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Abstract In this paper we address non-stationary channel estimation problem with dif-

fusion least mean square algorithm in distributed adaptive wireless sensor networks. Here

we estimate channel coefficients or taps that are produced with Rayleigh fading models.

All detailed explanations regarding to this fading channel type are presented and it is

explained that how we can extend channel estimation with sensor networks to other newly

presented channel types. We use the tracking performance analysis of diffusion coopera-

tion over adaptive sensor networks to investigate the reliability of used algorithms and

show the link between channel estimation problem and tracking a time varying entity.

Theoretical analyzes are performed and the results are compared with simulation perfor-

mance diagrams. It is proven that there is a reasonable match between these two outcomes.

We present our results with the mean square deviation criteria.

Keywords Adaptive networks � Distributed estimation � Diffusion least

mean square � Fading channels

1 Introduction

The applications of distributed adaptive networks have become very widespread and long

lasting and this issue made the study of their performance a crucial topic of research [1–5].

The ability of distributed tracking and estimation of these networks can and will be an aid

to measure and estimate almost every desirable entity. These measurements and estima-

tions will take place in various conditions. For example if we want to work on a wireless

platform, we must face the challenges of wireless communication channels.

Channel estimation is a vital part of all wireless communication systems. Without

channel estimation, the communication will suffer from channel impairments and the
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direct results will be the reduction in data transfer rate and the decline in the estimation

performance. Studying channel effects on adaptive networks is a hot topic of research. In

some papers channels in these networks have been considered to be severely noisy [1, 6],

others considered deeply faded channels [3, 4]. Fading for a wireless adaptive network may

occur when the nodes are far from each other or moving with respect to each other [4, 5].

Consequently, channel estimation and equalization for wireless adaptive networks is

essential. When we work in fading environments, it is important to know that we must deal

with non-stationary conditions [7], because fading channel taps are usually non-stationary.

Up until now the performance analysis of distributed networks have been mostly presented

for stationary environments and estimating stationary variables. However, recently the

performance of sensor networks have been investigated in non-stationary variable esti-

mation [1, 2]. However, none of these references mentioned a feasible application of non-

stationary entity estimation.

There are two major distributed cooperation strategies for adaptive networks [8], the

first one is incremental strategy which allows nodes to share data in a Hamiltonian cycle

[5]. The other cooperation strategy is the diffusion scheme that allows nodes to commu-

nicate with more than two neighboring nodes and this makes the network robust to link

failures [9, 10]. The performance of both of these strategies under non-stationary condi-

tions were investigated in [2]. By considering these investigations, in [11, 12] the authors

performed channel estimation with incremental strategy and presented results for esti-

mating Rayleigh flat fading channels. In this paper our aim is to perform channel esti-

mation with diffusion strategy which is more practical in implementation.

In [3, 5] it was assumed that channel side information for nodes is not available at all

and consequently the performance of simulated sensor network is highly degraded in

comparison with the simulations of [4]. Also, In [4] it was assumed that we have channel

side information in each node and channel equalization is available but it is not mentioned

that how we can estimate channel gains at each node, in this paper we will show how this

can be done with diffusion strategy and this paper completes the argument in [4].

Our main contribution in this work is the estimation of the fading channels with dif-

fusion adaptive algorithms and applying the theoretical calculations of non-stationary

entity estimation to this task. Up until now several models have been presented for

modeling Rayleigh and Rician fading channels [13] but it must be noted that these models

are not always non-stationary. In this paper we considered a non-stationary model for our

Rayleigh fading channels and used the accurate results for autocorrelation functions in

deriving covariance matrixes of these channels, then we applied tracking performance

analysis with estimating their time varying channel taps. All in all, in this paper we want to

know how we can model and verify channel estimation results and our aim in this paper is

to derive closed form relations for the steady-state fading channel estimation performance

of diffusion LMS algorithm and comparing the results with channel estimation simulations.

