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Abstract A multi-secret sharing scheme tries to share multiple secrets among a group of

players in such a way that co-operation of pre-specified subsets of them, called access

structures, can reconstruct the secrets. Existing methods allow for all secrets to be

recovered at once, by the same sharing algorithm, and by identical access structures.

However, in many real world applications, secrets may not needed all at once, access

structure may vary for different secrets (change over time), and a group of dishonest

players may collude to obtain all secrets. In this paper, we propose a novel and efficient

algorithm to address these issues. Our main objectives are, to recover each secret according

to its own scheme, by its own access structure, and whenever needed. Our proposed

algorithm also blocks collusion attacks by dishonest players. Our scheme can work with

any general purpose threshold schemes. It is also rather efficient in terms of computational

and communication overhead costs. There computational costs for sharing and recovering

stages are almost negligible, and communication costs of sharing and recovering are of

order Oðnþ kÞ and Oð
Pk

i¼1 t
iÞ respectively, where n is the number of players and where

ti’s are the threshold values for the k secrets.
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1 Introduction

One of the most important challenges in the era of information technology is protecting

privacy of information. Secret Sharing (SS) schemes address this issue in group settings.

SS schemes protect the secrets both in terms of unauthorized access, and from being lost or

corrupted. Some of the earliest on design of SS schemes can be found in work of Shamir

[21] and Blackely [2], and many extensions and refinements can be found in the literature

[1, 6, 8, 14, 23, 24].

The most commonly used algorithms, in existing SS schemes, use a (t, n)-threshold

approach, in which a secret is distributed among a group of n parties in such a way that the

secret can be reconstructed by having at least t shares. These schemes can share only one

secret per execution, and there is no control over the honesty of parties.

To tackle the malicious behaviour of dishonest participants, some SS schemes offer a

verifiability option. In a verifiable secret sharing scheme, the validity of the shares can be

verified by computing a one-way function and broadcasting public information.

In many real world scenarios, it is common that settings have multiple separated parts,

where each part has its own secret key. Multi-secret sharing (MSS) schemes

[4, 6, 8–10, 13, 16, 19, 22, 25] were introduced to address these kind of scenarios. These

MSS schemes allow for sharing of multiple secrets, that are recovered simultaneously in

the reconstruction phase. However, these schemes also lack control over the reconstruction

process, as they assume a homogeneous setup in terms of access structure, and the release

of secrets. To illustrate this lack of control, consider an example of an online game with

k levels, in which players have to collaborate to complete different levels of the game. To

participate in a given level, a player not only has to successfully complete, with accept-

able performance in the previous level, but also be part of and collaborate with a pre-

specified, i.e threshold number of players who have reached that level. These kinds of

examples cannot be dealt with existing MSS schemes as:

1. All the secrets are recovered at once. In fact, one can treat the multiple secrets as one,

by concatenating them!

2. Recovering all secrets at first increases the risk of misuse. For example in the case of

the collaborative online game above, a player can ignore the pre-specified order of the

game levels, or the work needed to complete each in order to advance to the next level.

3. The existing MSS schemes do not attempt to detect collusions among dishonest

participants.

4. All secrets are shared in the same access structure. Furthermore, some algorithms

[8, 20, 22] assume same threshold values for all secrets.

In this paper, a new method, called the Gradual Secret Sharing (GSS) scheme, is

proposed to share a number of secrets among a set of participants such that:

• Each secret is recovered whenever it is needed;

• Each secret has its own sharing platform and access structure;

• Any number of colluding participants cannot obtain keys to all stages of the systems.

In our scheme, we use the Chinese Remainder Theorem (CRT) to bind the shares to each

other. Then, the binded shares of the previous secret is used in the sharing platform of the
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next secret. This process continues until all the secrets are shared. Later in the recon-

struction phase, the first secret is recovered by co-operation of any pre-specified subset of

participants. As participants successfully complete what is required for a given level, a

trusted third party (TTP) with its own veto, referred here as an administrator will enable

these participants to engage in secret sharing for the next level, if asked. This procedure

will continue until all shares are recovered, or if the administrator stops the process. Note

that unlike other CRT based schemes [1, 12], we use CRT as a binding tool.

