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Abstract Received signal strength indicator (RSSI) based fingerprinting techniques for

indoor positioning can be readily implemented via a wireless access point. These methods

have therefore been widely studied in the field of positioning. However, fingerprinting

suffers low accuracy of positioning on account of high noise occurrences which are caused

by other wireless communication signals and environmental factors when the RSSI is

received, and by relatively high errors on account of low position resolution compared to

other methods such as time of flight and inertial navigation technology. In this paper, a

modified fingerprint algorithm based on Wi-Fi and Bluetooth low energy applied to the

log-distance path loss model is proposed to remove unnecessary Wi-Fi data, and produce

the AP database that can be updated depending on the changes of the ambient environment

as the indoor area is increasingly complicated and extended. Instead of using the existing

fingerprinting techniques of consulting signal strengths as factors that are stored in a

database, the proposed algorithm employs environmental variables to which the log-dis-

tance path loss model is applied. Therefore, the proposed algorithm has higher position

resolution than existing fingerprint and can improve the accuracy of positioning because of

its low dependence on reference points. To minimize database and eliminate inaccurate AP

signals, the Hausdorff distance algorithm and median filter are applied. Using a database in

which environment variables are stored, the results are inversely transformed into the log-

distance path loss model for expression as coordinates. The proposed algorithm was

compared with existing fingerprinting methods. The experimental results demonstrated the

reduction of positioning improvement by 0.695 m from 2.758 to 2.063 m.
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1 Introduction

In recent years, with the commercialization of the global positioning system (GPS),

location-based services, such as tracking vehicles, ships, and cargo, have been widely used

in daily life. A GPS that utilizes satellites and base stations provides a location service

within a 1-m error range and is conveniently used in the outdoor environment. However,

owing to its weak signal penetration rate in terms of obstacles, GPS is affected by frequent

non-signal-shaded areas, such as tunnels, indoor areas, and spaces between buildings,

compared to other wireless communications. Accordingly, several studies on additional

positioning technologies have been conducted. A representative technology among them is

a Wi-Fi fingerprinting-based method. The fingerprinting technique using the received

signal strength indicator (RSSI) of the access point (AP) estimates the target location by

comparing a measured signal at each position with already stored positions in the RSSI

database. Extensive preparation work is required to develop a single database, as well as

multiple databases, even for a narrow area. In particular, because positions are estimated

based on the positions stored in the database, errors between real and estimated positions

are unavoidable [1–3]. However, because an additional AP installation is not required, it

can be combined with smartphones, which provides more convenient access to services

other than TOA and vision, etc. [4–9]. Kriz et al. [10] proposed an algorithm that improves

the position accuracy of the Wi-Fi fingerprint algorithm by fusing BLE. This algorithm was

implemented as an auxiliary device by BLE for indoor positioning based on Android. This

method uses reference points which are position values stored in the fingerprint database,

so it is difficult to improve the resolution of the position.

In addition, Lohan et al. [11] compared and analyzed differences and similarities

between wireless local area network (WLAN) and Bluetooth low energy (BLE) through

signal strength models in the indoor environment. This method aimed to test the floor

positioning using basic positioning algorithm models and was implemented to include only

a corridor space; moreover, it focused on survey experiments of devices rather than

technology fusion.

Bozkurt et al. [12] proposed a method of integrating various sensors used in the fin-

gerprinting method into a single database which was developed using various sensor

signals, such as Wi-Fi, BLE, and magnetic fields. However, this database requires con-

siderable information to be acquired from several sensors to support smart devices. Fur-

thermore, these systems are very complicated because a variety of sensor types are

involved.

The positioning error corrections occur on account of wireless signal noise caused

primarily by environmental factors rather than technical issues. Consequently, several

studies have attempted to improve the accuracy through shortening the time required to

construct a database, or by providing efficient algorithms [13–16].

Recently, BLE is widely used in the field of indoor localization [17]. The BLE beacons

have the following advantages: small size, light weight, low cost, power saving and are

supported by smart devices. Although BLE has the potential to become a dominant

wireless localization technology, it should be installed tightly because the signal strength is

weak compared to Wi-Fi [18].
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Therefore, it is necessary to research a variety of methods that can remove unnecessary

database and update AP signal in accordance with changes in the ambient environment.

