
Multi-objective Optimization of Resource Scheduling
in Fog Computing Using an Improved NSGA-II

Yan Sun1 • Fuhong Lin1 • Haitao Xu1

Published online: 3 January 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In conventional cloud computing technology, cloud resources are provided

centrally by large data centers. For the exponential growth of cloud users, some applica-

tions, such as health monitoring and emergency response with the requirements of real-

time and low-latency, cannot achieve efficient resource support. Therefore, fog computing

technology has been proposed, where cloud services can be extended to the edge of the

network to decrease the network congestion. In fog computing, the idle resources within

many distributed devices can be used for providing services. An effective resource

scheduling scheme is important to realize a reasonable management for these heteroge-

neous resources. Therefore, in this paper, a two-level resource scheduling model is pro-

posed. In addition, we design a resource scheduling scheme among fog nodes in the same

fog cluster based on the theory of the improved non-dominated sorting genetic algorithm II

(NSGA-II), which considers the diversity of different devices. MATLAB simulation results

show that our scheme can reduce the service latency and improve the stability of the task

execution effectively.

Keywords Fog computing � Heterogeneous devices � Improved non-dominated

sorting genetic algorithm II � Multi-objective optimization � Resource
scheduling scheme

1 Introduction

There is an explosive growth in the number of devices getting connected to the network

with the rapid development of Internet of Things (IoT). Cisco conservatively estimates that

there will be 50 billion devices by 2020 [1]. When these devices simultaneously request

& Fuhong Lin
wk2015lfh@163.com

1 School of Computer and Communication Engineering, University of Science and Technology
Beijing, Beijing 100083, China

123

Wireless Pers Commun (2018) 102:1369–1385
https://doi.org/10.1007/s11277-017-5200-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-017-5200-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-017-5200-5&domain=pdf
https://doi.org/10.1007/s11277-017-5200-5

resource services from the cloud data center, they will take up a large amount of network

bandwidth, and data transmission and information access will become slower. Moreover, if

some delay-sensitive requests such as medical and emergency are uploaded to the remote

cloud for processing, the delay caused by bandwidth constraints and resource bottlenecks

of the cloud data center will affect the quality of service (QoS). To overcome this limi-

tation, the concept of fog computing has been proposed [2, 3]. It is a distributed computing

model that provides services between traditional cloud data centers and end nodes in the

Internet of Things, where cloud services are extended to the edge of the network to reduce

the latency and the network congestion [4].

In fog computing, the resource services are provided by geographically distributed

devices with certain computing and storage capacities that are located at the edge of the

network instead of in a centralized data center as in cloud computing. There are many idle

resources in these heterogeneous devices. It is thus very important to make a reasonable

resource scheduling to ensure the quality of service and reduce the resource waste. Since

the devices that perform the tasks are often heterogeneous and are controlled by different

individuals with highly fluctuating behaviors in providing resources [5], the characteristics

of the devices performing the tasks should be considered when allocating the resources to

each task in fog computing. Therefore, in this paper, we design a resource scheduling

scheme specifically for fog computing to realize a more efficient implementation of the

tasks. The contributions of this paper are summarized as follows:

1. A new fog computing architecture is proposed, which is divided into the terminal

layer, edge layer, and core layer. This architecture can better describe the composition

and function of the fog computing.

2. A systematic two-level resource scheduling model is presented, which includes two

parts: resource scheduling among various fog clusters and resource scheduling among

fog nodes in the same fog cluster.

3. In order to solve multi-objective optimization problems of resource scheduling in the

same fog cluster, we propose a novel resource scheduling scheme that efficiently

reduces the service latency and improves the overall stability of task execution using

an improved non-dominated sorting genetic algorithm II (NSGA-II).

The remainder of this paper is organized as follows: In Sect. 2, the architecture of fog

computing is introduced. Then, we present a two-level resource scheduling model in fog

computing in Sect. 3. In Sect. 4, an improved NSGA-II is proposed to solve multi-ob-

jective optimization problems of resource scheduling in the same fog cluster. In Sect. 5,

some simulations show the effects of our proposed scheme on reducing the service latency

and improving the stability of task execution. Our conclusions are presented, and future

research directions are proposed in Sect. 6.

2 Fog Computing Architecture

Fog computing is located between the end node and the cloud data center. Therefore, the

existing architecture of fog computing is typically divided into three layers, which are the

cloud, fog, and terminal node (from top to bottom) [6, 7]. To better describe the archi-

tecture, we first make some simple but realistic assumptions:

• Fog nodes are local resources, which include network connection devices such as

intelligent routers and gateways, and mobile terminal devices such as mobile phones,

1370 Y. Sun et al.

123

tablets and video surveillance cameras. These devices have the abilities of computing,

storage, and network connectivity [2]. They can be used not only as resource providers

but also as resource consumers.

