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Abstract This paper presents the performance of Parallel Big Bang-Big Crunch (PB3C)
global optimization algorithm on CEC-2014 test suite. The performance is compared with
16 other algorithms. It has been observed that PB3C gave best performance on 7 functions
of the test bench. Out of seven, for 6 functions it gave the unmatched best performance
whereas on one count its performance was equaled by other algorithm as well. Further this
paper proposes a PB3C based new routing approach to wireless mesh networks (WMNs).
Being dynamic; routing is a challenging issue in WMNs. The approach is a near shortest
path route evaluation approach. The approach was simulated on MATLAB. The perfor-
mance was compared with 7 other approaches namely ad hoc on-demand distance vector,
dynamic source routing, ant colony optimization, biogeography based optimization, firefly
algorithm, BAT and simple Big Bang-Big Crunch based approaches. For WMNs of size
1000 nodes and above the PB3C was observed to outperform rest of the 7 algorithms.
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1 Introduction

The Big Bang Big Crunch (BB-BC) theory is one of the widely accepted theories of the
evolution of our universe. Later this concept was formulated as a global optimization approach
called BB-BC optimization algorithm [1-3]. Shakti et al. [4] extended it to a parallel BB-BC
(PB3C) global optimization approach. PB3C is a multi-population approach and was
demonstrated to have better convergence rate and accuracy than BB-BC based approach in a
fuzzy model identification problem. The work reported here has been motivated by two
objectives. The first one was to evaluate the PB3C performance on standards test functions and
compare it with the performance of other algorithms. The second objective was to evaluate its
performance on routing in WMNSs. Routing in WMNSs is a challenging issue that has attracted
the attention of research community in the recent past [5]. Conventional static network shortest
path routing approaches hit the road block in the case of WMNs where shortest path evaluation
is quite difficult due to dynamic nature of WMNs in which almost all nodes can be mobile.

In order to assess the performance of PB3C algorithm and compare it with some of the
commonly used algorithms available in the literature we evaluated the performance of
PB3C algorithm on CEC-2014 test suite. It is an established fact today that in the case of
complex problems falling in the category of NP hard or NP complete problems probability
that a search will result into a best solution under a given time frame is very low and highly
expensive computationally. Under such circumstances it has been observed that wherever
best can be replaced with good enough solutions, soft computing approaches offer much
better performance as compared to hard computing based approaches such as AODV, DSR
etc. [6, 7]. Evaluation of shortest path under a given time constraint imposed due to node
mobility in WMNSs also belongs to this class of problems. Shakti et. al [8] presented 3 new
integrated cost based, near shortest path routing approaches to wireless mesh networks.
The algorithms performed reasonably well on small networks upto about 500 node WMNSs.
Their performance for higher node WMNs was observed to be unsatisfactory.

This paper evaluates the performance of PB3C algorithm on CEC 2014 benchmark and
compares it with the performance of 16 other algorithms available in the literature. Further
this paper proposes a PB3C based near shortest path routing approach to efficiently deal
with the complex issue of routing in WMNs.

This paper is organized into 5 sections. Section 1 of the paper introduces the motivation
for the paper, Sect. 2 discusses the simulation and performance of PB3C on CEC-2014 test
bench and compares it with other algorithms. Section 3 proposes a PB3C algorithm based
new routing approach, Sect. 4 discusses the implementation and performance of the
approach for WMNSs. The section compares the performance of proposed algorithm with 7
other algorithms found in the literature. Section 5 concludes the paper.

2 PB3C Algorithm and its Performance on CEC-2014 Test Bench

The original one population based big bang big crunch algorithm henceforth known as
simple BBBC algorithm [1] has been modified to multi-population BB-BC called PB3C
algorithm. The pseudo code for the PB3C approach is given as Algorithm 1. The Algo-
rithm 1 and Algorithm 2 must update their elite(i) based upon local best of ith popula-
tion. The algorithm was implemented in MATLAB and was tested using a Core i7 @
2.2 GHz based laptop with 8§ GB RAM. All the 30 functions of CEC-2014 test bench were
tested with 25 trials for each function. We considered all functions with 10 dimensions
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Table 2 Number of functions for which PB3C gave the best performance

Functions for which PB3C gave best performance f11, f14, 15, f16, 24,
27
Function for which PB3C gave best performance that was equaled by other 26

algorithms also.

