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Abstract In this paper, researching the correlation property of congenetic subband coef-

ficients of Nonsubsampled Contourlet Transform (NSCT), and proposing a new adaptive

denoising theory. This theory combines the excellent shift-invariant of NSCT with the

correlation property of congenetic subband coefficients in image denoising. The correlation

property contains the entire relational correlation value of the congenetic subband coef-

ficients, and the grey correlation value in single coefficient of the congenetic subband

coefficients of the NSCT. According to the correlation property of congenetic subband

coefficients, the new algorithm can automatically identify the strong edges, weak edges

and noise in the noisy image, and then it can filter the noise and preserve the strong edges

and weak edges at certain degree. The experiment results are provided to compare with the

elegant non-local means method, which show that the theory proposed in this paper has

good effect.
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1 Introduction

Image denoising is a very important technology field and is also an important mission for

further processing of image such as feature extraction, segmentation, texture analysis and

so on. Processing the noise image directly to eliminate noise will lead to lose detail and

texture characteristics of image and even reduce the contrast ratio of image. In order to

solve this problem, the image denoising based on multiscale and multidirection has been

developed.
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Wavelet transform is the most successful ‘‘multiscale’’ and ‘‘multidirection’’ analysis

method in twentieth century, which has been used in all kinds of signal and image analysis

applications such as peak detection [1] in electrophoregram for separation science. Wavelet

transform is also an efficient tool for image denoising [2, 3]. The wavelet transform has

been developed in image denoising field. But because the wavelet basis is different

dimensional square, when the resolution ratio elaborate degree increases, the size of square

diminishes to be ‘‘point’’ at last to approach singularity curve. Wavelet transform just can

decompose the image into four images in every decomposition; They are approximation

and horizontal, vertical and diagonal details respectively. The wavelet transform has

limited direction, which can’t express singular high-dimensional function that contains line

and surface sparsely and well. With the developing of multiscale transform technology,

Minh N. Do and Martin Vetterli proposed Contourlet transform [4], which is a ‘‘real’’ two-

dimension expressive method. Contourlet transform uses ‘‘long strip’’ basis to approach

curve flexibly and changefully, which overcomes the imperfection that wavelet transform

only has three directions. Every scale of Contourlet transform can be decomposed into

different number and flexible direction basis, producing lots of multi-scale and multi-

direction frequency sub-bands which contain edge detail information and texture charac-

teristics. Contourlet transform can realize any scale and any direction decomposition. So,

the Contourlet transform is a good choice for image denoising [5].

In addition, due to downsamplers and upsamplers in both the Laplacian pyramid and the

direction filter bank, the Contourlet transform is not shift-invariant. When using Contourlet

transform for image denoising, this will lead to pseudo-Gibbs phenomenon. In order to

eliminate pseudo-Gibbs, Arthur L. da Cunha proposed the Nonsubsampled Contourlet

Transform (NSCT) [6]. The NSCT [7] is a flexible and efficient transform target appli-

cation for denoising when the redundancy is not the major issue. The NSCT is a fully shift-

invariant, multiscale, and multidirection expansion that has a fast implementation.

2 Nonsubsampled Contourlet Transform

2.1 Nonsubsampled Pyramid

The multiscale property of the NSCT is obtained from a shift-invariant filtering structure

that achieves a subband decomposition similar to that of the Laplacian pyramid. This is

achieved by using two-channel nonsubsampled 2-D filter banks. Figure 1 illustrates the

nonsubsampled pyramid decomposition with three stages.

The filters for subsequent stages are obtained by upsampling the filters of the first stage.

The nonsubsampled pyramid decomposition can be obtained by removing the downsam-

plers and upsamplers in the Laplacian pyramid and then upsampling the filter accordingly.

So, the nonsubsampled pyramid decomposition is different from the Laplacian pyramid

decomposition of Contourlet transform. The multiscale decomposition of nonsubsampled

pyramid is not the geometry multiscale decomposition but the multiscale decomposition of

frequency plane. The frequency plane is decomposed into different scale frequency sub-

bands as seen in Fig. 1b. And Fig. 1a shows the process of nonsubsampled pyramid

decomposition. This decomposition process is invertible. If image x is decomposed into

different scale frequency subbands on frequency plane, the image x can be reconstructed,

using the process as seen in Fig. 2. H and G are the analysis and synthesis filter

respectively.
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2.2 Nonsubsampled Directional Filter Bank (NSDFB)

The NSDFB is constructed by eliminating the downsamplers and upsamplers in the DFB.

