order delivery among a set of DUPACKs having same
sequence number. DOOR uses TCP header’s option field to send ADSN-ACK Duplicate
Sequence Number to set order among a same set of DUPACKs. ADSN of 1st DUPACK is
set to 0 and incremented by 1 for every additional DUPACK.

Detection of Out-of-Order Data

Ordered delivery of Data packets is violated in case of retransmissions because sequence
numbers of retransmitted data packets remain same as of earlier transmissions. As data
packets do not carry any inherent ordered property across the retransmissions, an explicit
ordering is required. DOOR uses TCP header’s option field to send TPSN-TCP Packet
Sequence Number. TPSN of 1st data packet is set to 0 and incremented by 1 for every data
packet sent including retransmissions. TCP receiver can easily find out out-of-order
delivery by checking TPSN values. ADSN and TPSN could be set to the timestamps also.

DOOR Response

Out-of-Order delivery is considered as a cause of a route failure. This information is mainly
used by TCP sender to avoid activation of congestion control unnecessarily. TCP sender detects
out-of-order ACKs directly. TCP receiver informs TCP sender about out-of-order data packets
by setting OOO bit in TCP ACK header. TCP sender disables congestion control temporarily
(for a period T1) by not changing values of variables like congestion window, RTO timer etc. If
TCP sender has recently (during past period of T2) switched to Congestion Avoidance phase, it
immediately restores its state to the state prior to the Congestion Avoidance phase. The reason is
the assumption that a recent route failure had probably caused activation of congestion control
unnecessarily. T1 and T2 values are set dynamically with reference of RTT values.

5.2.3 ADTCP

ADTCP [28] handles four states: Congestion, Channel Error, Route Change and Dis-
connection. ADTCP introduces four end-to-end measurements: Inter Delay Difference
(IDD), Short Term Throughput (STT), Packet Out-of-order delivery Ratio (POR) and
Packet Loss Ratio (PLR). These measurements are used to detect various states. Multiple

measurements are used to detect a state for accuracy purpose.

Measurements

IDD = Ay — A; — (Siv1 — i) )

STT = N,(T)/T (10)
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POR = Nyo (T) /N, (T) (1)

PLR = Ny(T)/N,(T) (12)

A; is arrival time of ith packet.
S; is sending time of ith packet.
N,(T) is number of received packets during interval T.
N,o(T) is number of out-of-order packets during T.

N(T) is number of lost packets during interval T.
State Identification
A congestion state is identified when IDD is High and STT is Low. In other cases, non
congestion state is identified. A non congestion state needs to be detected as either a
channel error or a route change or a disconnected state. A route change state is identified
when POR is High. A channel error state is identified when PLR is High. A disconnected
state is identified when retransmission time out occurs along with any of the non con-
gestion states. Relative sample density based classification is used to define values of High
and Low thresholds. Congestion state activates congestion control. Channel error state
retransmits lost packets. Route change state retransmits lost packets and sets Cwnd. Dis-
connect state probes network for a new route.

5.2.4 Comparison

Table 4 compares Layered TCP variants to handle route failure losses.

Table 4 Layered TCP variants—route failure losses

Sr.  TCP variant

Features

Limitations

1 TCP-Fixed RTO
[26]

2 TCP-DOOR
[27]Detection of
Out-of-Order and
Response

3 ADTCP [28]

The interval between two RTO
timeout events is analyzed to check
for a route failure. It is easy to
implement with any of the AIMD
based TCP variants

Unordered delivery is considered as a
cause of a route failure. Other than
TCP’s inherent sequencing
mechanism, explicit sequencing is
used. It detects route failures
efficiently

New measurements are used to define
four states. Congestion, Channel
Error, Route Change, Disconnected.
Multi measurement based decision
making increases accuracy

It is a heuristic which does not ensure
performance improvement in all
situations

It is not able to adopt with the new
route immediately. Packet
sequencing needs additional bytes
of header too

Difficult to define the threshold values
in terms of Low and High for
various measurements
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5.3 Congestion Losses
5.3.1 TCP-WELCOME

TCP-WELCOME [29] (TCP-Wireless Environment, Link losses and COngestion packet
loss ModEls) differentiates congestion loss, route failure loss and channel loss. It analyzes
the amount of changes in RTT values. TCP WELCOME has two parts: Loss Differenti-
ation Algorithm and Loss Recovery Algorithm.

LDA-Loss Differentiation Algorithm

TCP WELCOME sender activates LDA on either 3 DUPACK event or RTO timeout event.
TCP WELCOME keeps analyzing RTT values. LDA uses this information to differentiate
a loss. If RTT values are continuously increasing with time, a loss is considered as a cause
of network congestion irrespective of type of event (3 DUPACK or RTO timeout). If RTT
values are not fluctuating and remain almost stead around average, a loss is considered as a
cause of a non congestion event. TCP WELCOME further differentiates non congestion
loss into two categories: Route failure loss or channel loss. If TCP sender experiences 3
DUPACK event then the cause is assumed to be a channel loss. If TCP sender experience
RTO timeout then the cause is assumed to be a route failure loss.

LRA-Loss Recovery Algorithm

TCP WELCOME retransmits the lost packet immediately in all the cases. Later on it takes
appropriate actions for RTO timer value and transmission rate. RTO timer value and
transmission rate are changed as per the congestion control scheme in case of a congestion
loss. RTO timer value and transmission rate are not changed in case of a channel loss. RTO
timer value and transmission rate are changed as per the statistics of a new route in case of
a route failure loss. RTTys,,, is as per the new route and RTT, is as per the previous route.