The rest of the paper is organized as follows. In Sect. 2, basic notation, the CRT, and

some more related papers are reviewed. The details of the proposed scheme are presented

in Sect. 3. Section 4 analyzes the proposed scheme and then Sect. 5 compares it with

similar schemes. Finally, conclusions are given in Sect. 6.

2 Preliminaries

In this section, first the symbols and notations that are used throughout the paper are listed.

Then, some fundamental background of the proposed scheme are briefly reviewed.

2.1 Notations

Throughout this paper, we use the following notation, listed in the table below to describe

our scheme.

D The dealer

k The number of secrets

SC1; . . .; SCk The secrets to be shared

p A sufficiently large prime number

A ¼ ðC1;C2; . . .;CkÞ Access structures corresponding to each secret

V2; . . .;Vk The manager’s veto rights for each secrets

P1; . . .;Pn The participants

SH1; . . .; SHn The shares to be distributed among participants

m1; . . .;mn Pairwise relatively prime moduli of CRT

2.2 The Chinese Remainder Theorem

In number theory, the CRT states that, given the remainders of the division of an unknown

integer Y by several integers that are co-prime, then one can uniquely determine Y, modulo

by the product of these integers.

Theorem 1 Let m1; . . .;ml be pairwise co-prime (that is gcdðmi;mjÞ ¼ 1 whenever i 6¼ j)

and r1; . . .; rl are integers such that ri 2 Zmi
, then the system of l equations

Y � r1 ðmod m1Þ;
Y � r2 ðmod m2Þ;

..

.

Y � rl ðmod mlÞ:

8
>>>><

>>>>:

ð1Þ

A New Gradual Secret Sharing Scheme with Diverse Access Structure 1331

123



has a unique solution for Y modulo M, where M ¼
Ql

i¼1 mi [3].

Define bi ¼ M=mi (the product of all the moduli except for mi), and b0i ¼ b�1
i ðmod miÞ.

Then,

Y ¼
Xl

i¼1

ribib
0
i ðmod miÞ ð2Þ

is the unique solution.

Although, CRT has been widely used in SS schemes [1, 12, 17], we use it for binding

the shares, and not for sharing/recovery process.

2.3 Shao’s Multi-Secret Sharing Scheme

To share k secrets in a (t, n)-threshold scheme, Shao [22] proposed a polynomial-based

(k, t, n) multi-secret sharing scheme. Below, we briefly describe the two phases of this

scheme—the sharing, and the recovery algorithms:

2.3.1 Sharing Algorithm

Depending on the values of k and t, the sharing algorithm executes one of the following

cases:

• t� k

4 D generates two polynomials of degree t � 1 as follows:

f ðxÞ ¼
Xt�1

i¼0

aix
i mod P;

gðxÞ ¼
Xt�1

i¼0

bix
i mod P;

where a0 ¼ SC1; . . .; ak�1 ¼ SCk, and ak; . . .; at�1; b0; . . .; bt�1 are random numbers

from Z�
P and P is sufficiently large prime number.

4 D calculates and publishes vi ¼ Hðf ðiÞjjgðiÞÞ for i ¼ 1; 2; . . .; n and ci ¼ bi þ
rai mod P for i ¼ 0; 1; . . .; t � 1, where r ¼ Hðv1jjv2jj. . .jjvnÞ and || is the

concatenation sign.

4 Each participant Pi receives his/her share SHi ¼ ðf ðiÞ; gðiÞÞ, which can verify it

via vi ¼? Hðf ðiÞjjgðiÞÞ, and gðiÞ þ rf ðiÞ¼?
Pt�1

j¼0 cji
j mod P.

• t\k

4 D generates two polynomials of degree k � 1 as follows:

f ðxÞ ¼
Xk�1

i¼0

aix
i mod P;

gðxÞ ¼
Xk�1

i¼0

bix
i mod P;
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where a0 ¼ SC1; . . .; ak�1 ¼ SCk, and b0; . . .; bk�1 are random numbers from Z�
P and

P is sufficiently large prime number.