This is done by switching off the downsamplers and upsamplers in each two-channel filter

bank in the DFB tree structure and upsampling the filters accordingly, which results in a

tree composed of two-channel NSFBs. The NSDFB splits the 2-D frequency plane into

directional wedges. This process can be illustrated in Fig. 3.

NSDFB can split the frequency subbands generated by the nonsubsampled pyramid into

directional wedges that contain any number and any direction. The Fig. 3a shows the

structure that splits the frequency subband x into four directions, and the Fig. 3b is the

corresponding direction decomposition on the subband frequency plane. NSDFB is dif-

ferent from the DFB of Contourlet transform, and NSDFB just realizes the direction

decomposition on the subband frequency plane. NSDFB just works on frequency field. The

direction decomposition of frequency subband is also invertible. If the frequency subband

x is decomposed into direction subbands, the frequency subband x can be reconstructed as

the process showed in Fig. 4.

Fig. 1 a Three-stage pyramid decomposition. The lighter gray regions denote the aliasing caused by
upsampling. b Subbands on the 2-D frequency plane

Fig. 2 Pyramid nonsubsampled
filter bank
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2.3 Combining the Nonsubsampled Pyramid and Nonsubsampled Directional
Filter Bank in the NSCT

The NSCT is constructed by combining the nonsubsampled pyramid with the NSDFB.

Image x is processed by the nonsubsampled pyramid, generating the multiscale frequency

subbands. And then these multiscale frequency subbands are processed by the NSDFB,

generating the multiscale and multidirection frequency subbands, which realizes the

multiscale and multidirection decomposition. The entire process can be seen in Fig. 5.

Figure 5 is the overview of the NSCT. The 2-channel NSFBs in the nonsubsampled

pyramid and NSDFB are invertible, then clearly the NSCT is invertible. Due to the NSCT

consists of two shift-invariant parts: a nonsubsampled pyramid structure and a nonsub-

sampled DFB structure, so, the NSCT is also shift-invariant. The NSCT is flexible, which

allows any number of 2l directions in each scale. In addition, the NSCT can satisfy the

anisotropic scaling law, a key property in establishing the expansion nonlinear approxi-

mation behavior. This property is ensured by doubling the number of directions in the

NSDFB expansion at every other scale. So, as seen above, the NSCT has larger redundancy

than the Contourlet transform.

Fig. 3 a Four-channel nonsubsampled directional filter bank. b Corresponding frequency decomposition

Fig. 4 The NSDFB with fan
filters
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3 Congenetic Subband Coefficients

As the discussion above, multiscale and multidirection decomposition is not the geometry

multiscale or multidirection decomposition, but the frequency plane decomposition. The

geometry size is the same, so each point of the subband coefficients of the NSCT corre-

sponds to the point which has the same spatial location in the original image. Although all

the subband coefficients have the same size, the pixel points in the same spatial location

may have different grey value among each other. As the discussion above, all of the

subband coefficients of the NSCT are relational.

According to the relational property, the pixels in all the subband coefficients of the

NSCT can be classified into three categories: strong edges, weak edges and noise. The

strong edges are the pixels that have large magnitude coefficients in all the subbands of the

NSCT; the weak edges are the pixels which have large magnitude coefficients in intra-scale

some directional subbands and small magnitude coefficients in intra-scale left directional

subbands; the noise are the pixels that they have small magnitude coefficients in all of the

subbands of the NSCT. Then how to use the relational property to identify the pixel

categories is important. The traditional theory just considers the relational property of the

intra-scale subband coefficients of the NSCT. In recent years, many researchers just study

the relational property of the intra-scale and neighbouring inter-scale subband coefficients

of the NSCT [8, 9].