The remaining of this paper is prepared as follows:

In part II we will have a brief overview of diffusion adaptive estimation of a stationary

data in distributed sensor networks. In part III we describe the non-stationary channel

model that is considered in this paper. In part IV we study the tracking performance of

diffusion LMS algorithm and overview the derivation of theoretical Steady-state perfor-

mance results. In part V we presented our simulation examples for tracking of time varying

weights and Rayleigh fading channel estimation. Part VI contains our concluding remarks.

Notation We used boldface letters for random variables and plain text letters for

deterministic quantities. Upper case letters are also used for matrixes. We used the notation
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E :½ � to denote expectation operation, :ð Þ� to denote complex conjugation for scalars and

complex conjugate transposition for matrixes, Tr :ð Þ to denote trace of matrixes, � to

denote Kronecker product and vec :ð Þ to denote a vector formed by stacking the columns of

its matrix argument. The notation diag . . .f g denotes a diagonal matrix formed by its

elements and the notation col . . .f g denotes a column vector formed by its arguments. In

addition, we used weighted norm notation as xk k2R¼ x�Rx.

2 Problem Statement

In diffusion strategy each node can communicate with several neighboring nodes. Consider

a network of N nodes distributed in an area like Fig. 1. This is also the diffusion network

topology that we used for our simulations.

Take (k) as sensor index, then each node will have access to time realizations

dk ið Þ; uk;i
� �

of dk ið Þ; uk;i
� �

measurements. For each sensor dk is a scalar quantity and ; uk
is a 1�M vector. The data model for stationary case represents the relation between these

measurements through a linear equation [8]:

dk ið Þ ¼ uk;iw
o þ vk ið Þ ð1Þ

where wo is the M � 1 desired unknown stationary vector and vk ið Þ is white noise with

variance r2v;k. For each specific task, this weight vector can be modeled with respect to the

conditions of the problem. For example in the channel estimation task, the weight vector

must be produced using the standard channel models. In part 3 we will explain the weigh

vector model for Rayleigh fading channels.
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Fig. 1 The topology of a diffusion adaptive network with 20 nodes
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The following independence assumptions are taken into consideration: (1) For k ¼
1; . . .;N and i� 1, the regressors uk;i are independent of node indices k and iterations i. (2)

The observation noises vk ið Þ for all nodes k ¼ 1; . . .;N and all iterations i� 1 are zero

mean Gaussian processes and are independent of each other and all regressors.

In stationary case the objective of the adaptive network is to estimate the desired

deterministic vector wo through minimizing the mean square error:

wo ¼ argmin
w

1

N

XN

k¼1

E dk � ukwj j2 ð2Þ

The optimal weight is then:

wo ¼
XN

k¼1

Ru;k

 !�1 XN

k¼1

Rdu;k

 !

ð3Þ

where Ru;k ¼ E u�kuk
� �

and Rdu;k ¼ E dku
�
k

� �
are correlation terms. In the non-stationary

case, this optimal weight vector changes with time and our task is to track its variations.

Here we study two prominent diffusion strategies:

2.1 Adapt then Combine Strategy

In the diffusion cooperation mode, each node uses the information from all adjacent nodes

and there are two main policies for combining this information. One is the adapt then

combine (ATC) strategy, here if we consider wk;i as the local estimation of unknown vector

at node k and iteration i, node k performs a combination of all neighboring node estima-

tions. This combination can be expressed by the following equation [2]:

wk;i ¼
X

l2N k

ak;l/l;i ð4Þ

where ak;l are the combination coefficients, N k is the size of the neighborhood of node k

and /l;i is the individual estimation of each node and it is achieved by:

/k;i ¼ wk;i�1 þ lku
�
k;i dk ið Þ � uk;iwk;i�1

� �
ð5Þ

This procedure can be seen for node k in Fig. 2:

Fig. 2 The ATC diffusion
strategy
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İt is important to mention that choosing different values for the combination coefficients

(ak;l) will affect the performance of diffusion algorithms. In our simulations we used the

Uniform policy for determining these coefficients. In this policy we have:

al;k ¼
1

nk
; l 2 N k

0; otherwise

(

ð6Þ

where nk, N kj j is the size of the neighborhood of node k. We can see that all the neighbors

of node k are assigned the same weight, 1
nk
.