4 D publishes f(i) and g(i) for i ¼ 1; 2; . . .; k � t.

4 D computes and publishes vi ¼ Hðf ðk � t þ iÞjjgðk � t þ iÞÞ for i ¼ 1; 2; . . .; n
and ci ¼ bi þ rai mod P for i ¼ 0; 1; . . .; t � 1, where r ¼ Hðv1jjv2jj. . .jjvnÞ and || is
used for concatenating elements.

4 Each participant Pi receives his/her share SHi ¼ ðf ðk � t þ iÞ; gðk � t þ iÞÞ,
which can verify it via vi ¼

?
Hðf ðk � t þ iÞjjgðk � t þ iÞÞ, and

gðk � t þ iÞ þ rf ðk � t þ iÞ¼?
Pt�1

j¼0 cjðk � t þ iÞj mod P.

2.3.2 Recovering Algorithm

Without loss of generality, we assume that the participants P1;P2; . . .;Pt cooperate to

recover the secrets using their shares. Similar to the sharing algorithm, recovering stage

execute one of the following two cases:

• If t� k:

The shares SHi ¼ ðf ðiÞ; gðiÞÞ are verified using vi ¼? Hðf ðiÞjjgðiÞÞ. Then, the t � 1

degree polynomial f(x) is reconstructed by Lagrange interpolation.

• If t\k:

The shares SHi ¼ ðf ðk � t þ iÞ; gðk � t þ iÞÞ are verified via vi ¼? Hðf ðk � t þ iÞjj
gðk � t þ iÞÞ. Then, the validated shares and published points, f(i) for

i ¼ 1; 2; . . .; k � t, are used to reconstruct the polynomial f(x) by using Lagrange

interpolation.

The k first coefficients of the reconstructed polynomial f(x) represent the secrets.

2.4 A Brief Review of Mashhadi’s Scheme

One of the most recent multi-stage secret sharing (MSSS) schemes is presented in the

paper [18]. It is referred to as Mashhadi’s scheme later in our paper. This is a multi-secret

sharing approach in which a dealer uses Non-Homogeneous Linear Feedback Shift

Registers (NHLFSR) to share multiple-secrets among a set of participants, in such a way

that any qualified subset of them can recover the secrets stage-by-stage. The advantages of

this scheme are: fewer public values, simple distribution, and various ways of

reconstruction.

In Mashhadi’s scheme [18], secrets are recovered in a predetermined order and each

secret has its own access structure. However, the paper considers threshold access structure

for all secrets. It should be pointed out that the access structures are not completely

arbitrary. They must Ci � Ciþ1, for i ¼ 1; 2; . . .; k � 1, and 1\t1 � t2 � tk � n, where ti’s

are threshold values for secrets SC1; SC2; . . .; SCk, respectively.

The scheme is defined as X ¼ ðSetup; Distributin; ReconstructionÞ where:

1. Setup D selects a two-variable one-way function f ðr; sÞ:Z	 Z ! Zp. D also chooses n

shares s1; s2; . . .; sn, si 2 Z, and securely sends si to the player Pi.
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2. Distribution D randomly selects two integer numbers c1 and r, where r 6¼ SCj for

1� j� k, and sets SC0 ¼ r (to ease the following recursive definition). Next, for

secrets SC1; . . .; SCk defines:

uj;0 ¼ SCj; uj;1 ¼ f ðSCj�1; s1Þ; . . .; uj;tj�2 ¼ f ðSCj�1; stj�2Þ;
Ptj

k¼1

tj � 1

k� 1

� �

ð�1Þkuj;lþtj�k ¼ cj mod p ðl� 0Þ;

8
><

>:
ð3Þ

and computes rj;i ¼ uj;i � f ðSCj�1; siÞ; for tj � 1� i� n. Finally, D publishes all r; rj;i
for 1� j� k and tj � 1� i� n.

3. Reconstruction To recover SCj, at least tj participants provide the shadows f ðSCj�1; siÞ
in the jth stage. Then, they can solve the Vandermond system or use Lagrange

interpolation to recover the secret SCj.

In spite of the merits of this algorithm, the following cases makes it inappropriate for some

applications mentioned earlier in this paper:

1. The Access structure of each secret is not arbitrary, i.e. Ci � Ciþ1.

2. The previous secret is needed to reconstruct the next secret.

3. There is no mechanism to prevent cheating.

4. Secrets are recovered according to players’ demands, not based on need or the

development and the setup of the system.