Table 3 Comparative performance of various algorithms on CEC-2014 test bench

Algorithm name No. of functions for No. of functions for which best  Total no. of functions
which this algorithm performance is observed but is in which best
performed unequalled  equaled by other algorithms also performance was
best observed

SOO+BOBYQA 0 4 4

DE_b6e6rlwithrestart 0 5 5

FCDE 0 3 3

FERDE 0 2 2

UMOEAS 0 9 9

CMLSP 0 3 3

RMALSChCMA 0 3 3

LSHADE 3 4 7

NRGA 0 0 0

FWADM 0 1 1

GaAPADE 0 4 4

POBL_ADE 0 1 1

MVMO 1 2 3

OptBees 0 1 1

RSDE 0 3 3

SO0 0 3 3

PB3C 6 1 7

only. The mean value of all the 30 functions is placed in Table 1. The functions on which
PB3C gave unmatched results are given in Table 2.

The Table 3 indicates that PB3C gave best performance with minimum error for 7
functions. Out of these 7 functions there are 6 such function for which it gave performance
unmatched by any other algorithm. For test function 26 it achieved the best results which
was also achieved by 5 other algorithms namely UMOEAS, POBL_ADE, CMLSP,
RMALSChCMA and MVMO. When we compare LSHADE and PB3C we find that both
give minimum mean error on 7 test functions. However, LSHADE gives best performance
on 3 test functions which no other algorithm could achieve and best performance (mini-
mum mean error) on 4 other test functions namely function number f1, f2, f3 and 8; this
best performance was also achieved by other algorithms namely FCDE, UMOEAS,
DE_b6e6rlwithrestart, GaAPADE, RMALSChCMA and RSDE as well. As far as com-
parison with UMOEAS is concerned; UMOEAS performs best on 9 test functions but the
UMOEAS is not unique on this count. This best performance of UMOEAS is also matched

@ Springer
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by other algorithms namely FCDE, DE_b6e6rlwithrestart, GaAPADE, RMALSChCMA,
RSDE and SOQ as well. Thus the observations clearly show that PB3C delivers unmatched
best performance in 6 functions which no other algorithm could reach.

Algorithm 1 Parallel Big Bang Big Crunch (PB3C) Algorithm
Begin
/* Big Bang Phase */
Generate N populations each of size NC candidates randomly Every candidate consisting
of NG genes;
iter =1
/* End of Big Bang Phase */
while iter <=TC do
/* TC is a termination criterion */
fori=1: N do
/* Big Crunch Phase Starts */
Compute the fitness of each candidate solutions;
Sort the population from best to worst based on fitness (cost) value;
Compute the centre of mass using Equation (1) of it” population [1];

o TS ]
YT TN L
Jj=1 fi
(1)
Best fit individual can be chosen in place of centre of mass;
Select local best candidates £y (4) for it" population;
end for
From amongst N best candidates select the globally best gbest candidate;
fori=1: N do
With a given probability replace a gene of £yc4(;) with the corresponding gene of
global best (gbest) candidate;
end for
/* End of Big Crunch Phase */
/* Big Bang Phase Starts */
Each of the N Current generations(populations) has one centre of mass/elite.
Evolve a new generation around every elite as follows:
for j = 1: NC do
for k = 1: NG do
Calculate new candidate solutions around the centre of mass/elite by adding
or subtracting a normal random number whose value decreases as the iterations elapse
using Equation 2;

Xnew(j,k) = ebest(j,k) + (L * rand) /m
(2)
end for
end for
/* m is the number of iteration and L is upper limit of the parameter*/
/* xnew is the new candidate solution */
/* End of Big Bang Phase */
iter = iter + 1;
end while
End