RTONEW = (RTTNeW/RTde) % RTOO[d (13)

CWNDNeW = (RTTOM/RTTNEW) * CWNDOM (14)

5.3.2 TCP-Westwood

TCP-Westwood [30] is a sender side modification to handle congestion with consideration
of possibility of channel losses. TCP Reno always halves values of Congestion Window
(Cwnd) and Slow Start Threshold (SSThresh) on three duplicate ACKs event. TCPW
estimates end-to-end bandwidth to set values of Cwnd and SSThresh according to the level
of congestion. TCPW analyses the flow of ACKs for bandwidth estimation. Faster recovery
phase is introduced to set values of Cwnd and SSThresh.

Bandwidth Estimation

TCPW sender monitors average rate of ACKs for bandwidth estimation. Bandwidth is
estimated by averaging amount of delivered data over time. TCPW uses ACKs rate and
information carried by every ACK (amount of data delivered) to calculate bandwidth
samples. For example, if TCPW receives an ACK for a packet of d; bytes at time #; and
tr—1 is the time at which previous ACK was received, Sample bandwidth b; is
di/(t — ty—1). Low pass filter based averaging is used over sample bandwidths to deal with
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delayed acknowledgements. On 3 duplicate ACKs or timeout event values of Slow Start
threshold is changed as below. Bandwidth Estimated (BWE). SegSize is Size of payload in
TCP Segment.

SSThresh = (BWE x RTTmin) /SegSize (15)

On three duplicate acknowledgement event, Cwnd is set to maximum of current value of
Cwnd and new value of SSThresh. On timeout vent, Cwnd is set to its default initial size.

5.3.3 TCP-Jersey

TCP-Jersey [19] is based on the similar concept of TCP-Westwood to estimate available
bandwidth to set transmission rate accordingly. The process of Available Bandwidth
Estimation (ABE) is based on analyzing the flow of ACKs at TCP sender. This information
is used to find SSThresh and Cwnd values. One key difference between TCP-Jersey and
TCP-Westwood is that the former uses ECN type mechanisms to notify TCP sender about
congestion explicitly. TCP-Jersey introduces simple way of explicit congestion notification
with CW-Congestion Warning scheme. CW uses the same fields of IP header and TCP
header used by ECN but the parameters and the process of finding average queue length is
simple.

Fig. 10 TCP-NCL flow l
chart [31]
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5.3.4 TCP-NCL

TCP-NCL [31] (TCP-Non Congestion Losses) modifies congestion control mechanism to
handle packet reordering and channel loss issues. TCP-NCL separates packet retransmis-
sion mechanism from the congestion control mechanism. Retransmission Decision (RD)
Timer and Congestion Response Decision (CD) Timer are used to trigger retransmission
and congestion control mechanisms respectively. TCP-NCL sends a packet P; and starts
RD; timer. RD; is cancelled if ACK is received for P;. On expiration of RD;, P; is
retransmitted and CD; timer is started. CD; is cancelled if ACK is received for P;. On
expiration of CD;, Congestion control is activated. The values of RD and CD timers are
very crucial. TCP-NCL uses statistical distribution of RTT values to set these values
dynamically. The problem is shown in Fig. 10 [31].

5.3.5 TCP-FIT

TCP-FIT [32] uses virtual TCP sessions inside a single TCP connection for efficient
calculation of Cwnd value. The algorithm is based on using packet loss and packet delay
information. Packet loss information is used to calculate Cwnd value in each of the virtual
TCP sessions. Packet delay information is used to set number of virtual TCP sessions
dynamically. A TCP-FIT connection is logically a set of N TCP Reno virtual sessions.
Cwnd is calculated as below. The detail arithmetic is given in [32].

EachRTT : Cwnd = Cwnd + yN
EachLoss : Cwnd = Cwnd — (Cwnd /2N)

y = RTT /Basegrr (17)

5.3.6 Comparison

Table 5 compares Layered TCP variants to handle congestion losses.

5.4 Channel Losses and Contention Issues
5.4.1 TCP-VENO

TCP-VENO [33] is a combination of TCP Vegas and TCP Reno. TCP Vegas monitors
network congestion to set Cwnd for Congestion Avoidance purpose. TCP Vegas tries to
prevent further congestive packet losses without differentiating current loss. TCP Veno
monitors network congestion in the same way as TCP Vegas, not to set Cwnd but to
differentiate congestion loss and channel loss. Any loss which is found during congestion
state is considered as congestion loss. Any other loss is considered as a channel loss. TCP
Veno follows TCP Reno as a base variant. TCP Reno’s Multiplicative Decrease phase is
modified to set value of SSThresh as per the level of congestion rather than with a fixed
decrease of half in all cases. TCP Reno’s Congestion Avoidance phase is modified to select
increment Cwnd by 1 every ACK or increment Cwnd by 1 every other ACK according to
the level of congestion.
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Table 5 Layered TCP variants—congestion losses

Sr. TCP variant Features Limitations
1 TCP-WELCOME Values of RTTs are used to Loss recovery algorithm is less
[29]Wireless Environment, differentiate causes of 3 efficient as it uses only one new
Link losses and COngestion Duplicate ACKs and RTO RTT value to set RTO and
packet loss ModEls Timeout events. Easy to transmission rate. Only RTT
implement with any of the based decision making is
AIMD based TCP variants inaccurate
2 TCP-Westwood [30] Handles congestion with It does not differentiate non
consideration of possibility of congestion losses from
channel losses. ACK flow is congestion losses

used to estimate available
bandwidth to set values of
Cwnd and SSThresh

3 TCP-Jersey [19] Simple methods to estimate Explicit congestion notifications
bandwidth as compared to TCP are less costly than TCP-ECN
Westwood. Explicit congestion still it requires to be done by an
notifications with Congestion intermediate node. Not
Warning messages suitable for high mobility based
networks where intermediate
nodes are changed frequently