2.5 Timed-Release Secret Sharing

As ‘‘time’’ is an essential part of our lives, associating time with cryptographic protocols

seems quite useful and reasonable. One of the main objective of a timed-release crypto-

graphic protocol is to safely transmit information to the future. Timed-release capability is

investigated not only in encryption, but also in key-agreements and authentication codes,

with information-theoretic security.

Watanabe and Shikata [24] presented the first Timed-Release Secret Sharing (TR-SS)

method. The sharing phase of a TR-SS scheme takes a single secret and provides partic-

ipants with private shares. To recover a secret in a TR-SS scheme, in addition to the

cooperation of a qualified subset of shares, a time-signal, which is generated and published

at a pre-specified time, is required as well.

In [24], two extra entities are employed: a Trusted Authority (TA) and a Time Server

(TS). The TA generates and distributes secret keys for the dealer and the TS, and the TS

broadcasts time-signals at a specific number of times.

The following steps represent a formal construction of a (t, n)-TR-SS scheme:

1. Initializing Assume T ¼ f1; 2; . . .; sg 
 Fpnf0g. First, the TA chooses the numbers

rðiÞ ði ¼ 1; 2; . . .; sÞ randomly from Fp. The TA then sends a secret key sk ¼
ðrð1Þ; rð2Þ; . . .; rðsÞÞ to the TS and D via a secure channel.

2. Sharing The dealer determines the time e at which the qualified participants have

permission to reconstruct the secret SC 2 Fp. Then, D constructs the polynomial

f ðxÞ ¼ cðeÞ þ
Pt�1

i¼1 aix
i over Fp, where ai’s are uniformly selected from Fp and

cðeÞ ¼ SC þ rðeÞ. Eventually, D computes SH
ðeÞ
i ¼ f ðPiÞ for i ¼ 1; 2; . . .; n and sends

SHi ¼ ðSHðeÞ
i ; eÞ to the ith player, Pi, via a secure channel.

1334 J. Zarepour-Ahmadabadi et al.

123



3. Extracting Based on sk and d 2 T , TS broadcasts the dth time signal rðdÞ at time d to

all participants.

4. Recovering Any subset of at least t players can reconstruct cðeÞ using Lagrange

interpolation. Finally, when the determined time for recovery comes, i.e. the

appropriate time-signal comes, the secret is calculated by SC ¼ cðeÞ � rðeÞ.

The above-mentioned TR-SS scheme is a single scheme and is strictly related to a pre-

specified, fixed ‘‘time’’ slots.

3 The Proposed Algorithm

In this section, the details and phases of our algorithm are described. The proposed GSS

algorithm contains two parts: the sharing phase and the reconstruction phase. In the

sharing phase, secrets are shared and distributed among participants and a trusted third

party (TTP) administrator. In the recovery phase, the first secret is recovered and if the TTP

agrees with the process done by the first secret, shares his/her vote. Using this vote,

participants can compute their shares for the second secret and the process repeats until all

of the secrets are revealed or the process is terminated by the TTP. The following sub-

sections will explain the details of the phases.

3.1 The Sharing Algorithm

Suppose that the reconstruction order is SC1; SC2; . . .; SCk. The proposed framework does

not impose any restrictions on the sub-parts of the scheme. However, without loss of

generality, we make the following assumptions:

1. Each secret or each subset of secrets can have its own TTP, but we consider only one

TTP for all secrets.

2. Secrets can be of different types, e.g. integers, audio files, images, etc. We restricted

our analysis to integers.

3. Each step can recover more than one secret simultaneously; we recover only one secret

at each step.

To apply the desired reconstruction order, D starts from the last secret, SCk, makes a

sharing scheme according to its access structure, Ck, then binds the shares using CRT. The

outcome of the CRT and the TTP’s vote are used in a function to produce a temporary

value. This temporary value along with the next to last secret, SCk�1, are used to construct

the next sharing structure. This process is repeated until all of the secrets are shared.