@ Springer



1608 S. Kumar et al.

3 PB3C Algorithm Based Routing Approach to WMNs

Wireless Mesh Networks (WMNs) have drawn significant attention of researchers in the
recent past. These are rapidly deployable, self-aware, self-organizing, self-configured, self-
healing and self-balancing networks. In WMNs within a given radio range each node (sta-
tionary or mobile) has the capability to join and create a network automatically. It is able to do
so by sensing neighboring nodes with a similar capability within their radio range and
admitting themselves to the radio network according to the given set of rules. Routing in
WDMNs is the process to direct data packets from a given source to a given destination. It
requires significant attention in the dynamic network conditions of a WMN. It is desired that
these routing algorithms must work in a decentralized self-organizing and self-configuring
way in a highly dynamic environment. Due to their dynamic nature, routing in WMNSs is a
highly complex issue. Increasing size of WMNs further compounds the routing challenge.
Due to complexities associated with exact reasoning there is an increasing demand for soft
computing based techniques in WMN research. These techniques may make the WMNSs more
popular in terms of their self-organizing and self-configuring capabilities. Soft computing
provides the optimal solution within an affordable resource/time permitted by the WMN
dynamics. Since, computation times are very limited, the best solution needs to be replaced by
good enough solutions such that a given WMN quickly adapts to dynamically changing
environment [9]. The Parallel Big Bang and Big Crunch (PB3C) optimization is one such
powerful tool that can help simplify the things. PB3C approach can be used to select the near
shortest path for appropriate route selection in WMNs. The underlining priniciple is to
compute appropriate path within a stipulated time frame and use it rather than the shortest path
that may not get computed within a given time frame.

This appropriate path is the optimal cost path that may or may not be a least cost path. We
shall call this optimal cost path as the ’near shortest path’. There are many different routing
metrics available in the literature. Some of these are minimum hop count, per hop Round Trip
Time (RTT) [10], Per-Hop Packet Pair Delay (PktPair) [11], Expected Transmission Count
(ETX) [12], Expected Transmission Time (ETT), Weighted Cumulative ETT (WCETT) [13],
Expected Transmission on a Path (ETOP) [14], Effective Number of Transmission (ENT) and
Modified Expected Number of Transmissions (mETX) [15], Metric of Interference and
Channel Switching (MIC) [16], Bottleneck Link Capacity (BLC) path metric [17]. A novel
interference aware low overhead routing metric was proposed by Liran Ma et al. [18], cross
layer link quality and congestion aware (LQCA)[19]. For the WMN:s integrated link cost
route function (ILC ) was defined as follows [6, 7, 20]:

integrated link cost (ILC) = f (throughput,delay jitter, node_residual,e,gy)

Further we use the same route cost model for evaluating the cost as used in [20]

As discussed earlier PB3C is a multi-population based algorithm. In the PB3C algorithm
based approach we generate a set of N populations of candidate solutions. Each population
consists of NC candidate solutions. A route between source terminal pair is one potential
candidate that may lead to near shortest path between source and terminal node. For our
model we consider WMN as a connected, directed topology graph with nodes and links
between adjacent nodes with respective ILCs. Our objective is to evolve an ILC based
shortest possible path within a given timing constraint. We assume WMN under considera-
tion to be static for the given time period (i.e. time constraint). We effect all movements of
nodes after given timing constraint. For the next timing slot (time constraint) we consider
network to be again static and recomputed the shortest path within the available time.
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In order to create initial candidate solutions we construct the initial population as
follows [9]:

We start to search a random path from source to destination by randomly selecting a
node from the set of neighboring node of source node. Then, a node from the neighborhood
of this node is selected randomly. We continue with this process until the destination node
is reached. In order to keep the paths loop-free, those nodes which are already included in
the current path are excluded from being selected as the next node to be added into the
path, thereby avoiding re-entry of the same node into a path. This gives us a path between
source and the destination node. Repeating this process, we get the initial population of N
paths. The path with the lowest cost is selected as the elite.

In order to generate next generation from elite, we use the following steps to evolve a
new candidate solution (route) from the elite:

(a) Generate a random number R between 1 and S, Where S is the size of the route/path.
It is the total number of nodes in the elite (g (;))-

(b) Retain first R nodes of the elite discarding the remaining path.

(c) From Rth node onward discover a path to destination node. Thus evolving a new
path between source and terminal node.

We continue the above procedure till the next generation with NC routes (Candidate
Solutions) has evolved. We generate N such generations/populations.

