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Abstract The quantum of power consumption in wireless sensor nodes plays a vital role in

power management since more number of functional elements are integrated in a smaller

space and operated at very high frequencies. In addition, the variations in the power

consumption pave the way for power analysis attacks in which the attacker gains control of

the secret parameters involved in the cryptographic implementation embedded in the

wireless sensor nodes. Hence, a strong countermeasure is required to provide adequate

security in these systems. Traditional digital logic gates are used to build the circuits in

wireless sensor nodes and the primary reason for its power consumption is the absence of

reversibility property in those gates. These irreversible logic gates consume power as heat

due to the loss of per bit information. In order to minimize the power consumption and in

turn to circumvent the issues related to power analysis attacks, reversible logic gates can be

used in wireless sensor nodes. This shifts the focus from power-hungry irreversible gates to

potentially powerful circuits based on controllable quantum systems. Reversible logic

gates theoretically consume zero power and have accurate quantum circuit model for

practical realization such as quantum computers and implementations based on quantum

dot cellular automata. One of the key components in wireless sensor nodes is the cryp-

tographic algorithm implementation which is used to secure the information collected by

the sensor nodes. In this work, a novel reversible gate design of 128-bit Advanced

Encryption Standard (AES) cryptographic algorithm is presented. The complete structure

of AES algorithm is designed by using combinational logic circuits and further they are

mapped to reversible logic circuits. The proposed architectures make use of Toffoli family

of reversible gates. The performance metrics such as gate count and quantum cost of the

proposed designs are rigorously analyzed with respect to the existing designs and are

properly tabulated. Our proposed reversible design of AES algorithm shows considerable

improvements in the performance metrics when compared to existing designs.
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1 Introduction

The reversible logic has demonstrated promising results in emerging applications of

computing paradigm such as quantum computation and nanotechnology [1, 2]. Reversible

logic was first related to power when Landauer stated that information loss due to func-

tional irreversibility leads to power dissipation [3]. This principle is further supported by

Bennett that zero power dissipation can be achieved only when the circuit contains

reversible gates [4]. A cryptographic algorithm is an essential part in building secure

systems to protect information against attacks. A well-known cryptographic algorithm is

the Data Encryption Standard [5], which has been widely adopted in many security

products. However, serious considerations arise for long-term security because of the

relatively short key word length of only 56 bits and due to the highly successful crypt-

analysis attacks.

In November 2001, the National Institute of Standards and Technology (NIST) of the

United States chose the Rijndael algorithm as the suitable Advanced Encryption Standard

(AES) [6] to replace the DES algorithm. Since then, many hardware implementations have

been proposed in literature. Some of the works target field programmable gate arrays

(FPGA) [7] as the implementation platform and some target application-specific integrated

circuits (ASIC) [8]. But both FPGA and ASIC implementations consume power from its

source which leads to information leakage through side channel attacks.

Quantum computing is a new paradigm for implementing cryptographic algorithms

using reversible gates [9]. The primary reason for this is the increasing demands for low

power and increased security for the computing devices. As our computing demands

become more complex, the power requirements tend to increase. This further leads to a

prominent side channel attack namely power analysis attacks on cryptographic systems,

notably categorized as simple power analysis (SPA), differential power analysis (DPA) and

high order power analysis (HO-PA) attacks. Cryptographic systems implemented with

reversible gates ideally consume zero power and hence thwarts all side channel attacks

related to power analysis. Energy efficient implementations of reversible building blocks to

counterattack power analysis attacks were proposed in [10]. By using proper charge

sharing mechanism, resistance to power analysis attacks has been achieved in their pro-

posed implementations.

In Ref. [11], an attempt has been made to apply reversible logic to develop secure

cryptosystems against power analysis attacks. A prototype of reversible Arithmetic and

Logic Unit (ALU) for crypto-processor was presented in that work. Reversible Mont-

gomery multipliers were proposed to resist power analysis attacks in crypto hardware [12].

The various functional blocks in AES have been synthesized using Toffoli family of

reversible gates in [13]. The reversible gate design of AES SubBytes and Inverse SubBytes

transformations were proposed in [14]. The reversible gate design of finite field archi-

tectures for Elliptic Curve Cryptography was proposed in [15].

In the current work, a well optimized reversible gate design of 128-bit AES crypto-

graphic algorithm is presented. First, the key transformations in the algorithm are syn-

thesized by using conventional logic gates. Then the transformations are mapped to

reversible logic and are synthesized by using reversible logic gates. The reversible logic
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synthesis is optimized by reusing the existing reversible gates wherever applicable so that

the performance metrics are improved.

The paper is organized as follows. The background of reversible logic gates and their

quantum cost are given in Sect. 2. Section 3 highlights the transformation steps in AES

cryptographic algorithm. The proposed reversible building blocks of AES algorithm are

explained in Sect. 4. The performance analysis of the proposed reversible design with the

existing designs is given in Sect. 5. Section 6 concludes the paper with necessary

references.

2 Background on Reversible Logic Gates

Reversible logic marks a promising new direction where all operations are performed in an

invertible manner. That is, in contrast to traditional logic, all computations can be reverted

(i.e. the inputs can be obtained from the outputs and vice versa). In addition, reversible

logic gates are bijective transformations on the inputs, i.e. number of input and outputs are

equal and every distinct input gives a distinct output. Reversible gates do not allow any

fanout or feedback. The commonly used reversible gates are NOT, controlled-NOT alias

CNOT (also called as Feynman gate), controlled–controlled-NOT alias CCNOT (also

called as Toffoli gate), SWAP and Fredkin gates as shown in Fig. 1. Among these, NOT,

CNOT and Toffoli gates are basically n-bit controlled Toffoli gate with control lines n = 0,

1 and 2 respectively. The behavior of few reversible gates is defined as follows:

NOT: a0 = 1 � a

CNOT: a0 = a, b0 = a � b

TOFFOLI: a0 = a, b0 = b, c0 = c � ab

SWAP: b0 = a, a0 = b

FREDKIN: a0 = a, b0 = a0b ? ac, c0 = ab ? a0c.