4  TCP-NCL [31]Non It is a single solution to avoid It is difficult to set appropriate
Congestion Losses unnecessary activation of values of Retransmission

congestion control in case of Decision (RD) Timer and
unordered delivery or losses Congestion Response Decision
due to channel issues (CD) Timer

5  TCP-FIT [32] Virtual TCP sessions inside a Complex process as it requires
single TCP connection helps in more computation at TCP
finding Cwnd value accurately Sender

5.4.2 ACK Thinning Techniques

ACK Thinning Techniques [34] target intra-flow contention issues. The available band-
width is shared for the data flow as well as for the ACK flow of a TCP connection. ACK
Thinning is a process of reducing the rate of ACKs to spare more bandwidth for the data
packets. ACK Thinning reduces contention issues as well as helps in increasing
throughput. Most of the TCP variants are ACK clocking where the transmission rate
depends on the ACK rate. In such situation, a large reduction of ACK rate restricts increase
in transmission rate. It may generate unnecessary timeouts too. ACK Thinning Techniques
provide systematic way to decide up to what amount reduction of ACK rate is suit-
able without underutilizing a network and without activating congestion control
unnecessarily.

TCP’s concept of cumulative acknowledgement is one of the simplest ACK Thinning
scheme called TCP-DA [34] (TCP with Delayed ACK). TCP-DA sends a combine ACK
for every 2 packets. In case of an out-of-order packet, it sends an ACK immediately.

TCP-ADA [35] (Adaptive Delayed ACK) tries to reduce number of ACKs to 1 per
Cwnd. TCP-ADA calculates Average Packet Interval (API) from the inter arrival times of
packets. API is used to define Acknowledgement Expiration Timer (AET). The maximum
postponement time is defined by MDT Timer-Maximum Defer Time (500 ms).
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API is calculated using previous API and Last Packet Arrival (LPA) time as below. o is
set to 0.8

API = ax API + (1 — a) * (Now — LPA) (18)
AET Timer is calculated using API as below. f is set to 0.8
AET = f« API (19)

An ACK is postponed until expiration of either AET timer or of MDT timer.

TCP-DDA [36] (Dynamic Delayed ACK) avoids temporary pause in transmission
when the size of Cwnd is very small and ACK delay is very high. In such case, TCP sender
waits for an ACK to increase its transmission rate. At the same time, TCP receiver waits
for arrival of a few packets to send ACK. Subsequently timeout may occur at TCP sender.
TCP-DDA sets number of ACKs to delay (number of packets per cumulative ACK) (1, 2, 3
or 4) dynamically. Initially delay parameter is set to 1. Delay parameter is increased or
decreased as per the number of in-order received packets.

5.4.3 Comparison

Table 6 compares Layered TCP variants to handle channel losses and contention issues.

6 Recent TCP Variants
6.1 Introduction
This section discusses some of the recent TCP variants based on the way they handle

losses. These TCP variants are classified into loss differentiation, loss avoidance and loss
prediction based approaches.

Table 6 Layered TCP variants—channel losses and contention issues

Sr.  TCP variant

Features

Limitations

1 TCP-VENO [33]

2 ACK Thinning
Techniques [34]
TCP-DA [34]
TCP-ADA [35]
TCP-DDA [36]

The estimated bandwidth is used to
differentiate losses

Various techniques try to reduce flow
of ACKs to provide more
bandwidth for data flow. These
techniques help TCP to reduce
intra-flow contention easily

Not suitable for asymmetric network.
Even if forward path has no
congestion, VENO will not allow
TCP sender to increase Cwnd in
case of congestion in backward
path

It is difficult to associate an ACK
Thinning technique with a TCP
variant. Selection of one ACK
Thinning technique in all scenarios
may not be efficient
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6.2 Loss Differentiation
6.2.1 TCP-NRT

TCP-NRT [37] (TCP Non congestion Retransmission Timeout) detects non congestion
events such as spurious delay and random packet loss. TCP-NRT differentiates RTO
timeout events into congestion RTO and non congestion RTO (spurious RTO and RTO due
to random packet loss). Sudden delay in communication may cause timeout which is
considered as a spurious RTO. Channel loss may cause timeout which is considered as a
RTO due to random packet loss. TCP-NRT has three phases: Detection, Differentiation and
Reaction.

Fig. 11 TCP-NRT [37] ¢
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Detection TCP-NRT detects non congestion RTO from congestion RTO using modified
Explicit Congestion Notification (ECN). In Modified ECN, an intermediate node marks a
packet only when the Active Queue Length (AQL) is greater than Maximum Threshold.
Modified ECN improves bandwidth utilization as packets are not marked in other condi-
tions (discussed in Sect. 4.3.1). As TCP sender gets comparatively less number of ECN
marked packets, Cwnd is not reduced frequently. On occurrence of RTO event, ECN status
of last (most recent) ACK is checked. If it is ECN marked, congestion RTO is considered
otherwise non congestion RTO is considered.

Differentiation A non congestion RTO is further differentiated into either a spurious
RTO or a RTO due to random packet loss. This phase sets Seq_Exp_Ack to the sequence
number of the next expected ACK. As a part of differentiation process, a fresh packet is
sent. On receiving an ACK, its sequence number (Seq_New_Ack) is checked. If
Seq_Exp_Ack <Seq_New_Ack then spurious RTO is considered otherwise RTO due to
random packet loss is considered. In case of a sudden delay, no packet gets lost and so the
expected ACK can be achieved in the form of a cumulative ACK of a new packet.

Reaction On congestion RTO, congestion control mechanism of TCP NewReno is
activated. On spurious RTO, new packets are sent based on the current value of Cwnd. On
RTO due to random packet loss, lost packet is retransmitted and further transmission is
continued without changing Cwnd. The complete process is shown in Fig. 11 [37].