Figure 1 shows the flowchart of the proposed sharing phase. A useful characteristic of

our new algorithm is that it does not need the scheme of all the secrets to be homogeneous.

Every secret can be shared based on its own sharing scheme, its own access structure, and

its own subset of participants. For integer type secrets, Shamir’s scheme [21] is preferred,

properties of cellular automata makes them appropriate for sharing images and 3D objects

[5, 8], and for computer graphics and geometric-aided designs Blackely’s geometry based

sharing approach [2] is considered suitable [7]. Therefore, in the description we use SACi
ð�Þ

to represent the Sharing Algorithm, and RACi
ð�Þ to represent the Reconstruction Algorithm

corresponding to secret SCi.
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The Dealer performs the following steps:

1. Chooses pairwise co-prime numbers m1;m2; . . .;mn as moduli of the CRT.

2. Randomly selects votes V2;V3; . . .;Vk corresponding to secrets SC2; SC3; . . .; SCk.

Note that we assume that the first secret is SC1, and is assumed to be reachable without

the permission of the TTP. If not, D simply chooses k values instead of k � 1 values.

3. Sets i ¼ k and Ti as a random value.

4. While i� 1 does the following steps:

(a) Constructs SACi
ðSCi; TiÞ.

(b) Calculates the shares SHi
1; SH

i
2; . . .; SH

i
ni
.

(c) Computes Ci ¼ CRTðSHi
1; SH

i
2; . . .; SH

i
ni
Þ.

(d) Sets Ti�1 ¼ Ci � Vi, where ‘‘�’’ is XOR operation.

(e) i ¼ i� 1.

5. Sends V2;V3; . . .;Vk to the TTP and the shares SH1 ¼ ðSH1
1 ;m1Þ; SH2 ¼

ðSH1
2 ;m2Þ; . . .SHn ¼ ðSH1

n ;mnÞ with participants P1;P2; . . .;Pn via a secure channel.

3.2 The Reconstruction Algorithm

In the recovery phase, any qualified subset of participants listed in C1 can reconstruct SC1

using RAC1
ð�Þ. They use this secret and progress somewhat through the first part of the

work. If the TTP agrees with them in the first step, he/she publishes his/her veto right, V2

Fig. 1 The proposed sharing flowchart
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for the second secret. Hereafter, qualified participants are able to obtain their shares by

using their modulus, which is used to recover SC2. This process continues to recover all

secrets. The gradual reconstruction can be blocked whenever the participants misuse the

current secret, the TTP disagrees with the development of the system, or the shareholders

are under attack by an adversary.

Our proposed recovery phase is preformed as follows:

1. Set V1 ¼ all zero string.

2. Set i ¼ 1 and do the following steps while i� k:

(a) Given Q 2 Ci, a qualified subset of eligible players for recovering secret SCi.

Compute SCi using ðSCi; TiÞ ¼ RACi
ðQÞ.

(b) Using the recovered secret, SCi, the first part of the process can be done.

(c) i ¼ iþ 1.

(d) If there is no problem with the operation and the TTP agrees to continue the

process, she/he broadcasts Vi.

(e) Participants compute Ci ¼ Vi � Ti�1
1 .

(f) Each participant Pj computes his/her share for the next secret as

SHi
j ¼ Ci ðmod mjÞ

3. If i[ k then all secrets have been recovered, otherwise the TTP has blocked the

process at step b ¼ i� 1.

The function RACi
is the recovery algorithm corresponding to the SACi

. For example, if

SACi
is Shamir’s polynomial with a specific access structure, then RACi

is Lagrange

interpolation with the same access structure. If one of the secrets used cellular automata as

its SACi
, then the RACi

is the reverse cellular automata.

4 Security Analysis

The security of the proposed approach is based on Shamir’s scheme as well as on the

properties of the CRT. In this section, the security of our new algorithm is evaluated

through analysis of different possible attacks against our scheme. We first list the main

objectives of the proposed scheme and then we analyze to see if the scheme meets them.

We expect that the new scheme:

1. Shares multiple secrets in an efficient and secure way;

2. Recovers secrets gradually in a pre-specified order, whenever they are needed;

3. Improves resistance against collusion of dishonest shareholders;

4. Recovers each secret based on its own access structure without any preconditions.

A number of properties of the proposed scheme depend on the SACi
and the RACi

.