The reversible logic synthesis can be done either with Toffoli gate family or Fredkin

gate family since both are universal gates. In our proposed reversible design, Toffoli family

of reversible gates has been used for reversible logic synthesis. The quantum cost of

Toffoli gate with 0, 1 and 2 control lines is 1, 1, and 5 respectively. The performance

metrics considered for reversible gate design are number of ancilla inputs, number of

garbage outputs, number of reversible gates used, its quantum cost and delay in terms of

number of stages. Ancilla inputs (Constants with either 0 or 1) and Garbage outputs are

information that is not needed for the actual computation. They are required since the

Fig. 1 Reversible gates
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reversibility necessitates an equal number of outputs and inputs. Quantum cost denotes the

effort needed to transform a reversible circuit to a quantum circuit [16].

3 Background on AES Algorithm

The AES algorithm (FIPS 2001) is a symmetric block cipher that processes data blocks of

128 bits using a cipher key of length 128, 192, or 256 bits. Each data block consists of a

4 9 4 array of bytes called the state S, on which the basic operations of the AES algorithm

are performed. In the encryption process, after an initial round key addition, a round

function consisting of four different transformations—SubBytes, ShiftRows, MixColumns

and AddRoundKey—is applied to the data block in the encryption process.

The SubBytes transformation is a nonlinear byte substitution that operates indepen-

dently on each byte of the state S using a substitution table (S-Box). The ShiftRows

operation is a circular shifting on the rows of the state with different numbers of bytes

(offsets). The MixColumns transformation mixes the bytes in each column of the state by

the multiplication with a fixed polynomial modulo x4 ? 1. AddRoundKey is an XOR

operation that adds a round key to the state S in each iteration, where the round keys are

generated during the key expansion phase. The round function is performed iteratively 10,

12, or 14 times (Nr), depending on the key length of 128, 192 or 256-bits respectively.

The MixColumns transformation is not applied to the final round. The complete AES

encryption steps are outlined in Fig. 2. The AES decryption steps can be performed by two

ways such as inverse cipher and equivalent inverse cipher. In the Inverse Cipher process,

shown in Fig. 3, the sequence of the transformations differs from that of the encryption,

while the sequence of the key schedules for encryption and decryption remains the same.

In the equivalent inverse cipher process, shown in Fig. 4, the sequence of transformations

is same as the encryption. This is accomplished with a change in the key schedule.

4 Proposed Reversible Building Blocks of AES Transformations

In this research, the major transformations of AES algorithm such as SubBytes [14],

MixColumns, ShiftRows, AddRoundKey and Key scheduler are deduced using conven-

tional logic gates. Then, conventional logic gates are mapped to reversible logic gates and

are reused wherever possible in order to optimize the performance metrics.

The proposed reversible gate design of AES algorithm utilizes Toffoli family of

reversible gates for their logic synthesis and is optimized in terms of reduced number of

ancilla inputs, garbage outputs, gate count, quantum cost and delay. The functional veri-

fication of the proposed reversible gate designs is carried out by writing Verilog code for

each reversible gate and integrating them. Xilinx ISE 13.2 is used for simulation purpose.

4.1 SubBytes and InvSubBytes Transformations

In the encryption module, the SubBytes transformation is a non-linear transformation,

which computes the multiplicative inverse of each byte of the state S in GF(28) with

irreducible polynomial P(x) = x8 ? x4 ? x3 ? x ? 1 followed by an affine transforma-

tion. The transformation in the decryption module performs the inverse of the corre-

sponding transformation in the encryption module.
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4.1.1 Design Approaches

The SubBytes and InvSubBytes transformations can be implemented by two different

approaches. They can be either constructed as a single circuit whose input–output relation

is directly equivalent to the SubBytes transformation known as Look-up Table (LUT)

approach or constructed as a multiplicative inversion circuit and an affine transformation

circuit independently. Then, these two circuits are cascaded to design the SubBytes

transformation known as composite field arithmetic approach.

Plaintext (128 bits)

AddRoundKey

MixColumns

SubBytes

ShiftRows

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Ciphertext (128 bits)

RoundKey 0

RoundKey i

RoundKey Nr

} Initial
Round

For i=1 to Nr-1
Rounds

Final
Round

Fig. 2 AES Encryption process
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4.1.2 Composite Field Arithmetic Approach

Composite fields are frequently used in the design of Galois Field arithmetic where

arithmetic operations rely on table lookups. Composite fields also known as sub-field

arithmetic can be used to reduce lookup-related costs. Hence, another approach to design

SubBytes and InvSubBytes transformations is the use of composite field arithmetic in the

design of multiplicative inversion module. The idea of applying composite field arithmetic

to AES algorithm is explored in detail in [17–19]. Applying composite field arithmetic, the

elements of large-order fields are mapped to those of small-order fields in which the field

operations can be carried out in a simpler way with reduced hardware cost. The functional

blocks to design multiplicative inverse module in GF(28) is shown in Fig. 5.

Ciphertext (128 bits)

AddRoundKey

InvMixColumns

InvShiftRows

InvSubBytes

AddRoundKey

InvShiftRows

InvSubBytes

AddRoundKey

Plaintext (128 bits)

RoundKey Nr

RoundKey i

RoundKey 0

Initial
Round

For i= Nr-1 to 1
Rounds

Final
Round

}

Fig. 3 AES decryption using inverse cipher process
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Ciphertext (128 bits)

AddRoundKey

InvMixColumns

InvShiftRows

InvSubBytes

AddRoundKey

InvShiftRows

InvSubBytes

AddRoundKey

Plaintext (128 bits)

RoundKey Nr

RoundKey i

RoundKey 0

Initial
Round

For i= Nr-1 to 1
Rounds

Final
Round

}

InvMixColumns

Fig. 4 AES decryption using equivalent inverse cipher process
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Fig. 5 Basic building blocks to design multiplicative inverse module in GF(28)
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The details of each block in the GF(28) multiplicative inversion module are illustrated

below.

d ? Isomorphic mapping from GF(28) to composite fields

x2 ? Squarer in GF(24)

xk ? Multiplication with constant k in GF(24)

� ? Addition operation in GF(24)

x-1 ? Multiplicative inversion in GF(24)

X ? Multiplication operation in GF(24)

d-1 ? Inverse isomorphic mapping to GF(28).

The SubBytes transformation can be performed by taking the multiplicative inverse in

GF(28) followed by affine transformation and the InvSubBytes transformation can be

performed by inverse affine transformation followed by multiplicative inverse in GF(28).

The sequence of steps to carry out both transformations is shown below.

SubBytes transformation: multiplicative inversion in GF(28) followed by Affine

transformation.

InvSubBytes transformation: inverse affine transformation followed by Multiplicative

inversion in GF(28).

