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Abstract When a new event occurs, the nodes in the neighborhood of the event sense and

then send many packets to the sink node. Such circumstances need their networks to be

simultaneously reliable and event-driven. Moreover, it should be remove redundant

packets in order to lower the average energy consumption. A data fusion algorithm based

on event-driven and Dempster–Shafer evidence theory is proposed in this paper to reduce

data packet quantities and reserve energy for wireless sensor networks upon detecting

abnormal data. Sampling data is compared against the set threshold, and the nodes enter the

relevant state only when there are abnormal datum; at this point, cluster formation begins.

All cluster members incorporate a local forwarding history to decide whether to forward or

to drop recent sampling data. Dempster–Shafer evidence theory is exploited to process the

data. The basic belief assignment function, with which the output of each cluster member is

characterized as a weighted-evidence, is constructed. Then, the synthetic rule is subse-

quently applied to each cluster head to fuse the evidences gathered from cluster member

nodes to obtain the final fusion result. Simulation results demonstrate that the proposed

algorithm can effectively ensure fusion result accuracy while saving energy.

& Xiuwu Yu
yxw2008xy@163.com

Feng Zhang
18274727712@163.com

Lixing Zhou
zhoulixingx@163.com

Qin Liu
lqing8008@163.com

1 Department of Environmental and Safety Engineering, University of South China, Hengyang,
China

2 State Key Laboratory of Safety and Health for Metal Mines, Maanshan, China

3 Hunan Engineering Research Center for Uranium Tailings Decommission and Treatment,
Hengyang, China

123

Wireless Pers Commun (2018) 100:1377–1391
https://doi.org/10.1007/s11277-018-5644-2

http://orcid.org/0000-0002-7240-8385
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-018-5644-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-018-5644-2&amp;domain=pdf
https://doi.org/10.1007/s11277-018-5644-2


Keywords Data fusion � Dempster–Shafer evidence theory � Event driven � Wireless

sensor network

1 Introduction

Wireless sensor networks (WSNs) play an indispensable role in many applications due to

its low cost, easy deployment, dynamic networking capability, and easy expansion. WSNs

are utilized in environmental monitoring, military, and real-time target tracking systems

among others [1, 2]. WSNs are composed of many small volumes and low power sensor

nodes which are deployed in the monitored area to form a network which facilitates

wireless communication. The main source of power to a sensor node is a limited and non-

rechargeable battery, so it is crucial to design WSNs with special focus on energy con-

straints [3].

A large number of nodes are distributed in the area to gather comprehensive information

from the monitoring network. Some of this data has similarity or consistency with each

other, which results in a large number of redundant packets [4, 5]. According to the

respective data acquisition method, WSNs can be divided into continuous acquisition,

event-driven acquisition, and periodic acquisition categories [6]. The event-driven model

can be used in fire monitoring, pollution monitoring, medical rescue, and other similar

applications. In these applications, when a new event occurs, nodes within the event area

upload vital change data which may cause congestion [7]. Once an event of interest is

detected, nodes may enter a high working frequency. In monitoring based on an event-

driven report, clustering can reduce the energy consumption compared to the unscheduled

systems by reducing collisions, idle listening, or overhearing at the cost of coordination

messages during the cluster formation period [6].

WSNs mainly expend energy in data communication, transmission, and processing.

Data transmission is especially energy-consumptive [8]. Transmission energy consumption

is also closely related to transmission quantity. Data fusion is a technique which utilizes in-

network processing to remove incorrect and redundant data from sensor node measure-

ments so as to efficiently return information upon the user’s request. Fusing the data

effectively helps not only to minimize communication collisions, but also to reduce energy

costs as the amount of data transmitted is reduced [9]. In practical application, all fusion

methods encounter issues with various uncertainties. However, Dempster–Shafer evidence

theory (or D–S evidence theory) provides a natural and powerful method for illumination

and synthesis of uncertain information and is commonly used to fuse data [10].

In this work, we concentrated on event-driven data fusion to group nodes within the

event area into clusters to reduce the amount of data packets. This paper presents a data

fusion algorithm based on event-driven and D–S evidence theory (EDDS). The network

forms clusters dependent on a given threshold only when an event occurs, which prevents

excessive energy consumption under normal circumstances. After the data is transferred

from cluster heads (CHs) to the sink node, weighted data fusion is performed with rea-

sonable confidence and composition rules. This process reduces the influence of anomaly

monitored data while increasing the proportion of similar data to help the system determine

whether an event has or has not truly occurred.