The congenetic subband coefficients of the NSCT, which is proposed in this paper, have

strong relational property. Figure 3a is the two level direction decomposition on the scale

image x. For the further analysis, discussing the process of the three level direction

decomposition on the scale image x: The first level direction decomposition, image x can

generate direction subband coefficients v0 and v1. The second level direction decomposi-

tion, as seen Fig. 3a, v0 can generate the direction subband coefficients y0 and y1; v1 can

generate the direction subband coefficients y2 and y3. The third level direction decom-

position, y0,y1,y2 and y3 will generate two direction subband coefficients, respectively. In

order to discuss the congenetic subband coefficients of the NSCT, just discussing the

Fig. 5 a The NSFB structure that realizes the multiscale and multidirection decomposition. b The
corresponding multiscale and multidirection frequency subbands frequency plane
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decomposition of subband coefficient y0. y0 can generate the direction subband coefficients

w0 and w1.

From the discussion above, the process of the three level direction decomposition on the

scale image x is obvious. And then the congenetic subband coefficients of the NSCT is

discussed next. The subband coefficients y0 and y1 derive from the decomposition of

subband coefficient v0, so y0, y1 and v0 are the congenetic subband coefficients and they

have strong relational property when calculating the strong edges, weak edges and noise of

subband coefficients y0 and y1. The subband coefficients w0 and w1 derive from the

decomposition of subband coefficient y0, and then the subband coefficient y0 derives from

the decomposition of subband coefficient v0, so w0, w1, y0 and v0 are the congenetic

subband coefficients and they have strong relational property when calculating the strong

edges, weak edges and noise of subband coefficients w0 and w1. As the discussion above,

the concept of congenetic subband coefficients is proposed.

4 Adaptive Denoising Theory

4.1 The Entire Relational Correlation Value Among the Congenetic Subband
Coefficients of the NSCT

The congenetic subband coefficients of the NSCT have strong relational property. So the

strong relational property can be used to calculate the strong edges, weak edges and noise.

There are two congenetic subband coefficients s0 and s1 which are defined as:

s0 ¼ fs0ð1; 1Þ; s0ð1; 2Þ; s0ð1; 3Þ; . . .; s0ðm; nÞg ð1Þ

s1 ¼ fs1ð1; 1Þ; s1ð1; 2Þ; s1ð1; 3Þ; . . .; s1ðm; nÞg ð2Þ

In order to gain the strong relational property data, calculating the initial value that is

defined as:

�s0 ¼ s0
�
js0jmax ð3Þ

�s1 ¼ s1
�
js1jmax ð4Þ

In order to get the relational correlation matrix, calculating the difference value matrix

which is defined as:

d ¼ fjs0ð1; 1Þ � s1ð1; 1Þj; . . .; js0ðm; nÞ � s1ðm; nÞjg ð5Þ

Using the difference value matrix of the congenetic subband coefficients of the NSCT,

getting the relational correlation matrix of the congenetic subband coefficients s0 and s1;

the relational correlation matrix w is defined as:

w ¼ ðminðdÞ þ e �maxðdÞÞ=ðd þ e �maxðdÞÞ ð6Þ

where minðdÞ may be zero, in order to avoid this phenomenon, we set e ¼ 0:1, e 2 ð0; 0:5�.
The parameter e should be small, and then the strong relational property will be preserved.

If the parameter e is large, the strong relational property will be reduced; and then the

amount of strong edges will reduce, the noise amount will increase.

Therefore, the entire relational correlation value of the congenetic subband coefficients

of the NSCT is described as follow:
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g ¼ 1

mn

Xm

i¼1

Xn

j¼1

wðm; nÞ ð7Þ

g is the entire relational correlation value. In order to calculate the strong edges, weak

edges and noise of the congenetic subband coefficients s0 and s1 of the NSCT, not only the

g value is needed, but also some other value is needed.