4.1.3 Proposed Reversible Multiplicative Inverse Module in GF(28)

Since reversible gate designs are functionally reversible, it is sufficient to design either

forward isomorphic mapping or inverse isomorphic mapping. The number of XOR oper-

ations required in the forward isomorphic mapping is 24 whereas inverse isomorphic

mapping takes only 23 XOR operations. Hence, inverse isomorphic mapping function has

been designed by using reversible gates in this research and the same design can be used

for forward isomorphic mapping also.

The corresponding reversible gate design requires 23 CNOT gates which results in a

quantum cost of 23. This calculation is based on the assumption that each XOR operation

requires one CNOT gate when the reversible logic synthesis is performed by conventional

design using one-to-one mapping from logic operations to equivalent reversible gates.

However, in the proposed design, the gate count and quantum cost is optimized by properly

reusing the existing reversible gates. The proposed reversible inverse isomorphic mapping

block takes only 15 CNOT gates and has a quantum cost of 15 which gives 35% savings in

both gate count and quantum cost compared to the conventional design. The proposed

design has zero ancilla inputs, zero garbage outputs and has delay of 13 as shown in

Table 1. The reversible gate design of forward/inverse isomorphic mapping block is shown

in Fig. 6.

The reversible squarer and multiplication with constant k block in GF(24) is shown in

Fig. 7. The squarer block takes 4 CNOT gates and multiplication with constant k block

takes 4 CNOT gates when they are synthesized separately by using reversible gates. But

the proposed reversible gate design of the merged squarer and multiplication with constant

k block takes only 4 CNOT gates and has a quantum cost of 4 which gives 50% savings in

gate count and quantum cost compared to the individual designs. Also, it takes zero ancilla

input, zero garbage output and has a delay of 3 as shown in Table 1.

The addition operation in GF(24) can be performed by simple logical XOR operation.

The reversible gate design of the GF(24) adder block is shown in Fig. 8, which takes 4

1434 P. Saravanan, P. Kalpana

123



CNOT gates and has a quantum cost of 4. Also, it takes zero ancilla inputs, 4 garbage

outputs and has a delay of 1 as shown in Table 1.

The reversible gate design of GF(24) multiplier block requires 9 AND operations and 46

XOR operations. The reversible logic synthesis by one-to-one mapping takes 9 CCNOT

gates and 46 CNOT gates which results in a quantum cost of 91. The proposed design is

optimized by reusing the reversible gates properly so that the reversible GF(24) multiplier

Table 1 Performance analysis of proposed reversible building blocks of multiplicative inverse module in
GF(28)

Name of the block No. of ancilla
inputs

No. of garbage
outputs

No. of
reversible gates

Quantum
cost

Delay

IsoMap/InvIsoMap 0 0 CNOT—15 15 13

Squarer and multiplication by
constant k

0 0 CNOT—4 4 3

Adder (XOR block) 0 4 CNOT—4 4 1

Multiplication in GF(24) 13 17 CNOT—25
CCNOT—9

70 18

Multiplicative inverse in
GF(24)

8 8 CNOT—14
CCNOT—8

54 19

m5

m6

m7

m3
m2
m1
m0

m4

k6
k2
k4
k1
k7
k3
k5
k0

Fig. 6 Reversible IsoMap/
InvIsoMap block

m3
m2
m1

m0

k1

k3
k2

k0

Fig. 7 Reversible squarer and
multiplication with constant
block

m4
m5
m6
m7
m3
m2
m1
m0

Garbage (0)
Garbage (1)
Garbage (2)
Garbage (3)
k3
k2
k1
k0

Fig. 8 Reversible adder in
GF(24)
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block takes only 9 CCNOT gates and 25 CNOT gates and has a quantum cost of 70 which

results in 38% savings in Gate count and 23% savings in quantum cost. The proposed

design takes 13 ancilla inputs, 17 garbage outputs and has a delay of 18 as shown in

Table 1. The reversible gate design of the multiplication in GF(24) is shown in Fig. 9.

The Multiplicative inverse in GF(24) can be calculated by three different approaches

namely Square–Multiply approach, Multiple-Decomposition approach and Direct Mapping

approach [18]. The computation of multiplicative inverse using Square and multiply

approach is shown in Fig. 10. The corresponding reversible gate design can be obtained by

using reversible squarer block and reversible GF(24) multiplier. The reversible gate design

of multiplicative inverse in GF(24) using Square and Multiply approach takes 70 CNOT,

18 CCNOT gates and has a quantum cost of 160. Also, it takes 34 ancilla inputs, 42

garbage outputs and has a delay of 56 as shown in Table 2.

In multiple-decomposition approach, the multiplicative inverse in GF(24) can be

computed by using composite field approach. In this case, the element in GF(24) is

decomposed into a composite field of GF(22)2. The computation of multiplicative inverse

in composite field GF(22)2 is shown in Fig. 11 [18]. The reversible gate design of multi-

plicative inverse in composite field GF(22)2 is shown in Fig. 12. The reversible gate design

takes 22 CNOT, 9 CCNOT gates, and has a quantum cost of 67. Also, it takes 14 ancilla

inputs, 14 garbage outputs, and has a delay of 19 as shown in Table 2.

Let m = {m3m2m1m0}2 be an element in GF(24) and its inverse is given by

m-1 = {m3
-1m2

-1m1
-1m0

-1}2 which can be obtained by direct mapping approach as given in

Eq. (1) [18].

m7

m6
m3
m2

m5
m4
m1
m0

Ancilla (0)
Ancilla (1)
Ancilla (2)
Ancilla (3)
Ancilla (4)
Ancilla (5)
Ancilla (6)
Ancilla (7)
Ancilla (8)
Ancilla (9)

Ancilla (10)
Ancilla (11)
Ancilla (12)

Garbage (0)
Garbage (1)
Garbage (2)
Garbage (3)
Garbage (4)

Garbage (9)

Garbage (6)
Garbage (7)
Garbage (8)

Garbage (5)

Garbage (10)
k2
k3
Garbage (11)

k0
k1

Garbage (12)
Garbage (13)
Garbage (14)
Garbage (15)

Garbage (16)

Fig. 9 Reversible multiplier in GF(24)
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m�1
3 ¼ m3 � m3m2m1 � m3m0 � m2

m�1
2 ¼ m3m2m1 � m3m2m0 � m3m0 � m2 � m2m1

m�1
1 ¼ m3 � m3m2m1 � m3m1m0 � m2 � m2m0 � m1

m�1
0 ¼ m3m2m1 � m3m2m0 � m3m1 � m3m1m0�

m3m0 � m2 � m2m1 � m2m1m0 � m1 � m0

ð1Þ

By analysing Eq. (1), it can be inferred that the direct mapping approach requires 25