In this paper, a modified fingerprint algorithm based on Wi-Fi and Bluetooth low energy

applied to the log-distance path loss model is proposed to reduce the database and increase

the accuracy of positioning.

The proposed algorithm, instead of estimating the target location by consulting a pre-

constructed database, employs environmental variables to which the log-distance path loss

model is applied. To develop a database, irregular AP signals are filtered by utilizing the

Hausdorff distance. Optimum path loss coefficients are extracted through the log-distance

path loss model in accordance with each location. Thus, the constructed database estimates

positions utilizing path loss coefficient rather than by employing existing comparison-

based estimation. It can thereby increase the resolution of positioning and decrease errors

compared to an existing fingerprint method.

2 Related Theories

2.1 The Wi-Fi Based Fingerprinting

The fingerprinting is divided into two phases: a training phase, which involves collecting

RSSI signals of APs and creating a database, and a positioning phase, which involves

estimation of actual positions in real-time. Although it is divided into two phases, most of

the time involved for implementing the fingerprinting is incurred during the training phase.

The training phase is conducted as follows. First, the area for fingerprint positioning is

selected, and then Wi-Fi signals present in the area are measured and collected through the

Wi-Fi receiver. If there is a Wi-Fi shaded area, this shaded area can be minimized through

the installation of additional Wi-Fi APs. After this process, a database for storing Wi-Fi

signals according to the reference points set at predetermined intervals. The predetermined

intervals of reference points are generally set between 2 and 3 m depending on the

structure of area and the Wi-Fi installation environment such as density, signal strength,

obstacles, etc.

Fig. 1 Configuration of the database according to the reference points
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Figure 1 shows the structure of a database consisting only of RSSI and SSID according

to the reference point. At each reference point, various Wi-Fi information such as the

SSID, RSSI, and MAC of the APs is acquired through the Wi-Fi receiver. Among these

information, RSSI is often used to estimate the position with a constant intensity value that

varies with the distance between the transmitter and the receiver. Therefore, the algorithms

[19] that remove the APs of the database and the interpolation techniques that use an

inverse distance weighting algorithm [20] are proposed using these characteristics of RSSI.

Based on the database generated by these various methods, the position of the user is

estimated in real time at the positioning phase. In this phase, the position of the user is

discriminated by comparing and analyzing the Wi-Fi signal measured in real time with the

database. At this time, a number of deterministic or probabilistic models [21, 22] have been

used for position identification.

2.2 Log-Distance Path Loss Model

The strength of wireless signals is inversely proportional to the distance to reception and

transmission. This attenuation follows the log-distance path loss model as shown in

Eq. (1).

P rð Þ ¼ P r0ð Þ � 10nlog
r

r0

� �
ð1Þ

where r is the distance between the AP and moving object, r0 is the reference distance, and

n is the path loss coefficient. Path loss coefficient n is a constant that is determined by

surrounding communication and physical environments. An error occurs between the

measured signal values and the ideal log-distance path loss model on account of various

environmental noises. This error is a major cause of location positioning errors [23–26].

3 Proposed Radio Map Algorithm

Figure 2 shows the flow chart of the proposed Wi-Fi fingerprint consisting of Training and

Positioning Phase. All Wi-Fi and BLE signals are scanned using smartphones in BLE and

Wi-Fi installed area. Locations are estimated according to the Wi-Fi and BLE circum-

stances. The first measured signal estimated by SSID (Service Set Identifier) and RSSI of

BLE is location information to estimate the region of interests. However, because BLE can

be a risk of discharge due to the use of independent power and long operation, the proposed

algorithm is effectively applied according to the changes of the signal reception circum-

stances. In case several BLE and Wi-Fi signals are simultaneously received, two strongest

BLE or Wi-Fi signals among them are extracted to estimate locations.

The BLE has the advantage that it is easy to minimize and specify the positioning area

of the users because it has a narrow transmission range than Wi-Fi. So, it can minimize the

shaded area where the location is not recognizable because it is easy to install in any space.

Therefore, we propose a new fingerprint fusion of BLE and Wi-Fi. In the Training phase,

which is the database building step, we applied the Hausdorff distance algorithm to pre-

process all collected BLE and Wi-Fi signals.