Algorithm 2 PB3C Algorithm for Dynamic Shortest Path Routing
Begin
/* Big Bang Phase Starts */
Initialize the PB3C parameters. Generate N populations each with randomly generated
NC candidate Solutions (Paths);
/* End of Big Bang Phase */
while | = T'C do
/* TC is a termination criterion */
fori=1: N do
/* Big Crunch Phase Starts */
Calculate ILC of every link of the network. Using ILC evaluate the fitness/cost of
every discovered path;
Sort the ith populations from best to worst based on the values of ILC;
The best fit individual of ith population is chosen as the local best of the particular
population;
end for
/* End of Big Crunch Phase */
/* Big Bang Phase Starts */
Record the global best (gbest) path from amongst all the local best paths;
for i =1: N do
Generate a random number R between 1 and S, Where S is the total number total
number of nodes in the elite (£yesr(s));
Retain first R nodes of the elite discarding the remaining path;
From R node onward discover a path to destination node. Thus evolving a new
path between source and terminal node;
end for
/* End of Big Bang Phase */
end while
Print Gpest
End
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Table 4 Architectural details of various client WMN scenarios

No. of nodes Area (mm) Radio range Timing constraint(in s)

100 500 x 500 250 0.1,0.2,04,06,0.8,1,1.2, 1.4, 1.6, 1.8, 2.0
500 1000 x 1000 250 0.1,1.2,14,1.6,1.8,2,22,24,26, 2.8, 3.0
1000 1000 x 1000 250 14,1.6,1.8,2,22,24,26,2.8,3,32,35
1500 2000 x 2000 250 14,1.6,1.8,2,22,24,2.6,28,3, 35,40
2000 2000 x 2000 250 1.5,2,22,24,26,28,3,35,4,45,5.0
2500 2000 x 2000 250 2,2.5,3.0,3.5,4.0,45,50,5.5, 6.0, 6.5, 7.0,

7.5, 8.0, 8.5, 9.0, 9.5, 10.0

4 Performance of the Proposed Routing Approach: Simulation
and Results

We implemented the proposed approach in MATLAB and performed simulations con-
sidering dynamic scenarios. The architectural details of various Client WMN scenarios are
given in Table 4. We considered 100, 500, 1000, 1500, 2000 and 2500 node client WMN
architectures. The proposed PB3C based routing approach was applied to all these net-
works. Performance of all these networks was evaluated for stipulated time constraints. For
a given network and for each timing constraint we conducted the 20 trials for each set. For
each time set minimum, average and maximum cost paths were enumerated. In this case
the stop and re-evaluate criterion was defined as the available computing time in the form
of given time constraint. Though we performed observations for 100, 500, 1000, 2000 and
2500 node WMN s, for the sake of brevity we have focused our discussion on the per-
formance of large networks consisting of 1500, 2000 and 2500 node client WMNSs only.
We have included the performance of small networks consisting of 100, 500 and 1000
nodes towards the end of this section.

4.1 Comparative Performance of 1500 Node Client WMNs

For 1500 node client WMNs we evaluated the performance of eight algorithms.We con-
ducted 11 sets of trials; each set consisted of 20 trials. The results are placed as Table 5 and
are also shown as histogram in Fig. 1. We observe that for a processing time constraint of
1.4 s AODV, ACO and DSR failed to generate a path in any of the 20 trials of the set.
PB3C topped the table by generating the minimal cost path in 10+A trials out of the total
number of 20 trials of the set. PB3C produced minimal cost path 104+-A = 18 times. Here,
by 10+A = 18 means in 10 trials algorithm produced minimum cost path from amongst all
the algorithms and A= 8 is the number of trials for which BBO, BBBC, Firefly (FA), PB3C
and BAT algorithms produced the same result in this particular set only. 2 times PB3C
generated paths costlier than minimum cost paths generated by other algorithms. BBBC
generated minimal cost path 1+A = 9 times, FA generated 1+A = 9 times.