AND operations and 21 XOR operations to calculate the multiplicative inverse. The

reversible logic synthesis of Eq. (1) using one-to-one mapping takes 25 CCNOT gates, 21

CNOT gates and has a quantum cost of 146. In the proposed reversible gate design of

GF(24) multiplicative inversion module, the reversible gates are properly reused so that it

takes only 8 CCNOT and 14 CNOT gates with a quantum cost of 54 as shown in Fig. 13.

x2 x2

4XX

x2
4

Element in 
GF(24)

Multiplicative 
Inverse of the 

element

Fig. 10 Multiplicative inverse
using square and multiply
approach

Table 2 Performance comparison of reversible multiplicative inverse modules in GF(24)

Name of the
approach

No. of ancilla
inputs

No. of garbage
outputs

No. of reversible
gates

Quantum
cost

Delay

Square–multiply 34 42 CNOT—70
CCNOT—18

160 56

Multiple
decomposition

14 14 CNOT—22
CCNOT—9

67 19

Direct mapping 8 8 CNOT—14
CCNOT—8

54 19

Element in 
GF(24)

x2 x

X

x-1

X

X

Multiplicative 
Inverse of the 

Element

4

2

2

2 4

2

2

Fig. 11 Multiplicative inverse using multiple decomposition approach
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The reusability of reversible gates results in 52% savings in gate count and 63% savings in

quantum cost. The proposed design takes 8 ancilla inputs and 8 garbage outputs and has a

delay of 19 as shown in Table 2.

From Table 2, it can be inferred that the multiplicative inverse in GF(24) can be effi-

ciently computed with direct mapping approach, since it takes less number of reversible

gates and the quantum cost involved is also less. This is because, the composite field

approach will not give optimum results when the order of the field involved is small such

as GF(24). Hence, in the proposed reversible SubBytes and InvSubBytes transformations,

the multiplicative inverse in GF(24) is calculated by direct mapping approach.

The performance metrics of the reversible building blocks of GF(28) multiplicative

inversion module are given in Table 1. The proposed reversible GF(28) multiplicative

inversion module requires two reversible IsoMap/InvIsoMap block, two reversible GF(24)

adder, one reversible Squarer and Multiplication by constant k block, three reversible

GF(24) multiplier, and one reversible GF(24) multiplicative inversion module as shown in

Fig. 5 [18]. The performance metrics of the proposed reversible GF(28) multiplicative

inversion module are tabulated in Table 3.

m0
m1
m2
m3

Ancilla (0)
Ancilla (1)
Ancilla (2)
Ancilla (3)
Ancilla (4)
Ancilla (5)
Ancilla (6)
Ancilla (7)
Ancilla (8)
Ancilla (9)

Ancilla (10)
Ancilla (11)
Ancilla (12)
Ancilla (13)

Garbage (0)
Garbage (1)
Garbage (2)
Garbage (3)
Garbage (4)
Garbage (5)
Garbage (6)
Garbage (7)
Garbage (8)
Garbage (9)
k0
k1

k2
k3

Garbage (10)
Garbage (11)
Garbage (12)
Garbage (13)

Fig. 12 Reversible gate design of multiplicative inverse module using multiple decomposition approach

m0
m1
m2
m3

Ancilla (0)
Ancilla (1)
Ancilla (2)
Ancilla (3)
Ancilla (4)
Ancilla (5)
Ancilla (6)
Ancilla (7)

k0
k1

k2
k3

Garbage (0)

Garbage (1)
Garbage (2)
Garbage (3)
Garbage (4)
Garbage (5)
Garbage (6)
Garbage (7)

Fig. 13 Reversible gate design of multiplicative inverse module using direct mapping approach
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4.1.4 Proposed Reversible Affine Transformation Block

The reversible gate design of affine transformation is shown in Fig. 14. Since the design is

functionally reversible, it is enough if either affine transformation or inverse affine

transformation is considered. In this research, reversible gate design of affine transfor-

mation has been carried out which actually requires 4 NOT operations and 32 XOR

operations. The reversible logic synthesis using one-to-one mapping approach requires 4

NOT and 32 CNOT gates with a quantum cost of 36. By properly reusing the existing

reversible gates, the proposed reversible affine transformation block is optimized to 4 NOT

and 21 CNOT gates with a quantum cost of 25. This optimization results in 31% savings in

both gate count and quantum cost. The proposed design takes zero ancilla inputs, zero

garbage outputs and has a delay of 21 as shown in Table 4.

4.1.5 Proposed Reversible SubBytes/InvSubBytes Transformation Blocks

The reversible SubBytes transformation can be obtained by cascading reversible GF(28)

multiplicative inversion module and reversible affine transformation block as shown in

Fig. 15 [18]. The proposed reversible SubBytes transformation takes 4 NOT gates, 152

CNOT gates, 35 CCNOT gates and has a quantum cost of 331. Also, it takes 47 ancilla

Table 3 Performance analysis of proposed reversible multiplicative inverse module in GF(28)

Name of the block No. of
ancilla
inputs

No. of
garbage
outputs

No. of
reversible
gates

Quantum
cost

Delay

IsoMap/InvIsoMap 0 0 CNOT—30 30 26

Squarer and multiplication by
constant k

0 0 CNOT—4 4 3

Adder (XOR block) 0 8 CNOT—8 8 2

Multiplication in GF(24) 39 51 CNOT—75
CCNOT—27

210 36

Multiplicative inverse in GF(24) 8 8 CNOT—14
CCNOT—8

54 19

Proposed reversible GF(28)
multiplicative inversion module

47 67 CNOT—131
CCNOT—35

306 83

m7
m6
m5
m4
m3
m2
m1
m0

k3
k2
k1
k0
k7
k6
k5
k4

Fig. 14 Reversible affine transformation block
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inputs, 67 garbage outputs and has a delay of 104 as shown in Table 4. The simulation

output of the proposed reversible SubBytes transformation is shown in Fig. 16.

