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Abstract In this paper, we investigated the modified two dimensional model which can

explain somite patterning in embryos. It is suitable for exploring a design space of

somitogenesis and can explain aspects of somitogenesis that previous models cannot. Here,

we mainly studied the non-diffusing case. We have used the Hopf bifurcation theorem, the

Center manifold theorem and Runge–Kutta method in our investigation. First, we inves-

tigate its dynamical behaviors and put forward a sufficient condition for the oscillation of

the small network. Then, we give the mathematical simulation based on the Runge–Kutta

method. In the process of solving ordinary differential equations, the four order Runge–

Kutta method has the advantages of high accuracy, convergence and stability (under

certain conditions), which can change the step size and do not need to calculate higher

order derivatives. Therefore, it has become the most commonly used numerical solution.

At the same time, we get the sufficient condition in which the bistable state of the system

exists and give the numerical simulation. Because somitogenesis occupies an important

position in the process of biological development, and as a pattern process can be used to

study pattern formation and many aspects of embryogenesis. So our study have a great help

for embryonic development, gene expression, cell differentiation. In addition, it is bene-

ficial to study the clone animal variation problem of spinal bone number and is of great

help to the treatment and prevention of defects of human spine disease.

Keywords Hopf bifurcation � Bistable � Somitogenesis � Runge–Kutta
method

& Jianwei Shen
xcjwshen@gmail.com

1 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China

2 Institute of Applied Mathematics, Xuchang University, Xuchang, China

123

Wireless Pers Commun (2018) 103:221–230
https://doi.org/10.1007/s11277-018-5437-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-018-5437-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-018-5437-7&amp;domain=pdf
https://doi.org/10.1007/s11277-018-5437-7


1 Introduction

Vertebrate, the animal that has the spinal column, the basic morphogenesis and cell dif-

ferentiation of the early embryo can be divided into two major groups [1]. One is non

repetitive patterns that include the heart, kidneys, limbs, etc. One is the repetitive pattern,

including segments, feathers, and so on. Among them, somite is the transitional structure

that can represent the segmental features of vertebrates.

During the development of all vertebrate embryos, the presomitic mesoderm(PSM),

which lies on either side of the neural tube, is progressively segmented from anterior to

posterior (from approximately day 1 to day 3 in the chick embryo) into a series of transient

epithelial balls called somites, which later give rise to vertebrae, muscle blocks, and skin

[1, 2]. This physical budding process is prefigured by a molecular patterning process that

sequentially produces stripes of gene expression along the PSM, again in an anterior-to-

posterior sequence(for example Lfng); each stripe of expression will, in future, correspond

to a subsequent somite boundary. The control of this molecular segmentation process has

been a paradigmatic example of pattern formation for the last 50 years and as such has a

long conceptual history of proposed underlying mechanisms [1]. Till now, many models

have been proposed to explain the formation of somite, for example the clock and

wavefront model, the clock and induction model, the reaction–diffusion type model, and

others [3–7]. These models, though not perfect, can be used to explain the different aspects

of somitogenesis [8–13]. Besides, most of these models puts forward the concept of seg-

mentation clock. During somitogenrsis in embryos, a posteriorly moving differentiation

front arrests [14] the oscillations of segmentation clock genes, leaving behind a frozen,

periodic pattern of expression stripes [15]. We found that mathematical theories and

experimental observations used the clock wavefront model to explain the phenomenon, in

which the movement of the front and the placement of the stripes in the embryo in the

control of long-range molecular gradients [8, 16]. Recently, Cotterell et al. develop a new

simple model which driven by short-range interactions. And they call it progressive

oscillatory reaction–diffusion (PORD) system. In the model, posterior movement of the

front is a local, emergent phenomenon which is not controlled by global positional

information [3]. The PORD model can explain important characteristics of the formation of

somite, for instance, size regulation, which can’t be explained by previous reaction–dif-

fusion models [17]. What’s more, compared with the clock and wavefront model, the

PORD model has some novel prediction results in FGF-inhibition and tissue cutting

experiments, and they proved the correctness of their results by experiments.

Our study focuses on the non-diffusing case of the PORD model. In Sect. 2, we give the

gene network represented by mathematical model firstly, then give some theoretical

results. In Sect. 3, we give the numerical analysis. Finally, we summarize our results.

2 Experimental

Cotterell et al. [3] develop a simple model which driven by short-range interactions and it

can be used to explain somite patterning in embryos. When they analyzed the dynamics

and behavior of networks in the large stalactite, they found that they operate in a funda-

mentally different way from the clock and wavefront model. The simplest version of the

mechanism is a network of only two nodes (Fig. 1), comprising a cell-autonomous
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activator ðAÞ, which is itself activated by the FGF signal, and a diffusible repressor ðRÞ,
whose levels are defined by the following equations

oA

ot
¼ k1Aþ k2Rþ F þ b

1þ k1Aþ k2Rþ F þ b
� lA

oR

ot
¼ k3A

1þ k3A
� lR

ð1Þ

where k1; k2, and k3 define the strengths of regulatory interactions between A and R, l is a

fixed decay constant, and F is the regulatory input of the FGF/WNT gradient onto A. b is

the background regulatory input of A(the gene receiving the morphogen activation).