• Fog clusters consist of local fog nodes. Fog clusters can be interconnected and each of

them is linked to the cloud.

• IoT devices, such as sensors, are usually used to obtain information, capture data, and

request services, but they do not have the ability to store or calculate.

• The fog nodes can share the network, computational, and storage resources among

themselves according to the requirements of the tasks [2].

• A manager node ideally knows all of the information, including the idle resources and

the willingness of each device to contribute resources. The manager instructs every fog

node to allocate its tasks to other nodes.

In this paper, the architecture of fog computing is divided into the terminal layer, edge

layer, and core layer, as shown in Fig. 1.

The terminal layer is mainly composed of resource requestors, including IoT devices

such as sensors and traffic lights, and mobile terminal devices such as mobile phones and

laptop computers. The latency-sensitive and simple tasks of these devices request resources

from the edge layer, whereas the complex tasks request resources from the core layer

(cloud data center).

The edge layer is primarily composed of fog resource providers, including gateways,

routers, and base stations. Specifically, we find that the edge layer and the terminal layer

Fig. 1 The architecture of fog computing

Multi-objective Optimization of Resource Scheduling in Fog… 1371

123

partially intersect because the mobile terminal devices in these intersections are not only

fog resource requesters but also resource providers. These devices are willing to contribute

their own resources to provide external services. The manager at this level is responsible

for allocating appropriate resources to process the latency-sensitive tasks from the terminal

layer and to provide temporary storage. When the resources of this layer cannot meet the

resource requirements of the terminal layer, the edge layer will request resource services

from the core layer. In peak times, the capabilities of those fog clusters cannot efficiently

serve the resource requester. Therefore, the fog resource provider can extend its capabil-

ities by renting resources from cloud resource providers [8].

The core layer comprises cloud resource providers, including many large servers with

many resources and strong task-processing and storage capabilities. They accept resource

requests from the edge layer to handle complex computing tasks and large-scale storage

tasks. They can outsource computation and storage resources to the edge layer. The

emergence of fog computing can greatly ease the pressure on the cloud data center, and as

a result, the cloud can focus on handling the permanent and large-scale storage of data and

computationally extensive analysis of the tasks from resource requesters. The core layer is

now accessed in a periodic and controlled manner, which leads to the efficient and

improved utilization of the cloud resources [9].

3 Resource Scheduling Model in Fog Computing

In this paper, resource scheduling in fog computing is divided into two levels: one is the

scheduling among fog clusters, which specifies which fog cluster will perform the task

when it arrives. The other level of resource scheduling is within the same fog cluster,

which specifies which fog resource provider will perform the task when it arrives.

3.1 Resource Scheduling Among Fog Clusters

In the first level of scheduling, as shown in Fig. 1, there is a manager node in each fog

cluster, which is a resource scheduler for the tasks submitted from resource requesters at

the terminal layer.

The manager is similar to the local resource coordinator in [10], which is selected

according to the CPU performance and the battery lifetime. The managers in different fog

clusters can interact and communicate with one another and are responsible for the rea-

sonable migration of tasks among the fog clusters. When a user requests resources from the

fog clusters, the managers need to communicate with one another and assign the appro-

priate resources of the fog clusters to perform the tasks of users (i.e., make a reasonable

resource allocation), which is called resource scheduling among the fog clusters or the first

level of resource scheduling.

Resource scheduling among the fog clusters follows the following two principles:

proximity and the resource utilization of fog clusters. The farther the distance between the

user who requests resources and the fog cluster is, the longer the required communication

delay is. Therefore, the fog cluster that is closer to the resource requestor should be chosen

to perform the tasks. Therefore, we consider the principle of proximity to reduce the

communication overhead between the fog clusters.

Although a short communication distance leads to a reduced communication delay, if

the resource utilization of the fog cluster that is closest to the users has reached the upper

1372 Y. Sun et al.

123

threshold, the users may not be able to bear the waiting time. Therefore, when scheduling

resources among the fog clusters, we should also consider the resource utilization of fog

clusters.

3.2 Resource Scheduling Among Nodes in the Same Fog Cluster

The second level of resource scheduling is within the same fog cluster. The manager of a

fog cluster is responsible for managing the fog nodes in the fog cluster. When a service

request arrives, it will be divided into several tasks. This paper mainly focuses on the

resource scheduling of this level, i.e., which fog node will perform which task.