The remainder of this paper is organized as follows. Section 2 discusses the related

work. Section 3 reviews the D–S evidence theory concept, and Sect. 4 explains the pro-

posed scheme and its specifications. Simulation results are presented and discussed in

Sect. 5. Section 6 provides a brief summary and conclusion.
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2 Related Works

LEACH [11] is one of the clustering algorithms most commonly used to conserve WSN

energy. It assumes that all nodes have uniform energy consumption. In actuality, nodes

consume uneven amounts of energy and thus, it is unreasonable to select CHs in an equally

distributed manner. Some researchers [12–14] proposed clustering methods based on

event-driven data acquisition. Manjeshwar et al. [12] worked under the assumption that

clustering plays the same role as LEACH and that nodes use a given threshold to determine

whether data is necessary to forward. Ozger et al. [13] proposed an event-driven spectrum-

aware clustering protocol which forms clusters after event detection and maintains them

until the end of the event. After an event is detected, CHs are selected among appropriate

nodes to form clusters between the event and the sink node; the one-hop member is

selected to maximize the number of available two-hop neighbors. After the event, the

cluster is no longer available to reduce the energy consumption due to unnecessary clus-

tering and maintenance costs. An energy-aware clustering technique based on event-driven

data reporting in WSN called EET was presented by Adulyasas et al. [14] for data mon-

itoring. In EET, when the data changes beyond a given threshold, sensor nodes upload only

necessary data. To this effect, clusters are created only in specific locations where such

necessary data changes occur. Clusters are operated as long as the ambient situation

continues to change. Once the situation becomes stable, the clusters are reset and each

sensor node in the clusters switches to sleep mode to conserve the energy otherwise

consumed by cluster heads and members. Hou et al. [15] proposed a data fusion algorithm

dependent on an event-driven dynamic clustering scheme and neural network, where

dynamic cluster and cluster head election processes are based on the severity of the event

and the node residual energy. The BP neural network model is used to fuse large amounts

of data and extract them.

D–S evidence theory transforms subjective, uncertain, and conflicting information into

objective decision-making results [16]. There are two main reasons that D–S evidence

theory does not readily satisfy the necessary accuracy for fusion. First, it is difficult to

ensure a reasonable and accurate basic belief assignment function (BBAF). Second, it is

highly challenging to make decisions with the unified BBAF [17]. Many researchers have

attempted to resolve these problems [17–19]. Shen et al. [17] proposed an integrated model

based on D–S evidence theory and extreme learning machine. Reasonable basic belief

assignments are established. Comprehensive basic belief assignments can be obtained via

evidence synthesis from several mass functions; the final decision is made based on an

extreme learning machine to secure reliable multi-sensor data fusion results. Wang et al.

[18] divided sensor node data into several groups depending on the deviation, then applied

basic probability assignment to generate a discrimination framework. The mass function of

combined evidence is considered the weight distribution function of the evidence. Finally,

a unified result can be obtained by a weighted summation rule. Liu et al. [19] introduced a

D–S evidence theory-based fault-tolerant event detection algorithm which can be used to

analyze the impact of the spatial correlation between nodes at different distances and the

node status on event detection performance. The output of each sensor node is charac-

terized as weighted evidences instead of crisp values, where neighboring node status values

are reasonably fused according to their individual contribution to the detection.
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3 Preliminaries of D–S Evidence Theory

The basic idea of D–S evidence theory is to establish a discernment framework, to

determine the degree of support for each set of evidence, and then to apply an evidence

synthesis formula to calculate the support for all propositions. Under D–S evidence theory,

the set of possible outcomes for a decision problem of all pairs of mutually exclusive pairs

defines the discernment framework, H = {h1, h2,…, hn}.

3.1 Basic Concepts

Several belief functions in D–S evidence theory are described below.

If a function m: 2H ? [0, 1],V A ( H, 0 B m(A) B 1 which satisfies
P

A�H
mðAÞ ¼ 1

mðUÞ ¼ 0

(

ð1Þ

where U denotes the null set and m(A) is the BBAF subset A. The BBAF reflects the degree

of evidence support for each subset. Subset A with non-zero mass is called a focal element;

(A, m(A)) is a piece of evidence.