4.2 The Grey Correlation Value in Single Coefficient of the NSCT

sðm; nÞ is the representative of congenetic subband coefficients of the NSCT. The point

sði; jÞ is in the subband coefficient sðm; nÞ. The window of size 3� 3 is used to analyze the

point sði; jÞ. The grey correlation value of the point sði; jÞ in every direction can be

described as follow:

oh1 ¼
sði; j� 1Þ

sði; j� 1Þ þ jsði; jÞ � sði; j� 1Þj ð8Þ

oh2 ¼
sði; jþ 1Þ

sði; jþ 1Þ þ jsði; jÞ � sði; jþ 1Þj ð9Þ

ov1 ¼
sði� 1; jÞ

sði� 1; jÞ þ jsði; jÞ � sði� 1; jÞj ð10Þ

ov2 ¼
sðiþ 1; jÞ

sðiþ 1; jÞ þ jsði; jÞ � sðiþ 1; jÞj ð11Þ

od1 ¼
sði� 1; j� 1Þ

sði� 1; j� 1Þ þ jsði; jÞ � sði� 1; j� 1Þj ð12Þ

od2 ¼
sði� 1; jþ 1Þ

sði� 1; jþ 1Þ þ jsði; jÞ � sði� 1; jþ 1Þj ð13Þ

od3 ¼
sðiþ 1; j� 1Þ

sðiþ 1; j� 1Þ þ jsði; jÞ � sðiþ 1; j� 1Þj ð14Þ

od4 ¼
sðiþ 1; jþ 1Þ

sðiþ 1; jþ 1Þ þ jsði; jÞ � sðiþ 1; jþ 1Þj ð15Þ

where oh1 and oh2 are the grey correlation value of horizontal direction; ov1 and ov2 are the

grey correlation value of vertical direction; od1, od2, od3 and od4 are the grey correlation

value of diagonal direction.

omax ¼ maxðoh1; oh2; ov1; ov2; od1; od2; od3; od4Þ ð16Þ

omin ¼ minðoh1; oh2; ov1; ov2; od1; od2; od3; od4Þ ð17Þ

omax and omin are the maximum and minimum grey correlation value on any point of

subband coefficient of the NSCT, respectively.
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4.3 Adaptive Modifying the Subband Coefficients of the NSCT

As the discussion above, combining the entire relational correlation value among the

congenetic subband coefficients of the NSCT with the grey correlation value in the single

coefficient of congenetic subband coefficients of the NSCT to calculate the strong edges,

weak edges and noise in the single coefficient of congenetic subband coefficients of the

NSCT. After the calculation, getting the strong edges, weak edges and noise, the single

coefficient that its grey correlation value has been used in this calculation can be modified.

For the every coefficient of L level decomposition, it has L congenetic subband coef-

ficients, so there are C2
Lþ1 difference value matrix among the Lþ 1 congenetic subband

coefficients of the NSCT; they are d1; d2; . . .; dC2
Lþ1

, respectively; so getting the average

difference value matrix:

d ¼ 1

C2
Lþ1

XC
2
Lþ1

i¼1

di ð18Þ

The corresponding relational correlation matrix is shown follow:

w ¼ ðminðdÞ þ e �maxðdÞÞ
�
ðd þ e �maxðdÞÞ ð19Þ

So the final entire relational correlation value is defined as follow:

g ¼ 1

mn

Xm

i¼1

Xn

j¼1

wðm; nÞ ð20Þ

Getting the final entire relational correlation value, can calculate the strong edges, weak

edges and noise in the every single coefficient of the L level decomposition of the NSCT.

The single coefficient slðm; nÞ of L level decomposition of the NSCT has the corre-

sponding final entire relational correlation value g which can be got by the Eq. (20), and at

the same time, the same single coefficient slðm; nÞ of L level decomposition of the NSCT

also has the corresponding grey correlation value omax and omin. Combining omax, omin with

g to calculate the strong edges, weak edges and noise in the single coefficient slðm; nÞ of L
level decomposition of the NSCT, which is described as follow:

If omin � g, then slði; jÞ is strong edge;

If omax � g, then slði; jÞ is noise;
If omin\g and omax [ g, then slði; jÞ is weak edge.