We further, observe that except for timing constraints of 2.6, 3.5 and 4 s, PB3C out-
performed all other 7 competitors. For the timing constraint of 2.6 s BBBC evaluated the
minimum cost route 6+G = 11 times followed by PB3C 5+G = 10 times and FA 44+G = 9
times. G = 5 is the number of trials for which BBO, BBC, FA, PB3C and BAT algorithms
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Table 5 Performance of 1500 node client network

Algorithm  Timing constraints

1.4 1.6 1.8 2.0 22 24 26 2.8 30 35 4

AODV - - - - - - - - - - 5+15 FAIL
DSR - - - - - - - - - - -

ACO - - - - - - - - - - -

BBO A B C D E F G H I J K

BBBC 1+A  34B 1+C 3+D 8+E 6+F 6+G 7+H 6+1 9+J 5+K
FIREFLY 1+A B I+C  3+D 2+E 34F 44+G 3+H 3+ J 4+K

PB3C 10+A 11+B 144C 114D B8+E 8+F 54+4G 9+H 941 8+J 54K

BAT A B C D E F G H I J K

A=8,B=6,C=4,D=3,E=2,F=3,G=5,H=1,1=2,]J =3, K= 1, — means failed to produce path in
any of the trials

Best Performance Frequency Vs Time Plot (Number of Nodes: 1500, Area : 2000mx2000m)
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14 16 18 2 22 24 26 28 3 35 4

m PBEEC A mBBEC mBAT mAODY Time in Seconds

Fig. 1 Comparative performance OF 1500 node client WMN5s

gave equal performance i.e. produced minimum cost paths with equal ILC. For the timing
constraint of 3.5 s BBBC evaluated the minimum cost route 9+J = 12 times followed by
PB3C 8+J =11 times; J = 3 is the number of trials for which BBO, BBC, FA, PB3C and
BAT algorithms gave equal cost paths. ACO, DSR and AODYV failed to discover route in
any of the trial sets. At the timing constraint of 4 s PB3C and BBBC generated minimum
cost path 5+K = 6 times followed by FA 44K = 5 times. Though, AODV could discover
minimum cost route 5 times out of 20 trials yet it cannot be recommended for use in client
WMNSs due to the fact that it failed to generate any path in 15 of the 20 trials. Indicating
that AODYV is highly unreliable for routing in client WMNs.

As shown in Table 6 (Comparative Performance of all algorithms) for the total of 220
trials from 11 sets PB3C gave the best performance 98 times followed by BBBC 55 times,
FA 24 times and AODV 5 times. 38 times BBO, BBC, FA, PB3C and BAT algorithms
achieved same performance except for ACO, AODV and DSR.
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Table 6 Comparative performance of all algorithms

Timing constraints

Number of nodes Trials PB3C FA BBBC BAT AODV BBO DSR ACO All equals

100 220 74 17 75 0 35 4 0 0 15
500 220 75 16 76 0 34 0 1 0 18
1000 220 98 37 72 0 0 0 0 0 13
1500 220 98 24 55 0 5 0 0 0 38
2000 220 106 21 51 0 0 0 0 0 42
2500 340 167 32 91 0 6 0 0 0 44

Table 7 Performance OF 2000 Node Client Network

Timing constraints

Algorithm 1.5 2.0 22 2.4 2.6 2.8 3.0 35 4.0 45 5

AODV - - - - - - - - - - -
DSR - - - - - - - - - - -
ACO - - - - - - - - - - -
BBO A B C D E F G H I J K
BBBC 3+A 5+B 3+C 6+D 7+E  44F 54+4G 74+H 2+1 4+J 5+K
FA A 2+B 24+C D 1I+E  44F 24G 34+H 3+ 1+J 3+K
PB3C 14+A  10+4B 10+4C 114D 74E 84+F 94G 6+H 10+I 124] 94K
BAT A B C D E F G H I J K

A=3,B=3,C=5D=3,E=5F=4,G=4,H=4,1=5,] =3, K=3, — means failed to produce path in
any of the trials

4.2 Comparative Performance of 2000 Node Client WMNs

Table 7 and Fig. 2 present simulation results for 2000 node client WMNs. We observe that
except for timing constraints of 2.6 and 3.5 s, PB3C outperformed all other competitors. At
timing constraint of 2.6 s PB3C and BBBC gave equal performance by generating mini-
mum cost paths 7+E = 12 times each, followed by FA 1+E = 6 times, In E = 5 trials out of
20, PB3C, BBO, FA, BAT and BBBC gave equal performance. At timing constraint of
3.5 s BBBC evaluated the minimum cost route 7+H = 11 times followed by PB3C, 6+H =
10 times and FA, 3+H = 7 times. ACO, AODYV and DSR failed to discover a route in any
of the trials of any of the sets.