3.2.1 Problem Description of Resource Scheduling Among the Fog Nodes in the Same
Fog Cluster

As shown in Fig. 2, the issue of resource scheduling within the same fog cluster is to

allocate the appropriate resources for these tasks according to the scheduling goal.

In the fog resource pool, the set of resources is expressed as R ¼ R1;R2; . . .Rj. . .;Rm

� �
.

In our paper, one resource represents one fog node in the fog cluster. Resource requesters

request resources service by service [10]. If the resource requester rk submits a service sk,
this service is separated into N related tasks (i.e., sub-tasks), such as computing and data

downloading by the manager node, which can be described as T ¼ T1; T2; . . .Ti. . .; Tnf g.
Fog computing is a very time-sensitive model [11], and thus, when scheduling

resources, we must fully consider the service latency. Moreover, there is great uncertainty

in the choice of fog node to perform a task because it is controlled by a person with high

subjectivity. Based on the above characteristics, we have designed the following two

scheduling goals:

1. Reduce the service latency effectively;

Fig. 2 Resource scheduling
diagram

Multi-objective Optimization of Resource Scheduling in Fog… 1373

123

2. Improve the overall stability of the task execution.

3.2.2 Related Mathematical Model

We have established the following mathematical models based on the above two

scheduling goals:

Definition 1 Calculation model for service latency

Compared to cloud computing, which can provide high-capacity storage and large-scale

computing, fog computing focuses on providing low-latency and real-time services to

billions of IoT devices at the edge of the network. The main concern of users is the

completion time of the service that they have requested.

Here, we define the completion time of a service as the service latency tser. The com-

pletion time of a service is equal to the sum of the execution time texe and the transmission

time ttra of all of the tasks, which can be expressed as:

tser ¼ texe þ ttra: ð1Þ

When we upload tasks to the cloud, because WAN covers a large geographical area from

the edge to the core, the communication delay and constrained bandwidth should be taken

into account [12]. While the fog device is adjacent to the end user, the LAN communi-

cation delay can be ignored. Therefore, the transmission time can be ignored.

In fog computing, many heterogeneous devices cooperate among them and with the

network to perform storage and processing tasks. These devices have different calculation

capabilities. Furthermore, how fast a fog node executes a task depends on how well the

heterogeneous fog node architecture matches the task requirements and features according

to [13, 14]. It means the speed of a fog node will be different for different subtasks. Thus,

the calculation capability of fog nodes in the fog resource pool is denoted as a two-

dimensional matrix, C, in which an element C (Ti, Rj) represents the calculation speed at

which fog node Rj executes task Ti. A(Ti) represents the number of instructions to be

processed in task Ti. Therefore, the execution time of task Ti running on resource node Rj,

denoted as t(Ti, Rj), can be expressed as AðTiÞ
�

CðTi;RjÞ. In addition, we consider li,j
represents the condition of task allocation:

li;j ¼
1; if Ti is allocated on Rj

0; otherwise:

�
ð2Þ

For a service composed of N related tasks, the execution time of Rj, denoted as tj, can be

calculated by Eq. (3):

tj ¼ max
N

i¼1
li;j �

AðTiÞ
CðTi;RjÞ

� �
: ð3Þ

Therefore, the service latency tser should depend on the longest execution time of all

resources:

tser ¼ max
M

j¼1
tj: ð4Þ

Definition 2 Calculation model for stability

1374 Y. Sun et al.

123

In the fog computing environment, the resources originate from different private owners

rather than a big data center. The private resource provider may leave the fog cluster or

break down arbitrarily and selfishly. To ensure the smooth implementation of tasks, the

reputation of fog nodes should be considered. In this paper, reputation is an index that

quantifies the degree of a device’s reliability and is described using the following equation:

repj ¼
x1ps

j þ x2pc
j Nt\Nth

ps
j Nt �Nth

�
; ð5Þ

subject to x1 þ x2 ¼ 1;where pj
s and pj

c are the reputation evaluation indexes of fog node

j. They have different weight values, named x1 and x2. Nt is the total number of tasks the

resource node Rj has already performed. Nth is the threshold value, which can be set as a

constant.