Let m be a function of the discernment framework H, where the impact of evidences on

a given element A of H has two points: belief and plausibility. They are denoted as Bel(A)

and Pl(A), as shown in the following equation:

Bel Að Þ ¼
X

X�A

mðXÞ

Pl Að Þ ¼
X

X\A 6¼/

mðXÞ ¼ 1 � Belð�AÞ
ð2Þ

where �A is the supplement of A, Bel(A) indicates the degree of confidence that the evidence

is true for A, and Pl(A) indicates that the trustworthiness of A is not false. For any focal

element in H, the corresponding BBAF contributes a belief interval [Bel(A), Pl(A)], where

the lower and upper probabilities represent the belief and plausibility.

3.2 Combinational Rule

Let m1, m2, …, mn be n independent values in H. For a given element A belonging to H, the

generalized rule for combining n number of evidences is:

m1;2;...;n Að Þ ¼ m1ðA1Þ � m2ðA2Þ � � � � � mnðAnÞ

¼
1

1 � K

X

A1\A2\���\An

Yn

i¼1

miðAiÞ A 6¼ U

0 A ¼ U

8
><

>:

ð3Þ

K ¼
X

A1\A2\���\An¼;
m1ðA1Þ � m2ðA2Þ � � � � � mnðAnÞ ð4Þ

if K = 1, the evidences are completely conflicting.
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4 Data Fusion Based on Event Driven and D–S Evidence Theory

4.1 Network Model

The network described in this paper monitors events, then transforms and processes the

monitored data of the events. The network system consists of stationary and energy-limited

sensor nodes as well as one sink node. All sensor nodes are distributed randomly in the

monitored area and have a unique ID. Each sensor node learns relevant information, such

as location and ID, for itself and its one-hop neighbors. The clustering process is driven by

an event. The node that becomes the CH can adjust the transmission power according to

the communication distance.

4.2 Threshold Definition

Definition 1 Stimulation Hard Threshold (SHT): Whenever the sampling value of one

node exceeds a threshold SHT, abnormal phenomena can be confirmed.

Definition 2 Biased Threshold (BT): The initial value at which nodes detect the neces-

sary changes in data within the region area.

Definition 3 The cluster head election value (P): The possibility that a node becomes a

CH.

P ¼ a � ðTi � SHTÞ þ ð1 � aÞ � Es

dtoS

ð5Þ

where Ti is a sampling value of one node at the current time, Es is the surplus energy of

nodes, dtoS is the distance from a node to the sink node, and a is the coefficient of event

severity.

Definition 4 Cluster Lifetime (CL): Used to judge the existence time of the cluster. Over

CL ? t, there are no abnormal monitored data and the cluster is disbanded. t is the time at

which the node is selected as a CH.

4.3 Node States

There are three node states of EDDS which merit description here. We also explain how

the threshold definition provided above functions specifically.

1. Sleep state This state represents the nodes’ situations before they begin to work. The

nodes do not communicate with each other during this time so as to conserve energy.

The active state is triggered at regular time intervals. The node also returns to this state

whenever its energy is depleted or the cluster is disbanded.

2. Active state The main tasks of the node in this state are data gathering and identifying

abnormal data with significantly changes (jTi � Ai�1j[BT, where Ai-1 is the last data

uploaded to the CH). The nodes now seek a CH as they find abnormal data, and also

receive cluster-forming messages from the CH. The node transmits the data to the CH

as a member.

3. Excited state Once the node finds an event (Ti[SHT), it enters an excited state in

which it carries out several tasks such as data collection, data transmission, and high-
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frequency data processing. The node also may become a CH if its P value is maximal

among neighbor nodes in excited states.

4.4 Cluster Formation Based on Event-Driven

When the node receives cluster formation from different CHs, it joins the cluster whose CH

has greater surplus energy. To prevent creating an excessive number of clusters, which

would lead to redundancy, the nodes do not join a new cluster or become CHs if those

labeled as cluster members are stimulated again. The cluster formation process upon

abnormal data detection is illustrated in Fig. 1.

4.5 Event-Driven Data Fusion Under D–S Evidence Theory

4.5.1 Cluster Members Preprocess

The sensor node compares its own data in the current time Ti with the threshold SHT and

the data most recently uploaded to the CH Ai-1. If Ti[SHT or jTi � Ai�1j �BT, Ti should

be transferred to the CH; otherwise, Ti should be disregarded. In general, non-events

comprise large portions of the monitoring period (i.e., data changes are small), so that the

nodes are sleepy most of the time. This reduces the amount of transmitted data packets and

saves energy.

4.5.2 Data Fusion Under D–S Evidence Theory

The data set T = {T1, T2, … Tj}, monitored by nodes that belong to the same cluster at time

t, is regarded as the discernment framework. Each cluster is considered to be evidence of

the discernment framework. The CH first combines the BBAF generated by the nodes

within the cluster. The BBAF of each data value in the combination of evidences is

considered the weighting coefficient of the fusion. Weighted data fusion results are

obtained accordingly.