Now, the strong edges, weak edges and noise have been known, and then the coeffi-

cients slði; jÞ can be modified. So the coefficients can be modified as follow:

slðm; nÞ ¼
slði; jÞ; if omin � g
0; if omax � g
0:1 � g � slði; jÞ; if omin\g and omax [ g

8
<

:

9
=

;
ð21Þ

As the discussion above, calculating the strong edges, weak edges and noise, and then

modifying the subband coefficients of the NSCT. This theory can denoise the image noise

and preserve the image edges automatically, which is the adaptive denoising theory that

proposed in this paper.
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Because the noise image contains noise, leading to the noise image may be discon-

tinuous, which will generate the ‘‘Gibbs’’ phenomenon; in order to eliminate the ‘‘Gibbs’’

phenomenon, the total variation theory [10] is used to process the low-frequency area of

the NSCT. And then use the low-frequency area which is processed by total variation and

the high-frequency area which is processed by the theory proposed in this paper to

reconstruct the image, getting the denoising image. The flow chart of our algorithm is

shown in Fig. 6a.

5 Results and Discussion

In this section, combining the adaptive denoising theory with the congenetic subband

coefficients of the NSCT in the image denoising, modifying the coefficients of the NSCT,

and then using the coefficients that have been modified to reconstruct the image which has

been denoised. This is the denoising method proposed by this paper. In recent years, lots of

excellent denoising methods have been proposed, and their denoising effect is very great,

and these excellent methods should not be the end for the denoising research, so lots of

scholars still research the denoising theory further. The non-local means (NL-means) [11]

theory is the outstanding denoising method, and many researchers like it very much besides

me. This paper will compare the method which proposed by this paper with the NL-means

method, through the compare, showing the improvement of our method at certain degree.

The PSNR value is chosen as the criterion. If the PSNR value is large, the denoised degree

is great.

To test the applicability of our algorithm, the experiment has used many stand images to

test and chosen the ‘‘lena’’ as an example. Comparing image-denoising results by exper-

iments on ‘‘lena’’. The direction decomposition level of the NSCT is two on the first

residual image. The size of the image ‘‘lena’’ is 512 * 512. The purpose of image-de-

noising is to get better vision effect in the denoised image. The PSNR value can show if the

quality of the image has been improved by the denoising method. From the Fig. 6b, can see

that our algorithm has higher PSNR value than NL-means algorithm.

10 20 30 40 50
20

22

24

26
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30

32

34

σ

P
S

N
R

Our proposed method
Nl-means

(a) (b)

Fig. 6 a The proposed algorithm flow chart. b The PSNR value of different method
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Figure 7c is the image denoised by NL-means method, which still contains noise.

Figure 7d is the image denoised by our method, which contains less noise than Fig. 7c.

Figure 7e is the local magnifying part of Fig. 7c, and then it shows much noise. Figure 7f

is the local magnifying part of Fig. 7d, and then it contains less noise than Fig. 7e,

obviously. In order to evaluate the quality of the denoised images, the structure similarity

(ssim) [12] is used to calculate the ssim between the original image and every denoised

image. If the value of the ssim is large, the denoised image has high similarity with the

original image, showing that the denoising result is very good. Through the calculation, the

NL-means (ssim1 ¼ 0:7136) in Fig. 7c, and our method (ssim2 ¼ 0:8055) in Fig. 7d.

Through the comparison, ssim2 [ ssim1, our method is superior to NL-means method.

Fig. 7 a The original image; b the noise image added corresponding Gaussian white noise; c the image
denoised by NL-means method; d the image denoised by our method; e the magnifying part of c; f the
magnifying part of d
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Fig. 8 The ssim value of
different methods

770 P. Wu, B. Wang

123



Through the calculation, the ssim value of different methods in different standard

deviation of noise is gained, which is shown in Fig. 8. Through the comparison, our

method can maintain the edges, details and texture characteristics of image; our method

has better vision effect. The vision effect is subjective, the effect could be influenced by

different observers. So the ssim is used to assess the denoised image with the original

image, which objectively supports our algorithm.

6 Conclusion

In this paper, the entire relational correlation value and grey correlation value of con-

genetic subband coefficients in multiscale and multidirection analysis are researched. Due

to the character of fully shift-invariant, multiscale, multidirection and simple implemen-

tation, the NSCT is chosen as the decomposition tool. Using the entire relational corre-

lation value and grey correlation value of congenetic subband coefficients of the NSCT to

modify the coefficients, so a novel adaptive denoising theory based on the NSCT is

proposed. The experiment is conducted to show the applicability of our algorithm and the

ability that our algorithm can identify the strong edges, weak edges and noise in the

coefficients accurately; and then our method can preserve the edges, details and texture

characteristics of the image. Our method is not complex, so it’s easy to calculate. For the

further research, the congenetic subband coefficients denoising theory will be used to apply

in other decomposition tool.