6.2.2 TCP-NCE

TCP-NCE [38] (TCP Non Congestion Events) detects non congestion events such as
random packet loss and unordered delivery issue on three duplicate ACK event. These issues
generate holes (missing packets) in the TCP receiver window. Subsequently TCP receiver
generates duplicate ACKs for these missing packets. These duplicate ACKs activate con-
gestion control at TCP sender to reduce transmission rate. Wireless networks often expe-
rience random packet loss due to transmission issues and unordered delivery due to various
reasons like multi-path routing, parallelism, retransmissions etc. TCP-NCE tries to avoid
unnecessary reduction of transmission rate on three duplicate ACKs event, even before RTO
timeout occurs. TCP-NCE has three phases: Detection, Differentiation and Reaction.

Detection TCP-NCE detects non congestion event from congestion event by measuring
queue length of bottleneck link. Timestamp based RTT calculation is used for accuracy
purpose. TCP sender sends current timestamp (7;) as a part of options field of TCP header
of ith packet. TCP receiver sends TS; back to the TCP sender as a part of an ACK of ith
packet. TCP sender calculates RTT for ith packet and queue length as below.

RTT = Currentriy, — TS; (20)

QLNow - (RTTNow - RTTMin) * B (21)

B is available Bandwidth.
RTTy,,, is the current (most recent) RTT.
RTTy;, is the minimum RTT so far.

A threshold value is set with reference of buffer space at the queue of intermediate nodes.
Detail of setting this threshold value is given in [38]. On receiving three duplicate ACKs,
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if current value of QLy,, is greater than threshold value then congestion event is con-
sidered. Otherwise non congestion event is considered.

Differentiation A non congestion event is further differentiated into either a random
packet loss or an unordered delivery. A Delay_Thresh-Dynamic Delay Threshold value is
calculated based on the number of outstanding packets on three duplicate ACK event.
Delay_Thresh is calculated as below.

No_PPkts = No_SPkts — No_APkis (22)

No_PPkts is Total number of pending packets.
No_SPkts is Total number of sent packets.
No_APkts is Total number of acknowledged packets out of No_SPkts.

As three duplicate ACKs are corresponding to reception of three packets, the remaining
number of packets to be delivered is calculated as below.
Delay_Thresh = No_PPkts — No_DACKs (23)

Delay_Thresh is used for retransmission delay. TCP sender neither retransmits oldest
unacknowledged packet nor reduces Cwnd immediately. TCP sender sends a fresh packet
(Cwnd is incremented) and waits for ADack (Additional Duplicate Acknowledgement).
For each ADack, a fresh packet is sent (Cwnd is incremented). When TCP sender receives
n ADacks (including initial three duplicate ACKs) equal to or greater than Delay_Thresh,
random packet loss is considered. The reason is that TCP receiver generates n number of
ADacks for two types of packets: Those packets which were in transmission at the time of
calculation of Delay_Thresh and those fresh packets which were sent as a part of differ-
entiation process. A random packet loss is considered on receiving a same duplicate ACK
even after reception of all outstanding and fresh packets. In other cases when TCP sender
receives higher ACKs, unordered delivery issue is considered. Unordered packets are
expected to be delivered earlier than of fresh packets.

Reaction On congestion event, congestion control mechanism of TCP NewReno is
activated. On random packet loss, lost packet is retransmitted. On unordered delivery, TCP
continues transmission with its current state and transmission rate.

6.2.3 Enhanced TCP-NCE

Enhanced TCP-NCE [39] improves performance of TCP-NCE [38]. TCP-NCE needs
accurate detail of bottleneck bandwidth to differentiate congestion event from non con-
gestion events. As it is difficult to estimate bottleneck bandwidth accurately in MANETS,
Enhanced TC-NCE replaced TCP NCE’s loss differentiation process with a loss dis-
crimination process.

Discrimination Queuing delay based two values are calculated as below.

QD = RTTCurrem - RTTNEW (24)

QDMax = RTTMax - RTTMirL (25)

The ratio of QD and QDyy,, is compared with a threshold A (0.5). If the ratio is less than A,
congestion loss is considered otherwise channel loss is considered. It also tries to handle
packet reordering issue more precisely using SACK option. A receiver sends information
about missing packets using SACK field of a Duplicate ACK. This information is used by
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TCP sender to update list of delivered packets. Initially, TCP sender considers a loss
(Receiving three Duplicate ACKs) as a channel loss. At this stage, it continues trans-
mission similar to of TCP - NCE by processing a series of Duplicate ACKs. Once number
of Duplicate ACKs becomes 80% of the current size of Cwnd, packet loss is reconsidered
as a packet reordering issue.

6.2.4 TCP-CERL

TCP-CERL [40] (Congestion control Enhancement for Random Loss) is conceptually
similar to TCP-VENO [33]. TCP-CERL also monitors level of congestion to differentiate
random packet loss and congestion loss. Every RTT is considered to be of three values:
Queuing delay, Propagation delay and Service delay. On every new calculation of RTT,
QL-Queue length at bottleneck link is estimated as below.

QL = (RTTNow - RTTMin) * B (26)

RTTy,, is current RTT.
RTTy;, is minimum of all RTT values so far.
B is estimated bandwidth.

TCP-CERL sets dynamic queue length threshold as below.
OLpresh = A % QLyjax (27)

QL is largest value of QL so far and A = 0.55.