The reversible InvSubBytes transformation can be obtained by cascading reversible

affine transformation and reversible GF(28) multiplicative inversion module as shown in

Fig. 17 [18]. The performance metrics of the proposed reversible InvSubBytes transfor-

mation is similar to reversible SubBytes transformation since the same building blocks are

used for both transformations. The simulation output of the proposed reversible InvSub-

Bytes transformation is shown in Fig. 18. The proposed reversible InvSubBytes transfor-

mation takes 4 NOT gates, 152 CNOT gates, 35 CCNOT gates and has a quantum cost of

331. Also, it takes 47 ancilla inputs, 67 garbage outputs and has a delay of 104. The

performance metrics of the proposed reversible SubBytes/InvSubBytes transformation are

given in Table 4.

4.1.6 Performance Analysis

Table 5 summarizes the performance improvement in the proposed reversible SubBytes/

InvSubBytes transformation module compared to the conventional reversible designs. An

important point to be noted here is that the conventional reversible designs are the ones

Table 4 Performance analysis of proposed reversible subbytes/invsubbytes transformation module

Name of the block No. of
ancilla
inputs

No. of
garbage
outputs

No. of
reversible
gates

Quantum
cost

Delay

Multiplicative inverse in GF(28) 47 67 CNOT—131
CCNOT—35

306 83

Affine transformation 0 0 NOT—4
CNOT—21

25 21

Proposed reversible SubBytes/
InvSubBytes transformation module

47 67 NOT—4
CNOT—152
CCNOT—35

331 104

Reversible 
GF(28) 

Multiplicative 
inversion
module

Reversible Affine 
Transformation

8

Input of 
SubBytes 

Transformation
(x)

8

Output of 
SubBytes 

Transformation
(z)

Fig. 15 Block diagram of the proposed reversible SubBytes transformation

Fig. 16 Functional verification of the proposed reversible SubBytes transformation block
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obtained by direct one-to-one mapping of logic operations to reversible gates. The two

important performance metrics known as gate count and quantum cost are analysed in this

research to show the improvement in the proposed reversible designs.

The proposed design of reversible SubBytes/InvSubBytes transformation module shows

36% reduction in gate count and 35% reduction in quantum cost compared to the con-

ventional reversible designs. In addition, the proposed reversible gate design shows 35%

reduction in gate count and 97% reduction in quantum cost compared to the existing

reversible SubBytes and InvSubBytes transformation module [13] as shown in Table 6.

4.2 MixColumns and InvMixColumns Transformations

The MixColumns transformation operates on the state column-by-column, treating each

column as a four-term polynomial (FIPS 2001). In this transformation, each byte of a

column is replaced by a function of all the bytes in the same column. Here, each

Reversible 
GF(28) 

Multiplicative 
inversion
module

Reversible Affine 
Transformation

8

Input of 
InvSubBytes 

Transformation
(z)

8

Output of 
InvSubBytes 

Transformation
(x)

Fig. 17 Block diagram of the proposed reversible InvSubBytes transformation

Fig. 18 Functional verification of the proposed reversible InvSubBytes transformation block

Table 5 Performance comparison of reversible subbytes/invsubbytes transformation modules

Name of the block Gate count Quantum cost % Reduction

Conven-
tional
design

Proposed
design

Conven-
tional
design

Proposed
design

Gate
count

Quantum
cost

IsoMap/InvIsoMap 46 30 46 30 35 35

Squarer and multiplication by
constant k

8 4 8 4 50 50

Adder (XOR block) 8 8 8 8 – –

Multiplication in GF(24) 153 102 261 210 33 20

Multiplicative inverse in GF(24) 46 22 146 54 52 63

Affine transformation 36 25 36 25 31 31

Proposed reversible SubBytes/
InvSubBytes transformation

297 191 505 331 36 35
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transformation is based on the polynomial c(x) = {03}x3 ? {01}x2 ? {01}x ? {02}.

This polynomial is co-prime to x4 ? 1 and therefore invertible with d(x) = {0B}x3-

? {0D}x2 ? {09}x ? {0E} as the inverse. So, the InvMixColumns transformation is

constructed with the polynomial d(x) where d(x) = c-1(x).

4.2.1 Proposed Reversible MixColumns Transformation

The structure of MixColumns transformation is shown in Fig. 19. The whole design of the

architecture is divided into two parts namely block-1 and block-2. The combined block is

the integration of block-1 and block-2. The reversible block-1 implements the following

operations such as Xbcd, Xacd, Xabd, Xabc and Xab, Xbc, Xcd, Xda in the MixColumns

transformation of AES crypto core in a bit-by-bit basis using reversible gates. Here, the

notation Xbcd indicates b � c � d and Xab indicates a � b. It takes one bit from all the

four elements of the column in the state array and gives eight valid outputs as shown in

Fig. 20. The reversible gate design of block-1 is made with 12 CNOT gates and it takes 4

ancilla inputs and zero garbage outputs. Also, it has a quantum cost of 12 with 8 units delay

as given in Table 7.

The block-2 performs XTime operation and gives the final output of MixColumns

transformation. It takes sixteen valid inputs which come out from different block-1 and

performs the GF(28) multiplication and gives eight valid outputs which are nothing but the

Table 6 Performance improvement in the proposed reversible subbytes/invsubbytes transformation
modules

Functional block Gate count Quantum cost % Reduction

[13] Proposed
design

[13] Proposed
design

Gate
count

Quantum
cost

Reversible SubBytes/InvSubBytes
transformation

294 191 11,602 331 35 97

a b c d

XTime

d’

XTime

a’

XTime

b’

XTime

c’

Block-1

Block-2

Fig. 19 Structure of MixColumns transformation
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final output of the MixColumns transformation of AES crypto core. The reversible gate

design of block-2 is carried out with 11 CNOT gates and it takes zero ancilla input and 8

garbage outputs as shown in Fig. 21. In addition, it has a quantum cost of 11 with 11 units

of delay as given in Table 7.