pj
s represents statistical probability that Rj will stay in the fog cluster and perform tasks

steadily within the unit time T according to the previous situation statistics of the task

execution. It is the statistics average value after the resource node has performed a certain

number of tasks. In addition, when the number of tasks the resource node has already

performed is too small to reflect the actual reputation (Nt\Nth), the cognitive probability

pj
c is considered as shown in Eq. (5). pj

c is defined as the cognitive probability that Rj will

stay in the fog cluster and perform tasks steadily within the unit time T according to the

type of devices. Heterogeneous devices have different cognitive probability. The mobile

devices have lower cognitive probability, because they are in motion and may leave the fog

cluster at any time leading to the suspension of the task. Computers, laptops and other fixed

devices have higher cognitive probability, because they are located in relatively

stable positions and will not easily leave the cluster and stop the task. Laptop can be used

in static mode as well as mobile. Here, these devices are divided into three categories:

mobile node, static node, semi mobile node. Based on our real experiments in different

wired and wireless networks (broadband, WiFi, 3G, and 4G LTE-A), we conclude that the

cognitive probability of a static node (desktop computer or server) is approximately 1.5

times the probability of a mobile node (smartphone and similar devices). On the other

hand, the cognitive probability of a semi mobile node (tablet and laptop) is approximately

1.25 times the probability of a mobile node.

In the above model for service latency, tj means the execution time of fog node Rj,

which can be calculated as Eq. (3). Therefore, repj

� 	tj
T should be the probability of suc-

cessfully completing the task on Rj. For example, we assume that the unit time T is 2 s, and

the execution time is 4 s. If ps
j ¼ 0:9, the probability that tasks can be completed smoothly

on Rj should be 0:9ð Þ
4
2¼0:9 � 0:9.

In our paper, the stability of the fog node Rj, denoted as staj, is defined as the probability
that Rj can complete the task smoothly. It can be expressed as follows:

staj ¼ repj

� 	tj
T : ð6Þ

Here, staove represents the overall stability of the task execution. For M resources, staove
depends on the lowest resource stability, which is described as follows:

staove ¼ min
M

j¼1
staj: ð7Þ

Definition 3 Constraint condition

Multi-objective Optimization of Resource Scheduling in Fog… 1375

123

In order to ensure every task can be completed in required time, one constraint condition

need to be met as shown in Eq. (8), where ti
req iis the required completion time of Ti:

tðTi;RjÞ� treq
i : ð8Þ

3.2.3 Description of Objective Functions

The optimal resource scheduling scheme in fog computing is a multi-objective opti-

mization problem that minimizes the service latency and maximizes the overall stability as

shown in the following equations, (9) and (10):

u ¼ mintser ð9Þ

v ¼ maxstaove: ð10Þ

Unlike the single-objective optimization problem which provides only a single optimal

solution, the multi-objective optimization problem will provide a set of points known as

the Pareto optimal set, which represents the solutions between these objectives.

4 Optimal Scheduling of Resources Using the Improved NSGA-II

To solve multi-objective optimization problems, NSGA-II [15] is a widely adopted

algorithm. The basic idea of the NSGA II algorithm is to construct the individual non-

dominated sets of the chromosome population, and non-dominated sets in different levels

are sorted by the crowding distance of the individuals. The individual with higher non-

dominated sets level and larger crowding distance has the higher priority to the next level.

The individual of the entire population will suffer the iteration stops or the evolution for

several times until meeting the precedent conditions of algorithm. The individual of the

population obtained finally is the optimal solution corresponding to the solved problem.

After applying traditional NSGA-II to the problem of resource scheduling based on

multi-objective optimization in fog computing, we find that it is not satisfied with the

distribution of the solution in the optimal solution set. In order to make the distribution of

the individuals in the Pareto optimal frontier more uniform, we have improved the tradi-

tional NSGA-II by establishing a new crowding distance formula.

In this paper, the improved NSGA-II algorithm is used to solve the multi-objective

optimization problem related to the resource scheduling presented in Sect. 3.2.3.

4.1 Encoding and Initialization

In this paper, every chromosome is taken as a solution of resource-task scheduling in our

design.

As shown in Fig. 3, chromosome Xk consists of m genes, and each gene represents one

resource. The length of the chromosome is set to be equal to the number of resources,

meaning that each chromosome consists of m resources. The value of each gene

Fig. 3 Chromosome Xk

1376 Y. Sun et al.

123

corresponds to the task IDs assigned for this resource. If the resource is not allocated to any

task, then the value is set to 0.

This chromosome is encoded as {‘n’, ‘1’, ‘0’,…, ‘1’, ‘5’, ‘6’}, which can be explained

as follows: R1 is assigned to Tn, R2 and Rm-1 are assigned to T1, R3 is not assigned to any

task, and Rm is assigned to T5 and T6.