Acknowledgements The authors acknowledge the Fundamental Research Funds for the Central Univer-
sities (Grant: 2572018BF05), Special Funds for Scientific and Technological Innovation Talents of Harbin
(Grant: 2014RFQXJ127) and Financial assistance from postdoctoral scientific research developmental fund
of Heilongjiang Province (Grant: LBH-Q14006).

References

1. Wee, A., Grayden, D., Zhu, Y., et al. (2008). A continuous wavelet transform algorithm for peak
detection. Electrophoresis, 29, 4215–4225.

2. Pad, Pedram, Alishahi, Kasra, & Unser, Michael. (2017). Optimized wavelet denoising for self-similar
alpha-stable processes. IEEE Transactions on Information Theory, 63(9), 863–877.

3. Wu, S., Chen, H., Bai, Y., et al. (2015). Remote sensing image noise reduction using wavelet coeffi-
cients based on OMP. Optik-International Journal for Light and Electron Optics, 126(1516),
1439–1444.

4. Do, M. N., & Vetterli, M. (2005). The Contourlet transform: an efficient directional multiresolution
image representation. IEEE Transactions on Image Processing, 14(12), 2091–2106.

5. Guo, Q., Dong, F. M., Sun, S. F., et al. (2013). Image denoising algorithm based on contourlet transform
for optical coherence tomography heart tube image. IET Image Processing, 7(5), 442–450.

6. Cunha, A. L., Zhou, J. P., & Do, M. N. (2006). The nonsubsampled contourlet transform: theory, design
and applications. IEEE Transactions on Image Processing, 15(10), 3089–3101.

7. Zhou, Y., & Wang, J. (2012). Image denoising based on the symmetric normal inverse Gaussian model
and non-subsampled contourlet transform. IET Image Processing, 6(8), 1136–1147.

8. Li, H. J., Zhao, Z. M., & Yu, X. L. (2010). A novel image denoising algorithm in wavelet domain using
total variation and grey theory. Engineering Computations, 27(7), 863–877.

9. Li, H. J., Zhao, Z. M., & Yu, X. L. (2012). Grey theory applied in non-subsampled contourlet transform.
IET Image Processing, 6(3), 264–272.

10. Dou, Z. Y., Song, M. N., Gao, K., et al. (2017). Image smoothing via truncated total variation. IEEE
Access, 5, 27337–27344.

Image Adaptive Denoising Based on Nonsubsampled Contourlet… 771

123



11. Karam, Christina, & Hirakawa, Keigo. (2018). Monte-Carlo acceleration of bilateral filter and non-local
means. IEEE Transactions on Image Processing, 27(3), 1462–1474.

12. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters,
9(3), 81–84.

Peng Wu was born in 1980. He is an associate professor in Northeast
Forestry University. He has published nearly 40 academic papers. His
main interests include image processing, nonlinear control and
Simulation.

Baokun Wang was born in 1990. He is studying for the master degree
in the Northeast Forestry University. His main interests include image
processing and control of nonlinear system.

772 P. Wu, B. Wang

123


	Image Adaptive Denoising Based on Nonsubsampled Contourlet Transform
	Abstract
	Introduction
	Nonsubsampled Contourlet Transform
	Nonsubsampled Pyramid
	Nonsubsampled Directional Filter Bank (NSDFB)
	Combining the Nonsubsampled Pyramid and Nonsubsampled Directional Filter Bank in the NSCT

	Congenetic Subband Coefficients
	Adaptive Denoising Theory
	The Entire Relational Correlation Value Among the Congenetic Subband Coefficients of the NSCT
	The Grey Correlation Value in Single Coefficient of the NSCT
	Adaptive Modifying the Subband Coefficients of the NSCT

	Results and Discussion
	Conclusion
	Acknowledgements
	References