However, without loss of generality, we use Shamir’s scheme in the following attacks

analysis:

4.1 Attack

ti � 1 or fewer shareholders want to recover the secret SCi.
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4.1.1 Analysis

Assume that ti participants, for simplicity say B ¼ fP1;P2; . . .;Ptig co-operate to recover

SCi. Each participant can calculate his/her share as SHi
j ¼ Ci ðmod mjÞ for j ¼ 1; 2; . . .; ti.

Thus, SHi
j ¼ f iðxjÞ, where f iðxÞ 2 ZP½x� is the secret polynomial corresponding to secret

SCi. As f iðxÞ is a ti � 1 degree polynomial, it can be written as Eq. 4, where coefficients

ai0; a
i
1; . . .; a

i
ti�1 are unknown elements of Zp and ai0 ¼ SCi is our intended secret.

f iðxÞ ¼ ai0 þ ai1xþ � � � þ aiti�1x
ti�1: ð4Þ

Therefore, each participant in B can obtain a linear equation with ti unknowns

ai0; a
i
1; . . .; a

i
ti�1, i.e. they can form the following system of linear equations:

ai0 þ ai1x1 þ � � � þ aiti�1x
ti�1
1 ¼ SHi

1

ai0 þ ai1x2 þ � � � þ aiti�1x
ti�1
2 ¼ SHi

2

..

.

ai0 þ ai1xti�1 þ � � � þ aiti�1x
ti�1
ti�1 ¼ SHi

ti�1

8
>>>>><

>>>>>:

ð5Þ

In matrix form we have:

1 x1 x1
2 . . . x1

ti�1

1 x2 x2
2 . . . x2

ti�1

..

. ..
. ..

. . .
. ..

.

1 xti xti
2 . . . xt

i�1
ti

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ai0

ai1

..

.

aiti�1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼

SHi
1

SHi
2

..

.

SHi
ti

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð6Þ

The coefficient matrix, A, is a Vandermonde matrix. There is a well-known formula for

the determinant of a ti 	 ti Vandermonde matrix:

det A ¼
Y

1� i\j� ti

ðxi � xjÞ ðmod pÞ: ð7Þ

As it is assumed that the xis are distinct, det A 6¼ 0, which implies that the system has a

unique solution over Zp and any ti participants can reconstruct polynomial f iðxÞ and obtain

SCi.

According to the above discussions, if ti � 1 participants try to compute SCi, then we

have ti � 1 linear equations with ti unknowns. Suppose SCi ¼ y0. Since secret

SCi ¼ ai0 ¼ f ið0Þ, we have

y0 ¼ f ið0Þ

and this will be a ðti)th linear equation. As before, there is now a unique solution to f iðxÞ.
Therefore, for every possible value y0 of secret SCi, there is a unique polynomial f iy0ðxÞ
such that

SHi
j ¼ f iy0ðxjÞ

for 1� j� ti � 1, and such that
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y0 ¼ f iy0ð0Þ:

In brief, no value of the secret can be ruled out by a group of ti � 1 or fewer participants.h

4.2 Attack

ti colluding participants would try to obtain keys in not the prescribed arrangement.

4.2.1 Analysis

Assume i� 1 steps of the system have been executed and SC1; . . .; SCi�1 were recovered in

the proper order. Now players B ¼ fP1;P2; . . .;Ptig try to discover another secret, other

than SCi. In such a situation, the only published information is the TTP’s vote for SCi, i.e.

Vi. On the other hand, they obtained Ti�1 by recovering the previous secret. According to

the sharing algorithm (Sect. 3.1), they only can calculate Ci ¼ Vi � Ti. As Ci is computed,

members of B can only compute the shares related to SCi. Calculating the shares corre-

sponding to secrets SCj, iþ 1� j� k does not have probability better than 1

Mtj
where

M ¼
Qn

i¼1 mi. Therefore, in a formal way,

H SCjjT1; . . .; Ti;V2; . . .;Vi
� �

¼ HðSCjÞ; ð8Þ

where Hð�Þ is the entropy function. h

4.3 Attack

ti colluding participants try to obtain the keys for all the stages of the system.