2.1 Hopf Bifurcation

Suppose Eq. (1) has a fixed point ðA;RÞ ¼ ðA0;R0Þ, which may depend on the parameter

k1, let xðtÞ ¼ AðtÞ � A0; yðtÞ ¼ RðtÞ � R0. Then the linearized system of Eq. (1) at origin is

as follows

ox

ot
¼ m11xþ m12y

oy

ot
¼ m21xþ m22y

ð2Þ

where

m11 ¼
k1

ð1þ k1A0 þ k2R0 þ F þ bÞ2
� l;

m12 ¼
k2

ð1þ k1A0 þ k2R0 þ F þ bÞ2
;

m21 ¼
k3

ð1þ k3A0Þ2
;m22 ¼ �l:

Fig. 1 The minimal somite-
patterning circuit [3] in our study,
which comprises an activator
molecule A (green) and a
diffusible repressor R (red).
k1; k2, and k3 are the strengths of
regulatory interactions between A
and R, l is a fixed decay
constant, and F is the regulatory
input of the FGF/WNT gradient
onto A. b is the background
regulatory input of A. (Colour
figure online)
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Defining the DðkÞ as follows

DðkÞ ¼ m11 m12

m21 m22

� �
ð3Þ

then we can get the characteristic equation from (3)

detðkI � DðkÞÞ ¼ 0 ð4Þ

where I is the 2� 2 identity matrix, and the characteristic Eq. (4) has the following form

k2 � Trkþ d ¼ 0 ð5Þ

where Tr ¼ m11 þ m22; d ¼ m11m22 � m12m21,and when Tr2 � 4d\0, we have

k1;2 ¼ Tr�i
ffiffiffiffiffiffiffiffiffiffiffi
4d�Tr2

p

2
.

Then, the following theoretical results can be obtained:

Theorem 1 The Hopf bifurcation occurs in the 2-dimensional system which should

satisfy the following conditions here.

ði) Tr ¼ m11 þ m22 ¼ 0;

ðii) d ¼ m11m22 � m12m21 [ 0;

ðiiiÞ d ¼ oTrðk1Þ
ok1

jk1¼k0
1
6¼ 0:

(When k1 ¼ k01, Eqs. (1) have a fixed point ðA0;R0Þ)Let a ¼ 1
16
ðfuuu þ fuvv þ guuv þ gvvvÞ þ

1
16x ðfuvðfuu þ fvvÞ � guvðguu þ gvvÞ � fuuguu þ fvvgvvÞ (see appendix for the calculation

method [23]), We can get another theoretical results.

Theorem 2 Let a and d be defined as above,

(i) There is a supercritical (subcritical) Hopf bifurcation if a\0( a[ 0),

(ii) An unique curve of periodic solutions bifurcates from point ðA0;R0Þ into the region
k1 [ k01 if ad\0 or k1\k01 if ad[ 0.The point ðA0;R0Þ is a stable fixed point for

k1 [ k01 (resp. k1\k01) and an unstable fixed point for k1\k01 (resp. k1 [ k01) if

d\0 (resp. d[ 0). Meanwhile, if the periodic solutions exist, there will be an

unstable (resp. stable) periodic solution when the point ðA0;R0Þ is stable (resp.

unstable).

By using Hopf bifurcation theory, our theorem 1, 2 can be proved. The proof process

can be found in [18, 19]. Therefore, we omit the process of proving the theorem1,2 here. In

the next part, we use a numerical example to illustrate the correctness of our theoretical

results.

Lemma 1 When, Tr ¼ 0, that is

k1 ¼
1� 4lA0ð1þ k2R0 þ F þ bÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4lA0ð1þ k2R0 þ F þ bÞ � 1Þ2 � 16l2A2

0ð1þ k2R0 þ F þ bÞ2
q

4lA2
0

;

and d\0, then there is a Neutral saddle at ðA0;R0Þ.

Neutral saddle without bifurcate significance and has nothing to do with stable diversity.

So we don’t do too much research about it.
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2.2 Bistable State Analysis

First we set both equations of (1) equal to zero, and solved the second equation for R

R ¼ k3x

lð1þ k3xÞ
ð7Þ

and then substituted it into the first equation of (1). This gave us the following equation for

the fixed points of the system.

k1k3lx
3 þ ðk1lþ k2k3 þ ð1þ F þ bÞlk3 � k1k3Þx2 þ ðð1þ F þ bÞl� k1

� k2k3=l� ðF þ bÞk3Þx� ðF þ bÞ ¼ 0
ð7Þ

Let

a ¼ k1k3l; b ¼ k1lþ k2k3 þ ð1þ F þ bÞlk3 � k1k3;

c ¼ ð1þ F þ bÞl� k1 � k2k3=l� ðF þ bÞk3; d ¼ �ðF þ bÞ:

We get the equation as follows:

hðxÞ ¼ ax3 þ bx2 þ cxþ d ¼ 0 ð8Þ

The discriminant of the derivative of hðxÞ is

D ¼ 4b2 � 12ac ð9Þ

We define the discriminant of hðxÞ as follows

D0 ¼ b2 � 4ac
� �

c2 � 4bd
� �

� adð27ad � 2bcÞ ð10Þ

Then, we can get the following theoretical results:

Theorem 3

(i) When D[ 0 or D� 0 and D0\0,hðxÞ have only one real root;

(ii) When D[ 0 and D0 ¼ 0,hðxÞ have two different real roots;

(iii) When D[ 0 and D0 [ 0, hðxÞ have three different real roots. And at this time, the
system have a bistable state.

In the third part, we demonstrate the above theoretical results applied the Runge–Kutta

method by a numerical example.

3 Results

3.1 Hopf Bifurcation and Limite Cycle

Without loss of generality, if we take k01 ¼ 0:103572,k2 ¼ �2:28,k3 ¼ 0:099,l ¼ 0:05,

F ¼ 1,b ¼ 0:5, the Eqs. (1) becomes
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oA

ot
¼ 0:103572A� 2:28Rþ 1:5

1þ 0:103572A� 2:28Rþ 1:5
� 0:05A

oR

ot
¼ 0:099A

1þ 0:099A
� 0:05R

ð6Þ

Such a system has a positive equilibrium ðA0;R0Þ ¼ ð0:347915; 0:665934Þ. By using the
Theorem 1 and Theorem 2 we can obtain that d � 0:448568; a � 0:015599, so there is a

subcritical Hopf bifurcation. Thus, for value of the k01, the Theorem 1 applies. When

k01 � 0:103572, there is a Hopf bifurcation (see Fig. 2). We have d[ 0 and. Hence the

point ðA0;R0Þ is an unstable fixed point for k1 [ 0:103572 and a stable fixed point for

k1\0:103572, whilst there is a unstable limit cycle for k1\0:103572 (see Figs. 3, 4).

Fig. 2 A periodic solution bifurcated from equilibrium ðA0;R0Þ

Fig. 3 An unstable limit cycle from equilibrium ðA0;R0Þ.Software used is the MATCONT package [20] in
MATLAB (The Math-Works, Inc., Natick, Massachusetts, USA)
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3.2 Bistable

Let us now fix the parameter value k1 ¼ 0:103572; k2 ¼ �2:28; k3 ¼ 0:099; l ¼ 0:05; F ¼
1; b ¼ 0:5; A0 ¼ 0:347915; R0 ¼ 0:665934; then D ¼ 0:163837617;D0 ¼ 0:03903007478,
the Theorem 2 applies, we know the system have a bistable state (see Fig. 5).

4 Conclusion

In this paper, we used a simple two-dimensional model to analyze the dynamics and

behavior of networks in the large stalactite. Particularly, we mainly studied dynamical

behaviors of the two-dimensional model by using the Runge–Kutta method, at the

Fig. 4 The time series of Eqs. (1). X and Y represent the concentration of activator A and repressor R,
respectively. It’s before the Hopf bifurcation at the parameter value k1 ¼ 0:1 with initial point
ðA0;R0Þ ¼ ð0:347915; 0:665934Þ, which is inside the limit cycle, the origin is stable and the limit cycle
is unstable, the orbit spirals to the origin
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meantime, we derived the sufficient conditions of oscillation by taking advantage of Hopf

bifurcation theory [21–23]. Specifically, we came to an conclusion that there is a periodic

solutions when parameter k1 reach its critical value and it is a subcritical Hopf bifurcation

for which marks the instability of limit cycles destroyed in Hopf bifurcation. In addition,

we also got the conditions of the system to produce bistable state, and numerical examples

are given. Based on the above theoretical results, we can have a better understanding of

somitogenesis in embryos.

By studying the two-dimensional model, we know that oscillation depends on the

parameter by utilizing single parameter bifurcation analysis. we take the strength as the

bifurcation parameter, and found that the oscillation depends on the parameter. A

numerical example is given by using the Runge–Kutta method. Moreover, we obtained the

condition for producing bistability of the system. Recent biological experiment [24–28]

evinced that somitogenesis in the process of biological development occupies an important

position and as a pattern process can be used to study pattern formation and many aspects

of embryogenesis. So our study have a great help for embryonic development, gene

expression, cell differentiation. In addition, it is beneficial to study the clone animal

variation problem of spinal bone number and is of great help to the treatment and pre-

vention of defects of human spine disease. In the present study, we merely use a simplified

model to explore the dynamical behavior of somitogenesis. In the future, we will inves-

tigate the effects of delay, noise and diffusion on somitogenesis.
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Fig. 5 A branch of equilibria in the ðk1;AðtÞÞ-plane displaying bistable
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