2.2 Combine then Adapt Strategy

If we change the order of steps in the ATC algorithm, we achieve the combine then adapt

(CTA) strategy which is given as bellow:

At each iteration i� 0 and for each node k repeat:

1. Combine local estimations:

/k;i�1 ¼
X

l2N k

ak;lwl;i�1 ð7Þ

2. Adapt the local estimation:

wk;i ¼ /k;i�1 þ lku
�
k;i dk ið Þ � uk;i/k;i�1

� �
ð8Þ

This strategy is depicted for node k in Fig. 3:

The same uniform combination policy as in (6) for ak;l is considered here.

3 Non-stationary Weight Vector Models

One of the uses of analyzing channel estimation with diffusion networks is to understand

how well we can track a non-stationary entity. So far we mentioned that the goal of

adaptive distributed networks can be stated as estimating the unknown vector wo. This task

is taken into consideration in many papers and for different environment conditions

[1–5, 11]. Recently the performance of adaptive networks for non-stationary variable

Fig. 3 The CTA diffusion
strategy
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estimation is investigated in [2] where the unknown vector varies with time. This variation

with time can be described as first order Markov process [14]:

wo
i ¼ awo

i�1 þ gi ð9Þ

where a is a fixed parameter of the model (close to one) and gi is a zero mean random

sequence with covariance matrix Rg. It is important to mention that if we take a very close

to one, we obtain the Random-walk model:

wo
i ¼ wo

i�1 þ gi ð10Þ

This assumption is widely used in adaptive literature and without this assumption; the

developed performance analysis will be inaccurate. In this case, the goal of our network is

to follow and estimate this time varying vector and for this reason it is more likely to be a

difficult task. So many applications can be assumed for the estimating a non-stationary

value and in this paper we assigned channel estimation task for diffusion LMS algorithm.

Therefore, in this paper for the first time we used diffusion strategy for fading channel

estimation and related it to the tracking performance. As we want to present the perfor-

mance analysis of adaptive networks in estimating non-stationary fading channel types, we

must find the fading models that are non-stationary because there are also fading channel

models that are wide sense stationary [13]. Here we explain the Rayleigh fading channel

model and its relation with non-stationary data model:

3.1 Rayleigh Fading Channel Model

In [7] a non-stationary model for Rayleigh fading channel is described where the channel

coefficients (or the impulse response of channel) are calculated as:

h nð Þ ¼ cx nð Þd n� n0ð Þ ð11Þ

where c is path loss and n0 is the channel delay. x nð Þ is a time varying sequence and its

amplitude x nð Þj j is assumed to have Rayleigh distribution which is given as:

f x nð Þj j x nð Þj jð Þ ¼ x nð Þj je� x nð Þj j2=2; x nð Þj j � 0 ð12Þ

The phase of this distribution is uniformly distributed within [� p; p�. The auto cor-

relation of the sequence x nð Þ is equal to zeroth-order Bessel function:

r kð Þ ¼ E x nð Þx n� kð Þ½ � ¼ J0 2pfDTskð Þ; k ¼ . . .; � 1; 0; 1; . . . ð13Þ

where fD is the Doppler frequency, Ts is the sampling period and J0 :ð Þ is zeroth-order the
Bessel function.