The previously mentioned sub-blocks block-1 and block-2 are instantiated 8 times and 4

times respectively and combined together to get the final design of the MixColumns

transformation in AES crypto core as shown in Fig. 22. The reversible gate design of the

combined block is made of 140 CNOT gates and it takes 32 ancilla inputs and 32 garbage

outputs. In addition, it has a quantum cost of 140 with 19 units of delay as given in Table 7.

a
b
c
d

Xabc
Xab
Xbc
Xabd

Xadc

Xad

Xbcd

XcdAncilla (0)
Ancilla (1)
Ancilla (2)
Ancilla (3)

Fig. 20 Reversible gate design
of block-1

Table 7 Performance analysis of reversible mixcolumns transformation block

Metrics Block 1 Block 2 Proposed reversible block

Ancilla inputs 4 0 32

Garbage outputs 0 8 32

No. of reversible gates 12 11 140

Quantum cost 12 11 140

Delay 8 11 19

Xbcd(7)
Xbcd(6)
Xbcd(5)
Xbcd(4)
Xbcd(3)
Xbcd(2)
Xbcd(1)
Xbcd(0)
Xab(0)
Xab(1)
Xab(2)
Xab(3)
Xab(4)
Xab(5)
Xab(6)
Xab )0(’a)7(

a’(7)
a’(6)
a’(5)
a’(4)
a’(3)
a’(2)
a’(1)

Garbage (0)
Garbage (1)
Garbage (2)
Garbage (3)
Garbage (4)
Garbage (5)
Garbage (6)
Garbage (7)

Fig. 21 Reversible gate design
of block 2
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4.2.2 Design of Reversible InvMixColumns Transformation

The reversible gate design of InvMixColumns transformation is made by decomposing it

into five blocks such as reversible MixColumns transformation block, reversible inverse

block-1, reversible inverse block-2, reversible inverse block-3 and reversible X4Time

block as shown in Fig. 23. The reversible inverse blocks 1, 2 and 3 consist of similar gate

level structure. These blocks take two sets of 8-bit inputs and perform XOR operations
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Fig. 22 Proposed reversible MixColumns transformation block
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among them by using CNOT gates. The blocks produce 8-bit XORed outputs and the

remaining 8-bit outputs are directly taken from one of the 8-bit inputs.

The MixColumns transformation in AES algorithm is synthesized by using reversible

gates in Sect. 4.2.1. The same reversible design can also be used in reversible InvMix-

Columns transformation block in order to reduce the hardware cost. The reversible Mix-

Columns transformation block requires 140 CNOT gates with a quantum cost of 140. In

addition, it takes 32 ancilla inputs, 32 garbage outputs and has a delay of 19 units as shown

in Fig. 22. The reversible inverse blocks 1, 2 and 3 perform bitwise XOR operations on

their two sets of inputs using CNOT gates and produces XORed outputs as shown in

Fig. 24.

Each reversible inverse block requires 8 CNOT gates with a quantum cost of 8 and has

unit delay. The number of ancilla input and garbage output will be different for each

reversible inverse blocks. Reversible inverse block-1 does not require any ancilla inputs

and garbage outputs whereas reversible inverse block-2 requires 8 ancilla inputs and it has

zero garbage output. Reversible inverse block-3 has 8 garbage outputs with zero ancilla

input. The reversible X4Time block which computes the multiplication with constant term

04 can be designed by cascading two XTime blocks [20]. Instead, the X4Time block which

saves one XOR operation can be designed directly as shown in Fig. 25.

The corresponding reversible gate design of X4Time block is shown in Fig. 26. It

requires 5 CNOT gates with quantum cost of 5 and has a delay of 5 units. This reversible

block has zero ancilla input and garbage output. The previously mentioned sub-blocks such
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Fig. 23 Structure of InvMixColumns transformation
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as reversible MixColumns transformation block, reversible inverse blocks 1, 2 and 3, and

reversible X4Time block are instantiated once, 4 times, 2 times, 2 times and 2 times

respectively, and combined together to get the final design of the reversible InvMixCol-

umns transformation block in AES crypto core as shown in Fig. 27. The reversible gate

design of the combined block is made with 214 CNOT gates and it takes 48 ancilla inputs

and 48 garbage outputs. In addition, it has a quantum cost of 214 with 28 units of delay as

given in Table 8.
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Fig. 27 Proposed reversible InvMixColumns transformation block
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4.2.3 Performance Analysis

This section describes the performance analysis of the proposed reversible gate design of

MixColumns and InvMixColumns transformations. Table 9 compares the performance

metrics of different reversible MixColumns transformation designs. The proposed rever-

sible InvMixColumns design gives 7% reduction in gate count and quantum cost compared

to existing design [22]. The simulation output of both reversible MixColumns and

InvMixColumns transformations are shown in Figs. 28 and 29 respectively for three

random sets of inputs.

Since gate count and quantum cost are the important metrics for reversible gate design,

they are considered here for comparison with existing designs. The proposed reversible

MixColumns design gives 10% reduction in gate count and quantum cost compared to

existing design [20]. Table 10 compares the performance metrics of different reversible

InvMixColumns transformation designs. The proposed reversible MixColumns transfor-

mation module shows 81% reduction in gate count and 93% reduction in quantum cost

compared to the existing design [13] as given in Table 11.

4.3 Shiftrows and InvShiftRows Transformations

4.3.1 InvShiftRows Transformation

The ShiftRows transformation provides a simple permutation of the data, whereas the other

transformations involve substitutions. Further, since the state is treated as a block of

Table 8 Performance analysis of reversible invmixcolumns transformation module

Metrics Reversible
MixColumns design

Inverse
block 1

Inverse
block 2

Inverse
block 3

X4Time Proposed
reversible block

Ancilla inputs 32 0 8 0 0 48

Garbage
outputs

32 0 0 8 0 48

No. of
reversible
gates

140 8 8 8 5 214

Quantum cost 140 8 8 8 5 214

Delay 19 1 1 1 5 28

Table 9 Performance comparison of reversible mixcolumns transformation modules

Metrics [21] [20] Proposed design % Reduction

No. of reversible gates CNOT—212 CNOT—156 CNOT—140 10

Quantum cost 212 156 140 10

Delay 10 13 19 –

Ancilla input 32 32 32 –

Garbage output 72 40 32 –

1448 P. Saravanan, P. Kalpana

123



columns, it is this step which provides the diffusion of values between columns. The

ShiftRows step operates on the rows of the state. It cyclically shifts the bytes in each row.

The first row is left unchanged. Each byte of the second row is shifted one to the left.

Similarly, the third and fourth rows are left shifted by two and three respectively.

Fig. 28 Functional verification of the proposed reversible MixColumns transformation block

Fig. 29 Functional verification of the proposed reversible InvMixColumns transformation

Table 10 Performance comparison of reversible invmixcolumns transformation modules

Metrics [18] [20] [22] Proposed design % Reduction

No. of reversible gates CNOT—265 CNOT—232 CNOT—230 CNOT—214 7

Quantum cost 265 232 230 214 7

Delay 37 23 30 28 –

Ancilla input 80 48 48 48 –

Garbage output 72 56 48 48 –
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4.3.2 InvShiftRows Transformation

InvShiftRows is the inverse of the ShiftRows transformation. The bytes in the last three

rows of the state are cyclically shifted over different numbers of bytes. The first row is not

shifted. Each byte of the second row is shifted one to the right. Similarly, the third and

fourth rows are left shifted by two and three respectively. Both ShiftRows and InvShif-

tRows transformations involve cyclic shifting of bytes of data either to the right or to the

left direction. Hence, these transformations do not require any specific reversible gates to

perform the operations.