TCP-CERL updates values of RTTy;,, OL, QL and QLgpeqn on every new RTT
(RTTy,y)- On three duplicate ACKs event, current values of QL and QL7y,.y, are used to
differentiate random packet loss from congestion loss. If QL < QL. then random packet
loss is considered, otherwise congestion loss is considered. In case of a random packet loss,
retransmission is performed without changing TCP state. In case of a congestion loss, TCP-
CERL ensures that the Cwnd is reduced only once per window even if multiple packets are
lost within a window. TCP-CERL performs better than TCP-VENO due to dynamic
threshold and maximum one time reduction of transmission rate per window.

For example, a TCP sender sends packets 1-10. Packets 2 and 7 are lost. On receiving
three Duplicate ACKSs for packet 2, TCP sender retransmits packet 2. It stores the highest
sequence number of sent packet (the time congestion control is activated) to record most
recent Cwnd reduction point. Later on, TCP receiver sends three Duplicate ACKs for
packet 7 too. At this moment, TCP sender finds that the sequence number of requested
packet (7) is smaller than the most recent Cwnd reduction point (10). This condition is
considered as multiple packet loss in a single transmission. So packet 7 is retransmitted
without reduction of Cwnd.

6.2.5 Packet Reordering Solution

A cross layer solution has been proposed to deal with packet reordering [41] issue raised
due to mobility or link layer retransmissions. A trust based routing protocol has been
proposed to find optimal route. This approach enables TCP sender to identify which
packets are dropped due to congestion and which packets are reordered. Each intermediate
node maintains a table to maintain a list of records to keep information about discarded
packets per TCP flow. With every TCP flow, two numbers are stored: Minp,,, and
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Maxpy,p, Minimum and Maximum sequence numbers of dropped packets respectively.
With every discarded packet, corresponding record is updated or inserted in the table. With
every non discarded packet, corresponding record is sent along with it to the receiver. TCP
receiver uses this information to maintain a reorder list a list of yet to be received packets
which will need to be reordered and dropped list a list of already dropped packets which
will need to be retransmitted. TCP receiver informs TCP sender about the number of
packets in current reorder list K using a field named as Reorder bits in TCP’s header of
ACK. TCP sender waits for 3 + K number of Duplicate ACKs to smooth out the packet
reordering effect. TCP receiver receives a packet with various possible drop details and
other values as below.

Min_Drop is Value of Minimum Drop field of current packet.
Max_Drop is Value of Maximum Drop field of current packet.
Seq_H is Highest sequence number of the received packets.
Seq_C is Sequence number of current packet.

Proposed solution has many cases. Two of them are discussed here. Other cases are listed
in [41].

Case 1: If current packet has no values for Min_Drop and Max_Drop

If Seq_C > Seq_H, all packets between Seq_H and Seq_C are considered as dropped.
The rest of the packets are added in reorder list.

If Seq_C <Seq_H, current packet is removed from the reorder list.

Case 2: If current packet has values for Min_Drop and Max_Drop, it is removed from
the reorder list.

Table 7 TCP variants—Iloss differentiation

Sr.  TCP variant Features Limitations
1 TCP-NRT [37] A systematic way to handle losses. Activation of loss handling is
Non congestion Modified ECN is more efficient as late(RTO timeout only)
Retransmission compared to ECN
Timeout
2 TCP-NCE [38] A systematic way to handle losses. Difficult to find a bottleneck link
Non Congestion Activation of loss handling is earlier in case of high mobility
Events (On three duplicate ACKs)
3 Enhanced TCP- Bandwidth estimation of bottleneck link is  Thresholds need to be set
NCE [39] removed. SACK information is used to dynamically

Enhanced TCP with identify missing packets
Non Congestion

Events
4 TCP-CERL [40] It performs better than TCP-VENO due to  Difficult to find a bottleneck link
Congestion control dynamic thresholds. Only one time in case of high mobility. The
Enhancement for transmission rate reduction for multiple decision making mainly
Random Loss losses within a single window depends on queue length a
bottleneck link which is
inefficient
5  Packet Reordering ~ TCP Sender is informed about out of order It needs to be implemented at
Solution [41] delivery so it can process duplicate every intermediate node too.
ACKs accordingly Not suitable for high mobility
environment
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If Seq_C > Seq_H and Min_Drop > Seq_H and Max_Drop <Seq_C then packets
between Seq_H and Min_Drop, Max_Drop and Seq_C are added in reorder list. Packets
between Min_Drop and Max_Drop are removed from the reorder list.

6.2.6 Comparison

Table 7 compares recent and advanced loss differentiation based TCP variants.

6.3 Loss Prediction
6.3.1 TCP-FR

TCP-FR [42] (TCP with Fastest Retransmission) introduces another phase called Fastest
Retransmission over AIMD phases. TCP-FR avoids pauses in transmission due to large
number of random packet losses or packet drops due to congestion. TCP receiver is unable
to send duplicate ACKs if it does not receive any packets after a loss. In such situation,
TCP sender does not receive sufficient number of duplicate ACKs (mostly 3) to activate
Fast Retransmission phase. Subsequently, TCP sender experiences RTO timeout which
slows down transmission rate unnecessarily. During this duration, there is a pause in
transmission too. TCP-FR predicts possibility of such pauses and provides earlier
retransmission with its Fastest Retransmission phase. If TCP sender does not receive any
ACK within a Fastest Retransmission Time T1, an oldest unacknowledged packet is
retransmitted to keep transmission going on. The process is shown in Fig. 12 [42].

Value of timer T1 is dynamically set based on the values of RTT and RTO as shown
below.