The applied Hausdorff distance is effectively removed outliers because it is relatively

simple to operate compared to existing database preprocessing methods such as SVM and

Chi-squared test, and is more sensitive than other similarity discrimination algorithms
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(Euclidean distance, Mahalanobis Distance). The Hausdorff distance algorithm applied to

remove irregular AP signals from all measured Wi-Fi and BLE signals at the reference

points is as follows [27].

h A;Bð Þ ¼ max
a2A

min
b2B

d a; bð Þf g
� �

ð2Þ

h B;Að Þ ¼ max
b2B

min
a2A

d b; að Þf g
� �

ð3Þ

where each of A and B is a set of signal strength according to the measured distance, each

of a and b is arbitrary points in the AP RSSI graphs of A and B, and d b; að Þ refers to the

Euclidean distance between a and b. Here, the Hausdorff distance between A and B using

Eq. (2), which is based on A, and Eq. (3), which is based on B, can be defined as shown in

Eq. (4).

H A;Bð Þ ¼ max h A;Bð Þ; h B;Að Þf g ð4Þ

H A;Bð Þ refers to the maximum values of h A;Bð Þ and h B;Að Þ. It indicates that the larger the
difference of the value is, the lower the similarity of the data is. Thus, through Eq. (4),

similarities between graphs are measured and abnormal graphs are filtered. This approach

is intended to remove irregular signals due to structures or obstacles by filtering and to

thereby minimize location errors. Signals acquired through filtering are stored in a MySQL

database.

Because path loss coefficients are entered into the database, these values according to

signal strength as shown in Eq. (5) are stored.

Fig. 2 Flow chart of the proposed positioning estimation
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Pi ¼ n1; n2; n3; . . .; nk½ � ð5Þ

where Pi is the set of path loss coefficient n according to the measured position i.The path

loss coefficients n are determined as follows

n P rð Þð Þ ¼ P r0ð Þ � P rð Þ
10log r

r0

� � ð6Þ

where r is the distance between the AP and moving object, r0 is the reference distance, and

P is RSSI of AP. Log-distance path loss model has a high resolution for the location and

simple computation than the conventional fingerprint using the method of database com-

parison [24].

Thus, path loss coefficients n of the distance according to the signal strength for each

AP is stored as shown in Fig. 3. The X axis refers to the measured signal strength of APs;

the Y axis refers to SSID of APs.

Because a decreasing ratio of signal strength per distance can vary depending on the

environment, a distance of the signal is set at the X axis through a mean value of decreasing

collected signals. Here, when signals are converted into distances, path loss coefficients

calculated by signal strength should be constant in the proposed database. This can cause

additional errors due to lack of consideration of changes in signal values with regard to

various noises or structures. Because the database using the proposed method is changed

by path loss coefficients according to the strengths of AP signals and updates them later,

the estimation errors can be minimized.

Because the measured RSSI can also significantly vary on account of signal noise and

environment, even at the same location, errors are likely to occur if signal strength is

determined by one time signal reception or simple mean filter use. Thus, as shown in

Eq. (7), a median filter is applied to minimize the above effect despite signal variance is

large, even at the same location, in order to determine the signal strength.

RSSIp ¼ MED RSSt;RSStþ1;RSStþ2; . . .;RSStþn½ � ð7Þ

RSSIt refers to a signal strength measured at a single AP over time, and MED refers to a

median function. A path loss coefficient of the database is searched through RSSIp

Fig. 3 Configuration of the proposed database
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determined by the equation. A final location is searched by restored path loss coefficient n

found in the database. The restoration is converted to a distance value according to Eq. (8).

DðtÞ ¼ e
Kþ10nlogd0

10n ðK ¼ Pðd0Þ � PðdÞÞ ð8Þ

Assuming that distances to arbitrary APs, A and B receivers, are DA tð Þ and DB tð Þ, to
estimate locations, two coordinates (X, Y) are extracted as intersections through Eqs. (9)

and (10) because a, b, c, and d recognize coordinates of AP locations [3].

X � að Þ2þ Y � bð Þ2¼ DA tð Þ2 ð9Þ

X � cð Þ2þ Y � dð Þ2¼ DB tð Þ2 ð10Þ

Among two coordinates, the (X, Y) coordinate that cannot be created via the area is

excluded so that only one location (X, Y) coordinate is determined. This estimated tech-

nique which can improve location accuracy can help finely subdivide a range used in

existing fingerprint positioning. The extracted data is a signal produced by a distance value,

which can represent a more precise location than location measured via the signal strength.