Now if we want to estimate this channel model, the first order AR model for x nð Þ is:

x kð Þ ¼ a:x k � 1ð Þ þ e kð Þ ð14Þ

where e kð Þ is a white noise process with the variance of r2e ¼ 1� a2ð Þ and að Þ is obtained
as:

a ¼ r 1ð Þ
r 0ð Þ ð15Þ
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In this equation, r kð Þ is defined in (13) and r 0ð Þ ¼ 1. In [7] the first order AR model is

given as:

x nð Þ ¼ r 1ð Þx n� 1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r 1ð Þj j2

q
v nð Þ ð16Þ

where v nð Þ is a white noise process with unit variance. Now we can assume a M � 1

weight vector with the entries of these Rayleigh fading coefficients like:

wo
i ¼ x1 nð Þx2 nð Þ. . .xM nð Þ½ �

0
. All the entries of this vector change with time and as the

coefficients change at the same rate, the above approximation indicates that the variations

in weight vector could be approximated as:

wo
i ¼ awo

i�1 þ gi ð17Þ

where the covariance matrix of gi is:

Rg ¼ 1� a2
� �

I ð18Þ

with a ¼ r 1ð Þ and I to be a unit matrix. It is obvious that the maximum value of a is one

and as the value of a decreases the diagonal elements of Rg increase. Here for the first time

we reveal how increasing Doppler frequency can make the performance of channel esti-

mation more difficult and even sometimes impossible. For this reason we introduce the

Degree of Non-stationarity (DN) [14]. For each node:

DNk,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðRu;kRgÞ

r2v;k

s

ð19Þ

If DNk is less than one for all nodes, then the network can track the variations in

channel, but if it is more than unity, then the variations are to fast for the network and

therefore the convergence becomes unstable. In simulation part we will describe this issue

with examples. It means that convergence depends on the diagonal elements of Rg and

consequently to Doppler frequency and sampling period.

4 Steady-State Analysis

In this part we analyze the steady-state error performance of diffusion LMS algorithm in

tracking the non-stationary channel model. In order to present theoretical analysis for

tracking performance, we consider the general diffusion LMS algorithm given by [1, 2]:

/k;i�1 ¼
X

l2N k

a1;lkwl;i�1

wk;i ¼ /k;i�1 þ lku
�
k;i dk ið Þ � uk;i/k;i�1

� �

wk;i ¼
X

l2N k

a2;lkwl;i

ð20Þ

In these relations a1;lk; a2;lk
� �

are combination coefficients corresponding to elements of

combination N � N matrices A1, A2. By altering these combination matrices we can

achieve different diffusion algorithms that is, if we choose A1 ¼ IN and A2 ¼ A, we obtain

ATC diffusion algorithm. Also, if we consider A1 ¼ A and A2 ¼ IN we obtain CTA dif-

fusion algorithm. In these relations, the combination coefficients using (6) give rise to the
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N � N combination matrix A ¼ al;k
� �

and IN represents N � N identity matrix. These

considerations are important when we want to match theoretical and simulation results.

For non-stationary entity estimation when the optimum weight vector varies with time,

the following weight error vectors are defined:

~/k;i,wo
i � /k;i;

~wk;i,wo
i � wk;i; ~wk;i,wo

i � wk;i ð21Þ

We analyze the tracking performance of adaptive networks using Mean square deviation

(MSD) and Excess mean square error (EMSE) defined as:

MSDk ¼ E ~wk;1
		 		2

I
ð22Þ

EMSEk ¼ E ~wk;1
		 		2

Ru;k
ð23Þ

If we collect the errors of all nodes in single matrixes we get:

~/i , col ~/1;i; . . .;
~/N;i

� �
; ~wi , col ~w1;i; . . .;

~wN;i

� �
; ~wi , col ~w1;i; . . .; ~wN;i

� �
ð24Þ

In addition, we define:

M, diag l1IM ; l2IM ; . . .; lNIMf g ð25Þ

Ri , diag u�1;iu1;i; u
�
2;iu2;i; . . .; u

�
N;iuN;i

n o
ð26Þ

si , col u�1;iv1 ið Þ; u�2;iv2 ið Þ; . . .; u�N;ivN ið Þ
n o

ð27Þ

The recursion for network error vector is given by:

~wi ¼ Bi ~wi�1 � Gsi; i� 0 ð28Þ

in this recursion we have:

Bi ¼ AT
2 INM �MRið ÞAT

1

G ¼ AT
2M

A1 ¼ A1 � IM;A2 ¼ A2 � IM

ð29Þ

We have Esi ¼ 0 because of the independence of regressors and noises. By taking

expectation from (28) we get:

E ~wi ¼ BiE ~wi�1 ð30Þ

Our contribution in steady-state analysis of tracking the non-stationary channel begins

here. For estimating a fading channel with Random-walk model we have:

fi ¼ col gi; . . .; gif g ¼ IN � gi NM � 1ð Þ

IN ¼ col 1; 1; . . .; 1f g ð31Þ

where gi is described in (9) and (17). The relation (30) for a non-stationary variable

tracking becomes:
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E ~wi ¼ BiE ~wi�1 þ fif g ð32Þ

In [2] the variance relation for diffusion adaptation in stationary condition is given as:

E ~wik k2r ¼ E ~wi�1k k2Fdif rþ vec YT
� �� �T

r ð33Þ

where we have:

Fdif 	 BT � B�; Y ¼ GSGT ; S ¼ E sis
�
i

� �
ð34Þ

Also, E Bif g ¼ B. If we assume:

r ¼ vec Rð Þ ð35Þ

where R is a NM � NM non-negative matrix, then r becomes a N2M2 � 1 vector. We can

write (33) as:

E ~wik k2R ¼ E ~wi�1k k2R0þ vec YT
� �� �T

r ð36Þ

where we have:

R0 ¼ vec Fdifr
� �

¼ vec r0ð Þ ð37Þ

In non-stationary condition the variance relation is given by [1]:

E ~wik k2R ¼ E ~wi�1k k2R0 þE fik k2R0þ vec YT
� �� �T

r ð38Þ

in this relation we have E fik k2R0 ¼ ETr fif
�
i R

0� �
. Also, we can write [1]:

R0 ¼ A1A2RAT
2A

T
1 þO Mð Þ þ O M2

� �
ð39Þ

where O Mð Þ denotes a term on the order ofM and O M2
� �

denotes a term on the order of

M2.The last two terms of relation (39) can be omitted for small step sizes and then:

E fik k2R0 ¼ ETr fif
�
i R

0� �
¼ Tr AT

2A
T
1RfA1A2R

� �
ð40Þ

By defining:

Rf ,Efif
�
i ¼ INI

T
N

� �
� Rg ð41Þ

where Rg is the covariance matrix of gi given in (18). We have:

AT
2A

T
1RfA1A2 ¼ AT

2 � IM AT
1 � IM

� �
INI

T
N

� �
� Rg

� �
� A1 � IMð Þ A2 � IMð Þ ð42Þ

we can write [1]:

Tr RfRð Þ ¼ vec RT
f


 �h iT
r ð43Þ

Using this equality relation (36) transforms to:

E ~wik k2R ¼ E ~wi�1k k2R0þ vec YT þRT
f


 �h iT
r ð44Þ

also:
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E ~wik k2r ¼ E ~wi�1k k2Fdif rþ vec YT þRT
f


 �h iT
r ð45Þ

By defining the following block matrices:

J k , diag 0M; . . .; 0M ; IM ; 0M ; . . .; 0Mf g
T k , diag 0M ; . . .; 0M ;Ru;k; 0M; . . .; 0M

� � ð46Þ

and using them as weighting matrices like I � Fdif

� �
r ¼ vec J kð Þorvec T kð Þ, for MSD and

EMSE respectively, we can finally arrive to these steady-state error values of diffusion

adaptation strategy in estimating a non-stationary channel.