4.4 AddRoundKey Transformation

In the AddRoundKey Transformation, roundkey is added by combining each byte of the

state with the corresponding byte of the roundkey by bitwise XOR operation. For each

round, the roundkey is derived from the main key using Rijndael’s key schedule; each

roundkey is the same size as the state. This is the only step which makes use of the key and

obtains the result. So, this step is used at the end of each round. The transformation can be

efficiently implemented in reversible logic using a CNOT gate for every bit. A total of 128

CNOT gates are required for realizing this transformation. Table 12 shows the results in

terms of number of gates, quantum cost, delay, number of garbage outputs and number of

constant inputs for AddRoundKey transformation.

4.5 Proposed Reversible Key Scheduler

The Key Scheduler is responsible for generating the round keys which are used in the

AddRoundKey transformation. The Key Scheduler module has three essential steps:

1. The RotWord() step which cyclically shifts each byte in a word one byte to the left can

be implemented by wiring alone.

Table 11 Performance comparison of reversible mixcolumns transformation module

Functional block Gate count Quantum cost % Reduction

[13] Proposed
design

[13] Proposed
design

Gate
count

Quantum
cost

Reversible MixColumns
design

736 140 1952 140 81 93

Table 12 Performance analysis of AddRoundKey transformation module

Functional block Number of gates Quantum
cost

Delay Garbage
output

Ancilla
input

AddRoundKey
transformation

CNOT—128 128 1 128 0
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2. The SubWord() step which applies SubBytes transformation to each of the four bytes

in a word requires the same S-boxes as used in the main encryption flow.

3. The Rcon is a constant word array and only the leftmost byte in each word is nonzero.

As only one byte of Rcon is nonzero, and thus, only 8 CNOT gates are required to

XOR the Rcon value with the output which is obtained from the previous step.

4. An 128-bit XOR operation is done by using 128 CNOT gates for the final step.

Reversible logic gate design of key scheduler for 128-bit AES algorithm is shown in

Fig. 30 in which i varies from 1 to Nr. For each round, the round keys are generated by

varying i from 1 to 10. Table 13 gives the performance metrics in terms of number of

reversible gates, quantum cost, delay, number of garbage outputs and number of ancilla

inputs required for designing RotWord operation, SubBytes transformation, xoring with

round constant (rcon), xor operation and complete Key Scheduler using reversible logic

gates. The RotWord operation is permutation of bits, so it does not require reversible gates.

The functional verification of the reversible key scheduler is shown in Fig. 31. The

performance improvement of the proposed reversible key scheduler is given in Table 14.

The proposed reversible key scheduler shows 33% reduction in gate count and 97%

reduction in quantum cost compared to the existing design [13].

5 Performance Analysis of Reversible AES Design

5.1 Proposed Reversible AES Encryption Module

The 128-bit AES encryption algorithm takes 128-bit plaintext as input alongwith an

128-bit key and produces 128-bit ciphertext as output. The number of rounds (Nr) is 10 for

128-bit keys. The reversible logic gate design of 128-bit AES encryption requires 11

AddRoundKey transformations, 10 SubBytes transformations, 9 MixColumns transfor-

mations and 10 ShiftRows transformations. The Fanout module is designed using 128

CNOT gates with one unit delay and has a quantum cost of 128, garbage outputs of 128

and zero ancilla inputs. The reversible gate design of AES encryption algorithm is shown

in Fig. 32.

From Fig. 32, it can be observed that the proposed reversible gate design of AES

encryption module requires reversible AddRoundKey block, reversible SubBytes trans-

formations, reversible MixColumns transformations and reversible Key schedulers. As

ShiftRows involve cyclic shifting of state elements, they do not require any reversible logic

Rotword
Reversible
SubBytes

rcon4*i

w4*i w4*i+1 w4*i+2 w4*i+3

w4*i-4 w4*i-3 w4*i-2 w4*i-1

CNOT

CNOT CNOT CNOT CNOT

Fig. 30 Proposed reversible key scheduler
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gates. The remaining transformations are properly synthesized using reversible logic gates

and the optimized designs are used to build the proposed reversible AES encryption

module. Table 15 gives the performance metrics of proposed reversible gate design of

128-bit AES encryption module. The functional verification of the proposed reversible

128-bit AES module is shown in Fig. 33.

Table 13 Performance analysis of proposed reversible key scheduler

Functional block Number of gates Quantum cost Delay Garbage output Ancilla input

RotWord 0 0 0 0 0

SubBytes transformation CNOT—152
NOT—4
CCNOT—35

331 104 67 47

XOR with rcon CNOT—8 8 1 8 0

XOR operation CNOT—32 32 1 32 0

Key scheduler CNOT—2592
NOT—64
CCNOT—560

5456 109 1232 752

Fig. 31 Functional verification of the proposed reversible key scheduler

Table 14 Performance comparison of reversible key schedulers

Functional block Gate count Quantum cost % Reduction

[13] Proposed
design

[13] Proposed
design

Gate
count

Quantum
cost

Reversible key
scheduler

4832 3216 185,760 5456 33 97

Plaintext
Reversible

AddRoundKey
Reversible
SubBytes

Reversible
Key

Scheduler
Secret Key

Shift
Rows

Round
Key i

Reversible
MixColumns

Reversible
Key

Scheduler

Reversible
AddRoundKey

Reversible
SubBytes

Shift
Rows

Round
Key Nr

Reversible
AddRoundKey Ciphertext

Initial
Round

For i=1 to Nr-1
Rounds

Final
Round

Fanout

Fig. 32 Proposed reversible AES encryption module
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Table 15 Performance analysis of proposed reversible AES encryption module

Functional block Number of gates Quantum cost Delay Garbage output Ancilla input

Round 0 (initial round) CNOT—2720
NOT—64
CCNOT—560

5584 109 1360 752

Rounds 1–9 CNOT—52,560
NOT—1152
CCNOT—10,080

104,112 1918 24,192 14,688

Final round CNOT—2560
NOT—64
CCNOT—560

5424 105 1200 752

128-AES encryption CNOT—57,840
NOT—1280
CCNOT—11,200

115,120 2132 26,752 16,192

Fig. 33 Functional verification of the proposed reversible AES encryption module
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5.2 Proposed Reversible AES Decryption Module

The top-level structure of 128-bit AES decryption algorithm takes 128-bit ciphertext as

input along with an 128-bit key and produces an 128-bit plaintext as output. There are four

distinct operations: InvSubBytes, InvShiftRows, InvMixColumns and AddRoundKey.