This coordinate can also be used as a coordinate to verify the Wi-Fi signal collected at that

particular location to update the database. It thereby responds to a wireless environment

that can constantly change.

4 Experiment

4.1 Experimental Environment

The experiment space was a corridor section and laboratory room in the Engineering

Building of Korea Maritime and Ocean University. The proposed algorithm estimates

locations using BLEs installed between APs based on existing indoor Wi-Fi APs. Figure 4

shows the configuration of the device used in the experiment. Here, the BLE module is

nRF51822 of Nordic Co., the Wi-Fi APs used are indoor Wi-Fi APs of Olleh, and

nRF51822 is a multi-protocol system on chip (SoC). We mounted to it a 256 KB flash

memory and 16 KB of RAM. Because it employs 5-V lithium batteries, it can be pro-

grammed for various purposes, such as measurement and control, through both BLE

communication and I/O terminals over a 2.4-GHz environment. The Wi-Fi AP is a 2.4-

GHz indoor AP, which can cover up to 100-m distance and simultaneously connect with up

to 30 terminals.

We designed indoor positioning application, which receives the RSSIs of APs and

interworks with the database, of smart phone with a built-in BLE and Wi-Fi module. The

reception range of the BLE is set to the experimental standard (within 13 m) considering

RSSI damping ratio based on our preliminary experiment.

Figure 5 shows the two structures of indoor spaces where the experiment was con-

ducted. A corridor of 2.3 m 9 34.8 m (width 9 length), as well as a room of

6.4 m 9 5.2 m (width 9 length) were selected and each of corridor and room is empty. In

the corridor where the obstacles were non-existent, two BLE nodes were situated between

four existing installed Wi-Fi APs at a 12-m distance from each other and a 2.6-m high wall.

The BLE nodes were arranged with a constant gap. In the room, two Wi-Fi APs and one

BLE were installed at each end of a side wall. The locations were typically estimated

through one BLE and one Wi-Fi in the room. If a BLE was not normally operated, the
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locations were estimated using the above two Wi-Fi APs. If the two APs are installed in

one wall, this method has advantage of minimizing the number of AP because of the

possibility of bilateration.

4.2 Experiment Results

Environment variable n, which is required to construct the proposed database, was set by

measuring Wi-Fi and BLE wireless signals over the experimental environment. AP signals

were tested. Figure 6 shows the theoretical signal attenuation of the log-distance model and

the measured results over the experimental environment.

Fig. 4 Configuration of the experimental device

Fig. 5 Experimental
environment
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The X axis refers to the distance between receivers and transmitters; the Y axis refers to

signal strength. The measured values of arbitrary W-Fi APs and BLEs are shown by

changing the distance between receivers and transmitters up to 20 m over the experiment

space. According to existing study results, the n value was set to 2 for a free space, 2.7–3.5

for urban wireless channel environments, and 1.6–1.8 for indoor line-of-sight (LOS)

environments. However, according to our experiment results, the Wi-Fi value was close to

1.8 in the short distance and 2.1 in the long distance on account of the effect of the

surrounding environments. The BLE value was close to 1.4. Thus, if the same n value is

applied, it is expected to have errors in accordance with the distance.

Figure 7 shows the result of eliminating irregular signals using the Hausdorff distance

algorithm. The X axis refers to the distance between receivers and transmitter; the Y axis

refers to signal strength. The left side of the graph shows AP signals collected using

smartphones without filtering, while the right side of the graph shows the result of the

Hausdorff distance algorithm being applied based on the left side signals. The filtering was

conducted based on the highest frequent signal attenuation width. Through this filtering,

AP4, AP5, and AP6 were removed. AP4 and AP5 existed at different spaces rather than the

corridor section, and AP6 showed an irregular graph because its signals were penetrated

through the ‘:’ shape corridor section. Thus, irregular three AP signals that are not related

to testing are removed.

Figure 8 shows the measured results when the environment variables in the proposed

method were applied. The X axis refers to the distance between nodes and the measuring

instrument; the Y axis refers to the measured distance. The environment path loss coeffi-

cients stored in the database were extracted based on the signal strength and AP measured

at the current position. Because the variance of signal values can be large during the

measurement in real time, path loss coefficients were averaged. Because the most appro-

priate variable n with the signal strength was extracted and inputted to the database in

Eq. (7), path loss coefficients could vary significantly even if the signal strength was

similar.