T1 =05*RIT
Where 0.2 x RTO<0.5 x RTT
T1 =0.2%RTO

Reset T1 Timer

Y

Retransmit the oldest
unacknowledged packet

Fig. 12 TCP with Fastest Retransmission [42]
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Where 0.5« RTT <0.2 * RTO<1.5 « RTT
Tl =15%RIT
Where 0.2 x RTO > 1.5 « RTT

6.3.2 TCP-LRA

TCP-LRA [43] (TCP Loss Recovery Architecture) separates loss recovery from conges-
tion control. TCP sender’s send window is maintained as per the sequence number of
packets being sent. TCP-LRA maintains two lists of packets sorted by their transmission
order. This helps in improving loss prediction and recovery phases. A WaitList stores all
outstanding packets (Sent but not yet acknowledged) as per their transmission order.
A RetList stores all packets to be retransmitted. After retransmission of a packet, it is
removed from RetList and inserted at the end of WaitList. A fresh packet is inserted at the
end of WaitList after being sent. A packet is removed from WaitList after receiving a
corresponding ACK or is inserted at the end of RetList if considered as lost. All fresh
packets are inserted at the end of WaitList to maintain transmission order along with the
retransmitted packets. TCP-LRA requires no interaction with TCP receiver to maintain
transmission order.

TCP-LRA extends the concept of fast retransmission phase at packet level by main-
taining one DAckC—Duplicate ACK Counter for every packet. Each entry in the list
records Sequence Number, Duplicate ACK Counter and Timestamp. On receiving an ACK
for a packet, DAckC of all packets which were sent earlier but not yet acknowledged are
incremented. Packets with DAckC equal to 3 are removed from WaitList and inserted into
RetList for retransmission purpose. In case of multiple transmissions of a packet,
Timestamp is used to check which instance of packet is acknowledged. Congestion control
selects packets from RetList for retransmissions. If RetList is empty, new packets are
selected for transmission.

6.3.3 Hybrid-TCP

TCP-HYBRID [44] is a cross layer solution to predict losses to act accordingly. This
variant is named as Hybrid as it combines Signal Strength method and RTT method. Signal
strength based analysis helps a routing algorithm to estimate location and mobility pattern
of a node. Such information helps in activating alternate route discovery process before
disconnection of a current route. Hybrid TCP estimates RTT value, based on the signal
strength value. Estimated value is compared with actual RTT to decide cause of a loss and
to set transmission rate accordingly. Hybrid TCP also uses noise value to adjust various
MAC layer transmission parameters like selection of channel. RTT estimation done by
TCP-Hybrid is as below.

RTT;iy = (a* RTT; + (1 — o) « M) % f3 (28)

o is a constant between 0 and 1. M is Time taken to receive ACK. f = f(S) where
S represents lowest signal strength among all nodes through which packet travelled

6.3.4 Comparison

Table 8 compares recent and advanced loss prediction based TCP variants.
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Table 8 TCP variants—loss prediction

Sr.  TCP variant

Features

Limitations

1 TCP-FR [42]
Fastest
Retransmission

2 TCP-LRA [43]
TCP Loss
Recovery
Architecture

3 Hybrid-TCP
[44]

Simple way to handle pauses in
transmission by earlier retransmission

Separation of loss recovery from
congestion control is more accurate.
Fast retransmission is implemented at
packet level. No interaction with TCP
receiver to maintain transmission
order

Signal strength based analysis helps to
estimate node location accurately.
RTT values calculated with two
completely different methods are

Fastest Retransmission Timer needs
more precise calculation. Always one
packet is retransmitted irrespective of
number of outstanding packets

Complex to implement because of
requirements of extra data structures

Signal strength based RTT estimation
method needs to be analyzed for its
accuracy. It is extremely complex to
implement and resource consuming

compared. Transmission parameters
can be set based on signal strength
and related information

6.4 Loss Avoidance
6.4.1 TCP-DATR

TCP-DATR [45] (TCP Dynamic Adjustment of Transmission Rate) estimates transmis-
sion rate according the available bandwidth and present loss rate. Generally losses affect
the transmission rate as per the AIMD scheme. Most of the TCP variants maintain loss
information per window. TCP-DATR calculates loss rate as one of the parameters while
setting value of Cwnd. The occurrences FR-Fast Retransmission and RTO timeout events
are counted to calculate PLR-Packet Loss Rate. On occurance of ith FR/RTO event, ith
PLR is calculated as below.

PLR; = (1/Sent_Data) x 100 (29)

Sent_Data is number of packets sent between i — 1th FR/RTO and ith FR/RTO.
PLR is smoothed out using exponential moving average with reference of the interval
between two FR/RTO events. The smoothed PLR is calculated as below.

SPLR, = PLR,',] * (1 7A,) + PLR,‘,] * (A,) (30)

0<A; <1. A large value of A; sets current SPLR more towards the current estimation
while a small value of A; sets it towards the previous SPLR.

Ai = IntCur/IntMax

(31)

Intc,, is the Interval between i — 1th FR/RTO and ith FR/RTO.

Inty,, is the Maximum interval so far.

TCP-DATR defines the relationship between Cwnd and SPLR with two thresholds «
and . TCP-DATR sets RCwnd-Reduced Cwnd in the range of f (Minimum) to
Max_Cwnd(Maximum). As SPLR increases, RCwnd decreases from Max_Cwnd to f5. if
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SPLR is greater than o, RCwnd is set to f8. if SPLR is greater than O but less than &, RCwnd
is set as below.

RCwnd = * SPLR + Max_Cwnd (32)

p — Max_Cwnd
o

The actual Cwnd is set to minimum of present value of Cwnd and RCWnd to avoid

extreme reduction of transmission rate.