The initial population is randomly generated. If the size of the population is set to

SCALE (each generation of the population contains SCALE individuals), it will randomly

generate m genomes with the length of SCALE.

4.2 Evaluate Objective Functions

In this paper, we consider two standards to design the fitness function: the service latency

and the overall stability of the task execution. The fitness values of the objective functions

(9) and (10) are calculated for each individual.

4.3 Construct a Non-dominant Set

Deb et al. [15] proposed the construction method of the non-dominated set, and the main

steps to construct the non-dominated set are presented as follows:

Step 1 Determine the initialization parameters, and the population size SCALE, and set

the attribute of the dominated number of individual chromosomes in the tagged

population; if dominated = 0, then the individual set dominated by the individual

chromosome is empty.

Step 2 Sequentially select an individual chromosome in the population, and compare it

to other individuals in the population in terms of the dominance relation. If it is

dominated by the compared individual, then for the chromosome attribute,

dominated = dominated ? 1; if it dominates the compared individual, then the

compared individual will be added to the individual set dominated by the

chromosome.

Step 3 Repeat step 2 until the dominated attribute of the N chromosomes and the

individual set dominated by them have been processed.

Step 4 Traverse the population and add the chromosome with the dominated attribute of

0 to the rank 1.

Step 5 Sequentially select the individual chromosome in the rank established in the

previous step, and at the same time, the attribute of all of the individuals in the set

of individuals is operated by auto-decrement, namely, dominated = dominated
—1. If dominated = 0, then the individual is added to the rank of next level.

Step 6 Repeat step 5 until the dominated individual set of the individual chromosome is

empty.

4.4 Improved Crowding Distance Calculation

In the fog computing resource scheduling based on multi-objective optimization, different

dimension of these two optimization objectives—the service latency and stability of the

task make the individuals of the optimal Pareto front generate relatively big gap on these

sub-objectives when calculating the crowding distance. While the traditional NSGA-II

algorithm calculates the crowding distance of an individual by calculating the sum of

Multi-objective Optimization of Resource Scheduling in Fog… 1377

123

distance difference between the individual and two individuals next to it in each sub-

objective and it does not consider the influence brought by the different dimensions of each

sub-objective, which has an impact on crowding distance calculation. Based on the tra-

ditional crowding distance operator, this paper carries on normalized process on the fitness

of the sub-goals where the individual is located, weakening the influence of the crowding

distance calculation because of the difference of the dimension, so as to make the distri-

bution of individuals in optimal Pareto frontier better.

To achieve a uniform measurement between the service latency and the stability, we

employ the Simple Additive Weighting technique to normalize these two scheduling goals.

For the service latency, its decrease will increase the fitness value of the individual, and

thus, its normalization formulation is expressed as Eq. (11):

f� Xkð Þ ¼ f� uð Þ¼
1; maxu �minu ¼ 0
maxu� u Xkð Þ
maxu �minu

; maxu �minu 6¼ 0

(

: ð11Þ

For the stability, its increase will increase the fitness value the individual, so its nor-

malization formulation is expressed as Eq. (12):

gþ Xkð Þ ¼ gþ vð Þ ¼
1; maxv �minv ¼ 0
v Xkð Þ�minv

maxv �minv
;maxv �minv 6¼ 0

(

: ð12Þ

Thus, when calculating the crowding distance, the fitness of the sub-objective where the

individual is located is normalized, which can further weaken the situation in which the

individual distribution is not ideal in the optimal Pareto front due to the difference between

the sub-objectives.

Therefore, the improved formula of the crowding distance of the individual is calculated

as follows:

id ¼ f iþ1
� � f i�1

�

þ giþ1

þ � gi�1
þ

: ð13Þ

Then, the improved NSGA-II can be applied to the multi-objective optimization of fog

computing resource scheduling model mentioned in Sect. 3.2.3. We look for the Pareto

optimal front of the multi-objective optimization problem through the improved NSGA-II.

Under the corresponding scheduling scheme for all individuals in this frontier, the two

optimization objectives, the service latency and the stability of the task could achieve

Pareto optimality. The basic flow of the process is shown in Fig. 4.

5 Simulations

In this section, we conduct the experiments and verify the effectiveness of our proposed

resource scheduling scheme. To evaluate the performance of our scheme, we compare our

scheme with two existing methods, a fog-based IOT resource management model pre-

sented by Mohammad Aazam [16], and a random scheduling algorithm. The performance

index used for comparison is average latency and average stability.