As shown in Table 6 we find that for the total of 220 trials from 11 sets PB3C gave the
best performance 106 times followed BBBC 51 times, FA 21. In 42 trials 5 algorithms
namely BBBC, BBO, BAT, FA and PB3C achieved same performance.
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Best Performance Frequency Vs Time Plot(Number of Nodes : 2000, Area : 2000mx2000m)
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Fig. 2 Comparative performance of 2000 node client WMNs

4.3 Comparative Performance of 2500 Node Client WMNs

For 2500 nodes networks 17 sets each consisting of 20 trials were conducted. Table 8 and
histogram of Fig. 3 present the simulation results.

We observe that for all the timing constraints PB3C outperformed all other 7 algo-
rithms. Up to time constraint of 8.5 s AODV failed to discover route in any of the trial sets.
With the timing constraint going up to 9 s AODV discovered the route 4 times and failed to
discover the route 16 times out of the total of 20 trials for this constraint. For both timing
constraints of 9.5 and 10 s AODV succeeded to discover rout only once in each set and
failed 19 times. Thus for the given client networks the AODV is highly unreliable protocol.
Further the ACO and DSR could not discover the route in any of the trial sets.

For the total of 340 trials from 17 sets PB3C pulled up the best performance 167 times
followed BBBC 91 times, FA 32 times, AODV 6 times and 44 times 5 algorithms i.e.
BBBC, BBO, BAT, FA and PB3C based algorithms achieved same performance.

4.4 Comparative Performance of All Approaches

For comparative performance of the given 8 WMN routing approaches we have conducted
total of 1440 trials. We have included the observations on WMNs with 100, 500 and 100
nodes also here. As is evident in Fig. 4, the performance of BBBC and PB3C is better than
other approaches for 100 and 500 node client WMNs. But when the number of nodes
increases beyond 1000 nodes the performance of PB3C showed significant improvement,
out performing all other competing approaches. Hence, for complex and large networks of
1000 node capacity and beyond the PB3C approach is observed to be the best suited
approach as compared to given other soft computing and hard computing based
approaches.
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Best Performance Frequency Vs Time Plot (Number of Nodes : 2500, Area : 2000mx2000m)
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Fig. 3 Comparative performance of 2500 node client WMNs
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Fig. 4 Comparative performance of all algorithm
5 Conclusions

This paper evaluated the performance of PB3C algorithm on CEC-2014 test bench and
compared it with 16 other commonly used algorithms found in the literature. Further PB3C
algorithm was applied to near shortest path routing in WMNs. Routing under dynamic
conditions as is the case with WMNSs is a challenging issue faced by research community.
As far as performance of PB3C over CEC-2014 test bench is concerned it gave best
performance in 7 test bench functions. Out of these 7 it achieved unmatched best for 6
functions. Seventh best performance was achieved for test function number 26 of CEC-
2014. However, this performance was also equalled by 5 other algorithms namely
UMOEAS, POBL_ADE, CMLSP, RMALSChCMA and MVMO. Though UMOEAS gave
minimal error on 9 functions yet this performance was equaled by other algorithms as well.
Thus we find PB3C is the only algorithm that gives unique unmatched best performance in
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6 of the test functions making it the best available algorithms out of the 17 algorithms.
A PB3C based new routing approach was also proposed to evaluate near shortest path
based routing in client WMNSs. The approach was compared with the 7 other approaches
found in the literature. Simulation results prove that the PB3C based routing approach
outperforms all other 7 approaches when the network size grows to 1000 nodes or above.
Thus establishing the clear superiority of the proposed approach over AODV, DSR, ACO,
FA, BAT, BBO and BB-BC algorithm based approaches.
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