6.4.2 TCP-PR

TCP-PR [46] (TCP Packet Recycling) is a cross layer approach based on best effort
delivery at MAC layer. TCP-PR increases the retransmission limit at MAC layer as per the
RTO timeout limit at TCP. An intermediate node drops a packet after a specific number of
unsuccessful transmission attempts from MAC layer. Subsequently, TCP sender experi-
ences RTO timeout which activates congestion control (unnecessarily in some cases). One
another disadvantage of dropping a packet at an intermediate node is the requirement of its
retransmission from the TCP sender node. TCP-PR allows an intermediate node to keep
trying for transmission of a packet as long as there is no RTO timeout at TCP sender. TCP-
PR sender sends Remaining Time (Based on RTO value) along with a packet. Every
intermediate node has to update this field as below.

TNewARem - TRem - (TDep - TArr) (33)

TNew_Rem 18 New remaining time.
Trem 18 current remaining time.
Tpep is departure time.

T4, is arrival time.

An intermediate node keeps trying for transmission of a packet till Reamining Time
allows. This scheme may increase number of retransmissions at MAC layer but ensures
comparatively less number of retransmissions at TCP.

6.4.3 TCP-RCS

TCP-RCS [42] (TCP Rate Control Scheme) tries to handle issues related with channel
contention and unordered delivery. TCP in wireless networks often experiences sudden
burst of traffic due to disturbance in its self-clocking mechanism. As the transmission rate
is controlled by the rate of ACKs, disturbance in the reception of ACKs may prevent
smooth increasing or decreasing change in transmission rate. Too late arrival of an ACK
(because of contention issues or unordered delivery) may increase Cwnd and subsequently
a burst of traffic is injected to the network. A sudden traffic burst may cause network
unstable with congestion or contention. It also affects flow of other TCP connections. As a
proactive approach, TCP-RCS restricts transmission rate by a constant factor of . i’s too
large value increases possibility of traffic burst while ’s too small value increases pos-
sibility of network underutilization. f§ is set to 1/5 based on experimental analysis.
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6.4.4 TCP-CC

TCP-CC [47] (TCP Contention Control) tries to avoid issues related with sudden burst of
traffic by controlling the flow of injecting packets to the network. A sudden burst may
invite high contention in the network. Most of the research work is done towards the
improvement of congestion control queue management which still not solved the perfor-
mance degradation due to contention issues. TCP-CC is a cross layer approach which
introduces delay based transmissions to distribute packets throughout the RTT. A similar
mechanism exists in IEEE 802.11 called Contention Window Mechanism. Most of the TCP
variants uses flow of ACKs to measure RTT and packet losses which does not provide
exact information to the TCP about the lower layers. TCP-CC introduces cross layer based
approach to define the relationship between contention window and TCP throughput. TCP-
CC introduces a delay between two packets (Rate based pacing) and a delay between two
ACKs (ACK pacing). TCP-CC has made two assumptions: (1) Every TCP sender always
has something to transmit and every queue is always non empty. (2) RTT is independent of
Cwnd. TCP-CC has implemented for one hope and multi hop networks. The detail cal-
culation of delay values are discussed in [47].

6.4.5 Dynamic TCP-Vegas

Dynamic TCP-Vegas [48] tries to overcome rerouting based issues of TCP Vegas. It also
tries to improve Slow Start phase for better congestion control. TCP Vegas uses RTT value
for adjustment of Cwnd. MANETS often experience rerouting where an increase in RTT
may misinterpreted as a cause of congestion. Inaccurate estimation of Base RTT may
invite unfairness issue among TCP connections too. Under estimation (greater than actual)
of Base_RTT degrades performance while over estimation (less than actual) of Base_RTT
increases lose.

Base RTT Estimation Dynamic TCP-Vegas tries to estimate Base RTT accurately using
cuckoo search optimization algorithm. The optimal function to estimate Base RTT is,

AAR(k) S(k—1) — D(k)

Max(Basegrr) = AARGk— 1) * S0 (34)

k is iteration number.

AAR(k) is Actual Average Rate at iteration k.
S(k) is Total Sent packets at iteration k.

D(k) is Total Dropped packets at iteration k.

Dynamic Slow Start TCP Vegas increases or decreases Cwnd by a constant in Slow Start
phase. Dynamic TCP Vegas decides change in Cwnd and SSThresh values dynamically
according to the transmission rate. Bandwidth () is estimated to set values of SSThresh
and Cwnd as below.

0 = (Ratepypected — Rateacuar) * Basegrr (35)

SSThresh = 6 * RTT (36)
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6.4.6 CCPRCLA

Cwnd = Cwnd + (rx%“é)’ if o<o

Cwnd = Cwnd — (%), if

(37)

s >p (38)

CCPRCLA [49] Congestion Control and Packet Recovery for Cross Layer Approach
addresses overshooting window and poor throughput problems due to contention and
congestion traffic. It uses Congestion RTT as well as Contention RTT to decide trans-
mission rate. An another part of the approach is packet recovery. Packets may lost due to
contention or congestion. This approach introduces caching of packets. In a group of
nodes, some nodes act as recovery assistant nodes which help in forwarding cached
packets. The detail arithmetic is given in [49].

6.4.7 Comparison

Table 9 compares recent and advanced loss avoidance based TCP variants.