Therefore, when the database is constructed, signal strength should be more finely

segmented to increase the positioning accuracy. However, the reason for setting the

Fig. 6 The measurement results and Log-distance model by fixed n values
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distance to 1 m in this study is shown in Fig. 9. The value of the X axis shows the signal

collection and installation distance gap in the database. The Y axis shows the location

accuracy and the preparation time of experimental results according to the gap setup. Since

the time consumption required to create the database is varied depending on various factors

such as the measurement distances, measurement methods, etc., it is difficult to compare

the proposed method with the existing research results. Here, experiments were conducted

assuming that when the distance between reference points in database is 0.3 m, the

preparation time of database is set to 1T (Time unit). The time graph displayed based on

the distance gap is denoted with a blue line, while location errors are displayed with a red

line. As shown in the figure, location errors rapidly decreased at 3 and 2 m; however, the

decreasing trend was minimal at 1, 0.5, and 0.3 m. On the contrary, the time consumption

rapidly increased. Therefore, the databases were constructed by setting the distance to 1 m,

which provided the best cost-effectiveness and accuracy. The subsequent location-tracking

experimental results are shown in Fig. 10 and Table 1.

As a result of positioning using the proposed algorithm, the blue rectangle refers to the

actual locations, and the red triangle denotes the measured final locations by the proposed

algorithm, and green circle indicates the measured location by fingerprint algorithm. As

Fig. 7 Filtering result according to the Hausdorff distance algorithm

Fig. 8 Distance conversion
measurement results through
environment variables
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shown in Fig. 10, the proposed algorithm is more accurate comparing with conventional

fingerprint with a lot of overlapping position.

In the case of the fingerprint algorithm, the green circles, which are the result of

applying the fingerprint algorithm, can only express the coordinates of the reference point

because the positions of the user can be only represented by the stored positions (positions

of reference point) in the database. But the proposed algorithm is capable of detailed

representation and can reduce large positioning errors because it represents the distance

between the AP and the receiver without any constraints of the reference point.

Fig. 9 The correlation of fingerprint setting factors

Fig. 10 The positioning results between proposed algorithm and fingerprint algorithm
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Table 1 shows the result of comparing the algorithms of RSSI based traditional fin-

gerprint, the proposed algorithm with fixed path loss coefficients (n = 1.8), and the pro-

posed algorithm in two spaces.

As shown in Fig. 10 and Table 1, the largest positioning errors are generated largely

around the positions where the AP is installed since an irregular RSSI is received as the

distance between the surrounding AP and the measurement position becomes longer. The

experiment results using the two spaces showed that the average error was 2.063 m, which

is a more accurate result by 0.695 m compared to that of the existing fingerprint mea-

surement result of 2.758 m.

5 Conclusion

In this paper, we propose a novel log-distance path loss model based fingerprint algorithm

which is different from the existing fingerprint methods using RSSI. Fingerprint, which is a

typical indoor positioning algorithm used in RSSI-based BLE and Wi-Fi, is difficult to

systematically represent precise positions because the position is indicated by the reference

point stored in the database. In the training phase, we applied an algorithm that eliminates

abnormally measured APs and minimizes the database through the Hausdorff distance

algorithm. Also, we proposed a new database creation method based on the path loss

coefficients of the log-distance path loss model, unlike the existing RSSI storage methods.

In the positioning phase, the position is estimated by inversely transforming the log-

distance path loss model based on this database. Conventional fingerprints can be repre-

sented only as reference points, but the proposed method is able to express position more

precisely regardless of the point of reference because it can be expressed in distance

values.

The experimental results demonstrated that location accuracy was reduced by 0.695 m

from 2.758 m of the existing method to 2.063 m. Practically, it is difficult to remove the

inaccurate n values and their accumulated errors are generated in the updating process

using current RSSI devices with inherent errors. In the future work, we will verify the

reliability of the updating data under a variety of experimental environments.

Funding This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NO. 2016R1 D1A1B03934812).