MSDk ¼ vec YT þRT
f


 �h iT
I � Fdif

� ��1
vec J kð Þ ð47Þ

EMSEk ¼ vec YT þRT
f


 �h iT
I � Fdif

� ��1
vec T kð Þ ð48Þ

we can see the effect of Rf in these equations which is related to channel covariance

matrix Rg (given in 18) and it is correspondingly related to Doppler frequency and sam-

pling period of the estimated channel. It means that for a given fD and Ts we can find the

diagonal values of Rg matrix and directly incorporate them in (47) and (48).

5 Simulation Results

Now it is time to simulate non-stationary channel tracking with distributed network. We

consider a network with 20 active nodes working in a diffusion cooperation strategy. All

simulation results are averaged over 100 Monte Carlo runs. The steady-state curves are

obtained by averaging the last 200 iteration results of simulations [5]. The variance of

noise is considered to be the same for all nodes and we have r2v;k ¼ 0:01, this assumption is

different from the assumption of noisy links in [3]. In addition, the step-size is considered

to be fixed and it is equal to 0.0045. The regressors uk;i are generated by independent

realizations of a Gaussian distribution with a covariance matrix Ru;k whose eigenvalue

spread is between 1 and 5. The estimated channel vector is Rayleigh modeled with size

M ¼ 4.

For different Doppler frequency and sampling period quantities, we have different

performances. In [12] it is mentioned for operating frequencies between 100 MHz and

2 GHz, the Doppler frequency shift fD can be as large as 128 Hz. In our simulations we

consider the Doppler frequency to be between 10 and 40 Hz. Also in [7] sampling period

Ts considered between 10�6 and 10�3 s. In this case, the diagonal entries of covariance

matrix Rg from zeroth-order Bessel function of (13) will be between 0.9843 and 1.

In Fig. 4 we presented our channel estimation results for 5 different cases of Doppler

frequency and sampling periods. It can be seen that as the Doppler frequency and sampling

period increase, the performance of adaptive network degrades and for the two top curves

the convergence becomes unstable or it can be said that the network does not converge

when the non-stationarity grows. As we mentioned before, the degree of non-stationarity

plays an important role in the convergence or divergence of the adaptive algorithms.

Also, when the non-stationarity is low, the performance of convergence becomes very

similar to the stationary case and in the lowest curve of Fig. 4 it can be seen than the
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theoretical values of the Stationary channel estimation match with the simulation results of

the estimation of a channel that is weakly non-stationary.

In Figs. 5 and 6 we compared the theoretical and simulation results of channel esti-

mation when the channels are highly non-stationary and mildly non-stationary, respec-

tively. As it can be seen from these figures, in both cases the theoretical results almost

match the simulation results and this shows the credibility of presented calculations for a

certain range of non-stationarity degree.

Also, in all cases we can see that the performance of ATC diffusion algorithm is better

than CTA algorithm.

Fig. 4 The effect of degree of
non-stationarity in the
performance of network
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Fig. 5 Matching the theoretical and simulation results of Rayleigh channel estimation
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6 Conclusion

In this paper we analyzed the performance of diffusion LMS algorithm in tracking Ray-

leigh channels modeled as non-stationary variables. Previously, this task was done with

incremental cooperation strategy and with this paper, we completed the channel estimation

analysis with adaptive networks. As we mentioned, the diffusion strategy is a more

practical scheme to deploy for various tasks. We showed that as the degree of non-

stationarity in channel grows, the performance of the network degrades and becomes

unstable. For this reason the impacts of sampling period and Doppler frequency on the

convergence of network are investigated and we came to the conclusion that if the degree

of non-stationarity exceeds unity, as a result of large Doppler frequency, the tracking of

channel variations will be difficult and even impossible. Finally, we insist on the fact that

for matching theoretical and simulation results, the time varying unknown vector must

follow a Random-Walk process, and the analysis for tracking of a Markov process is yet to

be developed in our future works.
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