After an initial AddRoundKey transformation, Nr-1 rounds are performed which consists

of a sequence of four operations. The number of rounds is 10 for 128-bit key length. The

final round excludes InvMixColumns transformation. The reversible gate design of 128-bit

AES decryption module using Inverse Cipher is shown in Fig. 34. It requires 11

AddRoundKey transformations, 10 InvSubBytes transformations, 9 InvMixColumns

transformations and 10 InvShiftRows transformations.

The reversible gate design of 128-bit AES decryption module using Equivalent Inverse

Cipher is shown in Fig. 35. It requires 11 AddRoundKey transformations, 10 InvSubBytes

transformations, 18 InvMixColumns transformations and 10 InvShiftRows transforma-

tions. The performance comparison of 128-bit AES decryption using inverse cipher and

equivalent inverse cipher is given in Table 16. In the equivalent inverse cipher, the

mixroundkeys are used. The mixroundkeys are the modified roundkeys obtained by

applying InvMixColumns to the roundkeys. Thus, the quantum cost and number of

reversible gates required to design the reversible equivalent inverse cipher are more

compared to the reversible inverse cipher. Hence, in the proposed reversible gate design of

AES decryption module, inverse cipher method is used to decrypt the ciphertext. Table 17

gives the performance metrics of proposed reversible gate design of 128-bit AES

decryption module. The functional verification of the proposed reversible 128-bit AES

module is shown in Fig. 36.

5.3 Performance Improvement

The proposed reversible SubBytes/InvSubBytes transformation module of AES crypto core

shows 36% reduction in gate count and 35% reduction in quantum cost compared to the

conventional reversible designs. In addition, the proposed design shows 35% reduction in

gate count and 97% reduction in quantum cost compared to the existing design of rever-

sible SubBytes and InvSubBytes transformation module.

The proposed reversible gate design of MixColumns and InvMixColumns transforma-

tion of AES crypto core based on CNOT gates show 81 and 93% reduction in gate count

and quantum cost respectively compared to existing designs. The proposed reversible key

scheduler of AES crypto core shows 33% reduction in gate count and 97% reduction in

quantum cost compared to the existing design. The performance improvement in all the

proposed designs is mainly due to the reuse of already available reversible gates to the

maximum extent. The complete AES encryption process takes 16,192 ancilla inputs,
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AddRoundKey
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InvSubBytes

Reversible
Key

Scheduler
Secret Key

InvShiftRows

Round
Key i

Reversible
InvMixColumns

Reversible
Key
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Key 0
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AddRoundKey Plaintext
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Round

For i= Nr-1 to 1
Rounds

Final
Round

Reversible
InvSubBytesInvShiftRows

Fanout

Round
Key Nr

Fig. 34 Proposed reversible AES decryption module using inverse cipher method
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26,752 garbage outputs with a delay of 2132 and a total of 70,320 reversible logic gates

with a quantum cost of 115,120. The complete AES decryption process takes 16,768

ancilla inputs, 27,328 garbage outputs with a delay of 1412 and a total of 72,984 reversible

logic gates with a quantum cost of 117,784. In summary, our proposed AES reversible

design gives 36% reduction in gate count and 97% reduction in quantum cost when

compared to the existing design [13] as shown in Table 18. This considerable reduction in

the performance metrics is mainly due to the reuse of the already existing gates in the

structures.
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Reversible
Key

Scheduler
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Round
Key i

Reversible
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Reversible
Key

Scheduler

Reversible
AddRoundKey

Round
Key 0

Reversible
AddRoundKey Plaintext

Initial
Round

For i= Nr-1 to 1
Rounds

Final
Round
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InvSubBytes InvShiftRows

Reversible
InvMixColumns

Fanout

Round
Key Nr

Fig. 35 Proposed reversible AES decryption module using equivalent inverse cipher method

Table 16 Performance comparison of reversible AES decryption modules

Parameters‘ Inverse cipher method Equivalent inverse cipher method

Number of gates CNOT—60,504
NOT—1280
CCNOT—11,200

CNOT—62,430
NOT—1280
CCNOT—11,200

Quantum cost 117,784 119,710

Delay 1412 1440

Garbage output 27,328 27,760

Ancilla input 16,768 17,200

Table 17 Performance analysis of proposed reversible AES decryption module

Functional block Number of gates Quantum cost Delay Garbage output Ancilla input

Round 0 (initial round) CNOT—2720
NOT—64
CCNOT—560

5584 109 1360 752

Rounds 1–9 CNOT—55,224
NOT—1152
CCNOT—10,080

106,776 1198 24,768 15,264

Final round CNOT—2560
NOT—64
CCNOT—560

5424 105 1200 752

AES decryption CNOT—60,504
NOT—1280
CCNOT—11,200

117,784 1412 27,328 16,768
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Fig. 36 Functional verification of proposed reversible AES decryption module using inverse cipher method

Table 18 Performance improvements in proposed reversible AES design

Functional block Gate count Quantum cost % Reduction

[13] Proposed
design

[13] Proposed
design

Gate
count

Quantum
cost

SubByte module 294 191 11,602 331 35 97

MixColumns module 736 140 1952 140 81 93

AddRoundKey
module

128 128 128 128 – –

Key scheduler
module

4832 3216 185,760 5456 33 97

Reversible AES
design

109,664 70,320 3749,408 115,120 36 97
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6 Conclusion

A novel reversible gate design of complete 128-bit AES algorithm is presented. Since the

reversible logic gates ideally consume zero power and their quantum computing based

implementation is less sensitive to power analysis attacks, they are exploited to construct

the AES algorithm in this work. The Toffoli family of reversible gates are used in the

proposed designs and the reversible logic gates are reused as much as possible in order to

optimize the performance metrics in the proposed structures. The proposed reversible gate

design of AES algorithm gives 36% reduction in gate count and 97% reduction in quantum

cost when compared to the existing design. Hence, the proposed design can be effectively

used to protect confidential data in low power and secure applications such as wireless

sensor networks.
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