Under statistical theory, effective monitored values fall within a specific neighborhood

of true values. Values outside this neighborhood are affected by environmental noise,

human disturbances, or systematic errors. The assigned BBAF of Ti belonging to the kth set

can be obtained as follows:

mkðTiÞ ¼ b exp � ln 2
j Ti � Tk

M

� �2

P j
i¼1 Ti � Tk

Mð Þ2

 !

0\b\1 ð6Þ

where b is a trust coefficient which can be altered to adjust the discrimination degree of the

obtained BBAF, j is the total quantity of data in a set, and Tk
M is the median monitored

value in the kth set. mk(Ti) is used to reduce the impact of outliers. The closer Ti gets to the

median, the higher the BBAF of Ti will be.

The BBAF function k can be calculated as follows:

mk ¼ mkðT1Þ � � � � � mkðTiÞ ð7Þ

The fusion result of the kth set of data is:
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Tk ¼
Xj

i¼1

TimkðTiÞ i ¼ 1; 2. . .; j ð8Þ

The results of each set are reassigned before the final fusion result is obtained.

For effective event-driven WSN monitoring, it is necessary to consider the distance

from the event center: nodes closer to the event center yield more valuable monitored data.

Because the event center cannot accurately be determined, here, we use the data set

representing the earliest timepoint as a fuzzy event center.

Fig. 1 Cluster formation process
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According to our references [20], the distance of evidence dmassðm1;m2Þ can be used to

estimate the similarity of the evidence involved in the combination:

dmassðm1;m2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðm1 � m2ÞDðm1 � m2Þ

r

ð9Þ

where m1 and m2 are evidence vectors. D is a positively defined matrix which can be

calculated as follows:

D ¼ ðA;BÞ ¼ A \ Bj j
A [ Bj j ð10Þ

In order to transform the reliability of a function to an appropriate metric, we define the

credibility of a BBAF for the kth set as:

gk ¼ 1 � dmassðmk;m0Þ
Pn�1

k¼0 dmassðmk;m0Þ
ð11Þ

where gk indicates that the closer the cluster is to the event source, the greater the cred-

ibility of its evidence. m0 represents the trust allocation of the first set of data at the time

the event is marked. It is necessary to assign a weight for fused result of each data set to

further improve the reliability of monitored data and reduce the conflict among evidences.

The average belief weight �gk is as follows:

�gk ¼
1

n

Xn�1

k¼0

gk ð12Þ

The n - 1 fused results are weighted to yield a final result:

T ¼
Xn�1

k¼0

�gkT
k k ¼ 0; 1. . .; n� 1 ð13Þ

Figure 2 summarizes the data fusion process of the proposed EDDS algorithm.

Fig. 2 Data fusion process of EDDS
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5 Simulation Results and Analysis

This section discusses our performance evaluation for the proposed EDDS algorithm in

MATLAB. We set up the average energy consumption, end-to-end delay, and fractional

error as performance evaluation indicators for the EDDS algorithm. To analyze node

energy consumption, we adopted an energy consumption model similar to LEACH [11].

The simulation parameter values are summarized in Table 1.

5.1 Energy Consumption Analysis

Average energy consumption is one of the most important parameters reflecting the per-

formance of the network. In order to test the performance of our event-driven

scheme under different ranges of events and event rates, we assumed that LEACH,

EBPDF, and EDDS are adopted to run for 600 epochs.

Figure 3 shows the average energy consumption under various scale event occurrence

regions where events occur 30 times per hour. In EDDS, the average energy consumption

is 19.6 and 15% lower on average than that of LEACH and EBPDF, respectively, at an

event region of 200 9 200 m2. As shown in Fig. 4, the average energy consumption of

LEACH is consistently largest and EBPDF second-largest among the three algorithms. At

60 times per hour, the average energy consumption of EDDS is 23.3 and 14.4% lower,

respectively, than LEACH and EBPDF. Average energy consumption consistently

increases in EDDS and EBPDF but stabilizes in LEACH. LEACH functions are irrelevant

to event occurrence, and the LEACH network is continuously exciting over the network’s

whole lifetime, so its average energy consumption is higher than the other algorithms.

Clustering in EDDS and EBPDF are connected to event occurrence, so costs increase as

more events occur. The nodes participating in cluster formation are limited to the region

where events occur and to the event rate. However, the nodes remain asleep during calm

monitoring periods, which enables significant energy conservation compared to LEACH.