1378 Y. Sun et al.

123

Start

End

Create the fog resource model

Create the task model

Set the population size SCALE, maximum evolutionary
generation number maxG. Initialize the contemporary
population P(g) according to the task model and the

resource model. g=0

termination
criterion

Select, cross, and manipulate P(g)

Generate new population Q(g)

Merge P(g) and Q(g) into R(g),
fast non-dominated sort R(g)

Calculate the improved
crowding distance of

individuals in each rank and
sort them

Combined with the rank and
crowding distance, select the
first N individuals in R(g) to
the new population P(g+1)

g=g+1

Get the scheme of resource scheduling and the
Pareto optimal frontier of the service latency and
stability of the task execution under this scheme

reached

Not reached

Fig. 4 The basic flowchart of fog resource scheduling based on the improved NSGA-II

Multi-objective Optimization of Resource Scheduling in Fog… 1379

123

5.1 Simulation Scenario

The simulations are performed on a Sun Java SE 7 VM running on Windows 7 PC with an

AMD 4.1 GHz CPU and 8 GB memory space.

In the experiments, we consider ‘WordCount’ job as the service request. In our pro-

posed scheme, the calculation speed of resources can be described as the number of

instructions that resources can execute per second. The number of instructions per task,

tasks, and resources are generated within certain ranges as shown in Table 1. In addition,

some related important parameters used for our proposed scheme are described in Table 2.

5.2 Evaluation Methodology

In order to evaluate the performance of our proposed scheme, the following approaches are

used:

RSS-IN: It is our scheme for resource scheduling based on the improved NSGA-II.

Random: It selects one solution for resource scheduling randomly.

FIRMM: It is a fog-based IOT resource management model aimed at scheduling and

managing resources efficiently and in time.

We assume that population size = 100; crossover probability = 0.85; mutation prob-

ability = 0.1. According to [17], the convergent criterion was that the best fitness value

would not improve over the last 30 iterations.

5.3 Numerical Results

In order to evaluate the performance of the schemes mentioned above, we use Ganglia

system to monitor the status of the fog cluster. The performance has been evaluated in

terms of average service latency and average stability. These two evaluation indexes are

the results averaged over 100 independent runs. In addition, the Friedman test method is

used to assess whether there are significant performance differences between the evaluation

result samples obtained by these three schemes [18]. It is a nonparametric statistical

inference technique. We apply a tool called SPSS18.0 for providing statistical analysis and

calculation. The original hypothesis H0 we assume is that there are no significant differ-

ences between the samples. By calculating the value of the test statistic, we make the

decision to reject the original hypothesis when the significance level is 0.05. Therefore,

there are significant differences in the performance of three scheduling schemes through

the analysis results obtained by Friedman test.

Table 1 Parameters for the resources and tasks

Parameter Description Value range

M The number of resources in the resource pool [50, 300]

N The number of tasks [10, 400]

A(Ti) The number of instructions in task Ti [2, 10] 9109 instr

C(Ti,Rj) Processing rate of Ti on Rj [0, 1.59109] instr/s

1380 Y. Sun et al.

123

The average service latency and the average stability of the task execution under dif-

ferent task numbers are shown in Figs. 5a, b, respectively. As shown in Fig. 5a, when the

number of tasks is small, the average service latency of the three schemes is almost the

same. However, when the number is large, the advantages of our scheme are obvious. As

the number of tasks increases, the average service latency of the proposed scheme is

shorter than those of the other two schemes. The average stability of the task execution of

the three schemes under different loads is presented in Fig. 5b. As shown in Fig. 5b, the

average stability of the task execution of our scheme is always higher than those of

Random and FIRMM, because we consider the reputations of the service providers when

scheduling resources to the tasks. In addition, the stability decreases as the number of tasks

grows, as shown in Fig. 5b, because the large number of tasks increases the risk of task

failure.

Figures 6a, b show the average service latency and stability achieved by these three

schemes under the increasing number of resources. In Fig. 6a, the average service latency

of these three schemes decreases with the increasing number of resources. The stability

increases as the number of resources grows, as shown in Fig. 6b. The trend is consistent

with those seen in our simulation experiments. The results observed in all of these fig-

ures show that the RSS-IN proposed in this paper has better performance than the random

scheme and FIRMM in most cases. For RSS-IN, the more resources there are in the system,

the more scheduling solutions will be available. Therefore, RSS-IN can select the better

solutions (which have low service latency and high stability) to execute the tasks. The

service latency will be lower and the overall stability of the task execution will be higher

when there are more resource provisions.