4.3.1 Analysis

To the best of our knowledge, this is the first time a solution to the problem of majority

dishonest parties is being investigated. In the existing algorithms, t participants can learn

all the secrets, i.e. all parts of the system. But in our new scheme, we can reduce the harm

to just one secret without any extra cost, such as computing a one-way function, computing

exponential operations, or even publishing further information. ti dishonest participants

just can obtain and misuse secret SCi, as soon as the TTP notices this abuse, he/she can

block the progression of the system. h

4.4 Attack

Participants co-operated in reconstruction of SCi try to obtain previous secrets:

SCi�1; SCi�2. . .; SC1.

4.4.1 Analysis

Again, we assume that parties B ¼ fP1;P2; . . .;Ptig are pooling their shares to calculate

SCi. As [18] acknowledged the access structures must be Ci � Ciþ1, which means that all

participants in the recovery of SCi should contribute to recovering all, subsequent secrets.

This might be undesirable in some applications.
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Some of multi-stage schemes use the previous secret as a ticket to recovering the next

secret [15, 18], this guarantees that recovery proceeds in the pre-specified order.

However, to prevent illegal access to the secrets our scheme has two separated parts: (1)

the CRT part, in which the dealer specifies ni � n, namely players who are authorize to

recover SCi, (2) the sharing part, which applies the access structure of each secret SACi
/

RACi
independent of the other access structures. h

5 Comparisons

The proposed scheme offers some capabilities for the first time, hence the schemes being

compared are not completely identical. Therefore, we acknowledge that this is not a

completely fair comparison, but we try to emphasis on strengths of each scheme.

In SS schemes, it is quite popular to publish a number of values on the bulletin board.

These public values are used later in the recovery phase, and the fewer the public values, the

more efficient the scheme. In the most of the previous schemes [11, 15, 18, 22] these values

are published by the dealer and are needed to be on bulletins for the full lifetime of the

scheme. In scheme [24] and our proposed scheme, broadcasting information is done during

the recovery phase and the newly published value replaces the previous one. Therefore, our

scheme needs the public storage for just one value, i.e. for the current veto right.

Usually two factors are considered for efficiency analysis and comparison of secret

sharing schemes: (1) computational cost, and (2) communication cost.

It is accepted practice to consider only heavy calculations and omit light operations in

computational analysis. Accordingly, modular remaindering, adding or subtracting are

usually ignored in the presence exponentiation or multiplication. The majority of com-

putations in the proposed recovery are bitwise XOR, modular remaindering, and RACi
,

which can be executed in efficient ways. As we based our reconstruction control on the

CRT, the proposed scheme doesn’t need costly computations in both sharing and recov-

ering phases (Table 1).

Communication cost includes the number of bits that are transmitted during sharing and

reconstruction phases. In the sharing phase, the communication cost includes the amount of

information that is sent to the players as their shares plus the information that is published

on a bulletin. In the reconstruction phase, we consider the quantity of information that is

transmitted to recover all the secrets (gradually or simultaneously).

For the purpose of the illustration and ease of comparison, we have assumed that the hash

function, one-way function, and the CRT module (M) are 1024-bit long and the shared

secrets are 160-bit long. These comparisons shows the efficiency of our proposed scheme,

where computational cost of sharing and recovering are almost negligible, and communi-

cation cost of sharing and recovering are of order Oðnþ kÞ and Oð
Pk

i¼1 t
iÞ respectively.

6 Conclusions

Multi-secret sharing schemes are a very useful concept for settings with multiple parts,

requiring having different keys for each part. Traditional methods recover secrets in one

step, increasing the chance of misuse. A new efficient multi-secret sharing platform based

on CRT and a number of arbitrary single sharing schemes is presented in this paper. Our

scheme provides a completely free-access structure for each secret, and has a strong
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resistance to collusions among dishonest participants. It is rather efficient, as it requires a

small and fixed amount of public storage and very minimal computational overhead. The

new scheme is easily constructed and it is suitable for situations where players have limited

amenities. Its two stage approach to recovering attack can decrease possibility of infor-

mation leakage.
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