The proposed algorithm is based on an association between D–S evidence theory and an

event-driven clustering scheme. The network generates large amounts of data when an

event occurs, but the amount of data is reduced after data processing through D–S evidence

theory. EDDS requires somewhat costly fusion of the data in clusters, but the amount of

communication data in the node is fairly low; in short, it works under a reasonable energy

constraint.

The average energy consumption of nodes under the same three algorithms with events

occurring 60 times per hour in a 200 9 200 m2 region is shown in Fig. 5. EDDS showed

Table 1 Simulation parameters
and values

Parameters Values

Network area 200 m 9 200 m

Sink location (100, 200)

Node number 200

Initial energy per node 0.5 J

Transmitting and receiving energy consumption 50 nJ/bit

Data aggregation energy consumption 5 nJ/(bit signal)

Control package size 25 bytes

Data package size 500 bytes

a 0.5
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the lowest energy consumption throughout the simulation period. The energy depletion of

LEACH and EBPDF are at 620th and 843rd epoch, respectively. EDDS maintains surplus

energy until epoch 1000.

EDDS markedly differs from the other two algorithms mainly in regards to its minimal

amount of transmitted data. EDDS uses given thresholds to sift the sampling data while

LEACH does not exploit the threshold mechanism. If there is no abnormal data that

exceeds the thresholds mentioned above, the data is not uploaded. Nodes in non-event

regions stay asleep, thus minimizing the overall network energy consumption. EBPDF,

conversely, continually transfers data after cluster formation without consideration of any

given threshold.

5.2 End-to-End Delay Analysis

End-to-End latency defined as the time from when a packet is received by the CH to when

it is delivered to the sink node. Figure 6 shows different event rate versus average end-to-

end delay, where the network can generate data packets at a rate of 24 kbps. The latency of

Fig. 3 Average energy consumption in various event occurrence regions

Fig. 4 Average energy consumption under different event rates
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EDDS increases slowly when the event rate is lower than 20 times per hour, but after that

the latency increases quickly. When event rate is less than 20 times per hour, the nodes

sleep for a regular time and packets are delivered in a specified unit time. As the increasing

of event rate,the nodes are switched between a sleep state and active/excited state fre-

quently, and packets are delivered continuously in specified unit time which is shorter than

no events. The packets increased with increasing of event rate, lead to network congestion

and incur long delays [21], which is why the latency of EDDS is consistently growing. At

the same time, CHs need more time to fuse received packets.

5.3 Fractional Error Analysis

In this experiment, we used a data set for fire temperature distribution (Fire Dynamic

Simulator [22]) to evaluate EDDS. The sampling data of the node closest to the ignition

source serves as the blank data and b = 0.27. Figure 7 shows the fusion results of EDDS

and EBPDF, where the results of EDDS and the blank data show a similar trend as the

epochs progress.

Fig. 5 Average energy consumption per epoch

Fig. 6 End-to-end delay
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To measure fused data accuracy, we computed the fractional error in the achieved

results as follows:

Fractional error ¼ Fusion result � Blank dataj j
Blank data

� 100% ð14Þ

We randomly selected five sets of fusion results to calculate the fractional error as

shown in Table 2. EDDS outperformed EBPDF in processing data and showed a consis-

tently lower fractional error, indicating that it is indeed feasible and effective.

6 Conclusions

This paper presented a data fusion algorithm based on event-driven and D–S evidence

theory which yields high-precision fusion results with low control energy overhead. Nodes

share similar data for most of the monitoring time. Thresholds are applied to nodes to

ensure they transmit only necessary data and clustering based on event-driven, so the nodes

transmit very little data when the network situation is stable to reserve energy. Clusters are

created only in areas with abnormal data which persists over a certain time period. Multiple

data sources are combined into coordinated results through D–S evidence theory. Data

from the same cluster serves as evidence of the framework, and data closer to the event

source is given greater credibility. Compared to two other classical algorithms, EDDS is

more energy efficient and yields more accurate data fusion for the detection of abnormal

Fig. 7 Comparison of fusion results

Table 2 Fractional error of
EDDS and EBPDF algorithms

Serial number EDDS (%) EBPDF (%)

1 4.19 5.88

2 6.08 11.77

3 9.03 16.99

4 10.12 23.20

5 14.56 18.94
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WSN data. In future, the research directions include the utilization of multi-source data or

multi-path fusion and the optimization of other EDDS parameters such as quality of fusion

and latency.
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