Figures 7 shows the performance of our scheme in terms of the average stability when

varying the weights of the reputation evaluation indexes. When x1[x2, the reputation

evaluation of the fog node is more dependent on the statistical probability pj
s compared

with the cognitive probability pj
c of the node. As shown in Fig. 7, when the number of tasks

assigned to the node does not exceed the threshold Nth, the greater the value of x2 is, the

higher the stability of the task execution will be. The reason is that the evaluation on the

reputation of the node through the cognitive probability is more accurate than that through

the statistical probability. Statistical probability cannot reflect the true reputation situation

of the node due to the lack of statistical samples when the number of tasks assigned to the

resource node is below the threshold Nth. A node with higher reputation can be selected to

perform the task by the way of giving the cognitive probability a higher weight. Therefore,

when the number of tasks is less than the threshold, cognitive probability should be given a

Table 2 Related parameters of our resource scheduling scheme

Parameters Description Value

pj
s Statistical probability [0.7, 0.95]

pj
c Cognitive probability [0.6, 0.9]

T Unit time 2 s

x1 The weight value of statistical probability 0.8, 0.5, 0.2

x2 The weight value of cognitive probability 0.2, 0.5, 0.8

ti
req The required completion time of task Ti [20, 30] s

Nth The threshold value of the number of tasks performed by the fog node 100

Multi-objective Optimization of Resource Scheduling in Fog… 1381

123

higher weight to make the evaluation of the node more accurate. In this way, the stability

of the task execution can be improved effectively.

6 Conclusion

Fog computing frees up the cloud data center by performing latency-sensitive tasks from

the growing end users at the edge of the network. Fog resources need to be used rationally.

In this paper, we established a two-level resource scheduling model among the fog clusters

and fog nodes. A resource scheduling scheme based on an improved NSGA-II is designed

to reduce the service latency and improve the stability of the task execution. In addition to

taking into account the quality of service for the resource requesters, the costs of them

0

2

4

6

8

10

12

14

16

av
er

ag
e

se
rv

ic
e

la
nt

en
cy

 (
s)

number of tasks

Random FIRMM RSS-IN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

0 50 100 150 200 250 300 350 400

av
er

ag
e

st
ab

ili
ty

number of tasks

Random FIRMM RSS-IN

(a)

(b)

Fig. 5 a Average service latency of different task numbers, b average stability of different task numbers
(the number of resources = 100, x1 = 0.8 and x2 = 0.2, 100 independent runs)

1382 Y. Sun et al.

123

0

2

4

6

8

10

12

14

16

50 100 150 200 250 300

av
er

ag
e

se
rv

ic
e

la
te

nc
y

(s
)

number of resources

Random

FIRMM

RSS-IN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300

av
er

ag
e

st
ab

ili
ty

number of resources

Random

FIRMM

RSS-IN

(a)

(b)

Fig. 6 a Average service latency of three schemes under different resource numbers, b average latency of
three schemes under different resource numbers (the number of tasks = 200, x1 = 0.8 and x2 = 0.2, 100
independent runs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 50 60 80 100

av
er

ag
e

st
ab

ili
ty

number of tasks

Fig. 7 Average stability with different weights of reputation evaluation indexes (the number of
resources = 100, Nth = 100, 100 independent runs)

Multi-objective Optimization of Resource Scheduling in Fog… 1383

123

should also be considered. Therefore, in the future, we will further improve our proposed

resource scheduling scheme to reduce the cost of resource requesters.

Acknowledgements We thank American Journal Experts (AJE) for its linguistic assistance during the
preparation of this manuscript.

References

1. Evans, D. (2011). The internet of things: How the next evolution of the internet is changing every-
thing[J]. CISCO White Paper, 2011(1), 1–11.

2. Bonomi, F. (2011). Connected vehicles, the internet of things, and fog computing[C]. In The eighth
ACM international workshop on vehicular inter-networking (VANET), Las Vegas, USA (pp. 13–15).

3. Vaquero, L. M., & Rodero-Merino, L. (2014). Finding your way in the fog: Towards a comprehensive
definition of fog computing[J]. ACM SIGCOMM Computer Communication Review, 44(5), 27–32.

4. Gupta, H., Dastjerdi, A. V., Ghosh, S. K., et al. (2016). iFogSim: a toolkit for modeling and simulation
of resource management techniques in internet of things, edge and fog computing environments[J].
arXiv preprint arXiv:1606.02007.

5. Aazam, M., & Huh, E. N. (2015). Dynamic resource provisioning through fog micro datacenter[C]. In
2015 IEEE international conference on pervasive computing and communication workshops (PerCom
workshops) (pp. 105–110). IEEE.