Table 9 TCP variants—loss avoidance
Sr. TCP variant Features Limitations
1 TCP-DATR [45] Packet loss rate is explicitly calculated ~ Threshold needs to set more
TCP Dynamic used to control transmission rate. This accurately
Adjustment of scheme also avoids extreme reduction
Transmission of transmission rate
Rate
2 TCP-PR [46] Packet Recycling increases link layer Complex to implement. Active
Packet Recycling retransmissions to reduce participation of intermediate nodes
retransmissions at TCP is required. Less suitable for high
mobility
3 TCP-RCS [42] It handles all of sudden traffic burst Threshold needs to be dynamic
Rate Control related issues with a simple heuristic to
Scheme limit transmission rate
4 TCP-CC [47] It handles all of sudden traffic burst Complex to implement. Active
Contention related issues by controlling flow of participation of receiver is
Control packets required. Less suitable for high
mobility
5  Dynamic TCP Dynamic Slow Start and Base RTT Base RTT calculation is time
Vegas [48] calculation improves performance as consuming
compared to TCP Vegas
6  CCPRCLA [49] Congestion and Contention based Difficult to implement as both the

transmission rate calculation. Packet
caching for recovery

sub approaches require cross layer
implementation
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Table 10 MANET scenarios
ID Nodes Mobility speed (s) Mobility redefine interval (s) Error rate
M1 25 20 10 0.005
M2 50 30 15 0.005
M3 75 40 20 0.005
M4 100 30 15 0.005
M5 125 20 10 0.005
Average Throughput (Kbps)
600 = TCP Tahoe
= TCP Reno
500 = TCP NewReno
= TCP Vegas
400
v
_8- 300
¥
200
100
0
M1 M2 M4 M5
MANET ID
Fig. 13 Average throughput
Packet Delivery Ratio (%)
100 ® TCP Tahoe
= TCP Reno
= TCP NewReno
99.5 ® TCP Vegas
99
RN 98.5
98
97.5 II
97 M1 M2 M3 M4

Fig. 14 Packet delivery ratio

MANET ID

M5
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7 Simulation

Simulation has been done in Network Simulator 2.35 [50]. Performances of few of the
most widely used TCP variants are discussed in this paper as performance analysis of all
TCP variants is out of the scope of this paper. Various scenarios have been generated to
implement realistic MANETS. A scenario is mainly defined by Number of Nodes, Mobility
Speed and Mobility Redefine Interval and Error Rate. Mobility Speed is how fast a node
tries to reach to the destination. Mobility Redefine Interval is how frequently a mobile node
changes its destination. Error Rate is how frequently packets are dropped. A set of five
sample scenarios and their results are discussed in this section.

Several MANET scenarios based on different Number of Nodes, Mobility Speed and
Mobility Redefine Interval, Traffic Pattern, Error Rate are designed. A set of five sample
scenarios are listed in Table 10.

Average Throughput and Packet Delivery Ratio for various TCP variants for M1 to M5
MANET Scenarios are shown in Figs. 13 and 14 respectively.

8 Conclusion

This paper discussed various TCP variants based on their approaches to handle various
losses. Other than congestion, TCP’s performance in MANETS is influenced by underlying
layer issues like route failure losses and channel issues (random channel losses, contention
issues). Traditional TCP variants are not suitable for MANETSs because of their default
consideration of any loss as a cause of congestion only. TCP variants for MANETS can be
classified into Cross-Layered approaches and Layered approaches. A Cross Layered TCP
variant uses decision making information provided by lower layer protocol(s) for loss
handling while a Layered TCP variant uses its own statistics to handle losses experienced
at lower layers. Cross Layered TCP variants are more accurate but complex and difficult to
implement. They also violate layer independence concept of a layered network which is
based on designing every protocol algorithmically independent from protocols of other
layers. MANETS are often formed for temporarily usage with battery powered devices
most of the time. In such scenarios, deploying a complex protocol is time consuming and
resource consuming.

Features and limitations of Cross Layered based TCP variants for route failure losses
(Table 1), congestion losses (Table 2), channel losses and contention issues (Table 3) are
listed. As compared to Cross Layered TCP variants, Layered TCP variants are less accurate
but simple and easy to implement. Layered approaches are more suitable for MANETS
from the implementation point of view. Features and limitations of Layered based TCP
variants for route failure losses (Table 4), congestion losses (Table 5), channel losses and
contention issues (Table 6) are listed.

In recent years, more advanced TCP variants have been proposed primarily focused on
efficient loss handling. Features and limitations of loss differentiation (Table 7), loss
prediction (Table 8) and loss avoidance (Table 9) based TCP variants are listed.

Even though a numerous TCP variants have been proposed for MANETSs, no TCP
variant seems to be providing complete solution to all the problems in all scenarios. Every
TCP variants either targets a specific set of problems or performs better in some specific
scenarios only. This is the reason why there is no ultimate TCP solution has been found.
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The need of an ultimate and complete solution invites further research in the direction of
efficient loss handling by TCP.

9 Future Directions

As no TCP Variant has been found as an ultimate and complete solution for all the issues
and scenarios which may arise in MANETS, one or more proposals could be combined to
design a more generic TCP Variant. Any Future TCP Variant needs to be designed with
some more concrete measurements rather than implementing RTT based decision making.
The loss handling problem can be tried to solve using techniques of Artificial Intelligence
and Data Mining too. A few decision making questions are explained as below.

What should be done after identifying a route failure?

A route failure may cause multiple retransmission timeouts. Whether TCP should continue
increasing retransmission timeout timer values exponentially between subsequent timeouts
or not. After each timeout, should TCP retransmits the oldest unacknowledged packet
which acts as a probing packet or not. How to find whether a new route is available or not.
Should TCP starts transmission which will subsequently cause network layer to initiate a
route discovery or should TCP waits for network to take necessary action

What should be done after a new route is found?

TCP should not reduce transmission rate completely as route failures are not as same as
network congestion. Whether to explore new route to find most suitable transmission rate
or to continue with the transmission rate at which TCP was working with old route.

What should be done after identifying a channel loss?

The lost packet must be retransmitted. If packet was lost due to wireless transmission
issues then there is no need to reduce transmission rate. If packet was lost due to contention
issues, transmission rate could be reduced for a while to reduce channel contention.
Avoiding channel losses due to wireless transmission issues are more towards using fre-
quencies properly, using devices like repeaters etc. channel losses due to contention issues
may be avoided by reducing unnecessary retransmission, reducing flow of acknowledge-
ments etc.
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