6. Stojmenovic, I., & Wen, S. (2014). The fog computing paradigm: Scenarios and security issues[C]. In
2014 federated conference on computer science and information systems (FedCSIS) (pp. 1–8). IEEE.

7. Hu, P., Ning, H., Qiu, T., et al. (2017). Fog computing-based face identification and resolution
scheme in internet of things[J]. IEEE Transactions on Industrial Informatics, 13(4), 1910–1920.

8. Pham, X. Q., & Huh, E. N. (2016). Towards task scheduling in a cloud-fog computing system[C]. In
2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp. 1–4). IEEE.

9. Sarkar, S., & Misra, S. (2016). Theoretical modelling of fog computing: A green computing paradigm to
support IoT applications[J]. IET Networks, 5(2), 23–29.

10. Nishio, T., Shinkuma, R., Takahashi, T., et al. (2013). Service-oriented heterogeneous resource sharing
for optimizing service latency in mobile cloud[C]. In Proceedings of the first international workshop on
Mobile cloud computing & networking (pp. 19–26). ACM.

11. Al Faruque, M. A., & Vatanparvar, K. (2016). Energy management-as-a-service over fog computing
platform[J]. IEEE Internet of Things Journal, 3(2), 161–169.

12. Deng, R., Lu, R., Lai, C., et al. (2015). Towards power consumption-delay tradeoff by workload
allocation in cloud-fog computing[C]. In 2015 IEEE International Conference on Communications
(ICC) (pp. 3909-3914). IEEE.

13. Xu, Y., Li, K., He, L., et al. (2013). A DAG scheduling scheme on heterogeneous computing systems
using double molecular structure-based chemical reaction optimization[J]. Journal of Parallel and
Distributed Computing, 73(9), 1306–1322.

14. Xu, Y., Li, K., Khac, T. T., et al. (2012). A multiple priority queueing genetic algorithm for task
scheduling on heterogeneous computing systems[C]. In 2012 IEEE 14th International Conference on
High Performance Computing and Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems (HPCC-ICESS) (pp. 639–646). IEEE.

15. Deb, K., Pratap, A., Agarwal, S., et al. (2002). A fast and elitist multiobjective genetic algorithm:
NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

16. Aazam, M., & Huh, E. N. (2015). Fog computing micro datacenter based dynamic resource estimation
and pricing model for IoT[C]. In 2015 IEEE 29th international conference on advanced information
networking and applications (AINA) (pp. 687–694). IEEE.

17. Wang, D., Yang, Y., & Mi, Z. (2015). A genetic-based approach to web service composition in geo-
distributed cloud environment[J]. Computers & Electrical Engineering, 43, 129–141.

18. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of
variance[J]. Journal of the American Statistical Association, 32(200), 675–701.

1384 Y. Sun et al.

123

http://arxiv.org/abs/1606.02007

Yan Sun is pursuing his Ph.D. degree in Department of Communi-
cation Engineering, School of Computer and Communication Engi-
neering (SCCE), University of Science and Technology Beijing
(USTB). His research interests include resource allocation of cloud
computing, game theory, network redundancy elimination.

Fuhong Lin received his M.S. and Ph.D. degrees from Beijing Jiao-
tong University, China in 2006 and 2010, respectively, both in elec-
tronics engineering. He is currently an associate professor in the
Department of Communication Engineering, University of Science and
Technology Beijing, China. His research interests include wisdom
network, social network and P2P network.

Haitao Xu received his Ph.D. degree in the Department of Commu-
nication Engineering, School of Computer and Communication Engi-
neering (SCCE), University of Science and Technology Beijing. He is
now an associate professor in the Department of Communication
Engineering, University of Science and Technology Beijing, China.
His research interests include wireless network, game theory and big
data.

Multi-objective Optimization of Resource Scheduling in Fog… 1385

123

	Multi-objective Optimization of Resource Scheduling in Fog Computing Using an Improved NSGA-II
	Abstract
	Introduction
	Fog Computing Architecture
	Resource Scheduling Model in Fog Computing
	Resource Scheduling Among Fog Clusters
	Resource Scheduling Among Nodes in the Same Fog Cluster
	Problem Description of Resource Scheduling Among the Fog Nodes in the Same Fog Cluster
	Related Mathematical Model
	Description of Objective Functions

	Optimal Scheduling of Resources Using the Improved NSGA-II
	Encoding and Initialization
	Evaluate Objective Functions
	Construct a Non-dominant Set
	Improved Crowding Distance Calculation

	Simulations
	Simulation Scenario
	Evaluation Methodology
	Numerical Results

	Conclusion
	Acknowledgements
	References