Table 1 Mean positioning error according to spaces

Fingerprint (SD) Proposed algorithm when
fixed n = 1.8 (SD)

Proposed algorithm
(SD)

Corridor section (within AP 1 m) 2.799 m (0.962) 2.914 m (1.227) 2.112 m (0.699)

Corridor section 2.593 m (1.524) 2.849 m (1.026) 2.021 m (1.366)

Room structure (within AP 1 m) 2.922 m (0.782) 1.425 m (1.011) 1.619 m (0.742)

Room structure 2.775 m (0.571) 3.002 m (0.846) 1.917 m (0.614)

Room structure (presence of
obstacles)

2.701 m (1.835) 3.971 m (2.131) 2.646 m (1.733)

Average 2.758 m 2.832 m 2.063 m
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14. Yayan, U., Yücel, H., & YazÕcÕ, A. (2015). A low cost ultrasonic based positioning system for the
indoor navigation of mobile robots. Journal of Intelligent and Robotic Systems, 78(3), 541–552.

15. Wang, B., Zhou, S., Liu, W., & Mo, Y. (2015). Indoor localization based on curve fitting and location
search using received signal strength. IEEE Transactions on Industrial Electronics, 62(1), 572–582.

16. Gu, Y., Zhang, J., Zheng, G., Ji, S., & Wang, J. (2015). An indoor positioning method based on virtual
reference RFID tags. In 2015 IEEE international conference on consumer electronics, Taiwan,
pp. 63–65.

17. Kaczmarek, M., Ruminski, J., & Bujnowski. A (2016). Accuracy analysis of the RSSI BLE SensorTag
signal for indoor localization purposes. In IEEE 2016 federated conference on computer science and
information systems, pp. 1413–1416.

18. Zhuang, Y., Yang, J., Li, Y., Qi, L., & El-Sheimy, N. (2016). Smartphone-based indoor localization
with Bluetooth low energy beacons. Sensors, 16(5), 596.

19. Lim, J. S., Jang, W. H., Yoon, G. W., & Han, D. S. (2013). Radio map update automation for WiFi
positioning systems. IEEE Communications Letters, 17(4), 693–696.

20. Kuo, S. P., & Tseng, Y. C. (2011). Discriminant minimization search for large-scale RF-based local-
ization systems. IEEE Transaction on Mobile Computing, 10(2), 291–304.

21. Jiang, Q., Ma, Y., Liu, K., & Dou, Z. (2016). A probabilistic radio map construction scheme for
crowdsourcing-based fingerprinting localization. IEEE Sensors Journal, 16(10), 3764–3774.

22. Kjærgaard, M. B. (2007). A taxonomy for radio location fingerprinting. In International symposium on
location-and context-awareness. Springer, Berlin.

23. Lee, M. K., & Han, D. S. (2012). Voronoi tessellation based interpolation method for Wi-Fi radio map
construction. IEEE Communications Letters, 16(3), 404–407.

24. Jung, S. H., Lee, C. O., & Han, D. S. (2011). Wi-Fi fingerprint-based approaches following log-distance
path loss model for indoor positioning. In 2011 IEEE MTT-S international microwave workshop series
on intelligent radio for future personal terminals (IMWS-IRFPT).

Environment Adaptive Localization Method Using Wi-Fi and… 777

123

https://doi.org/10.1155/2016/2083094


25. Madigan, D., Elnahrawy, E., & Martin, R. (2005). Bayesian indoor positioning systems. In Proceedings
of INFOCOM, pp. 1217–1227.

26. Viani, F., Polo, A., & Giarola, E. (2016). Exploiting EM simulation modelling for wireless indoor
localization. In 2016 10th European conference on European Association of antennas and propagation
on antennas and propagation (EuCAP), pp. 1–4.

27. Torres-Torriti, M., & Guesalaga, A. (2008). Scan-to-map matching using the Hausdorff distance for
robust mobile robot localization. In: IEEE international conference on robotics and automation,
pp. 455–460.

Ju-Hyeon Seong He received his B.S. and M.S. degrees in Electrical
and Electronics Engineering from Korea Maritime and Ocean
University, South Korea, in 2012 and 2014, respectively. He is cur-
rently pursuing the Ph.D. degree in Electronics Engineering at Korea
Maritime and Ocean University. His research interests include posi-
tioning system, sense network and embedded signal processing.

Dong-Hoan Seo He received his B.S., M.S., and Ph.D. degrees in
electronic engineering from Kyungpook National University, South
Korea, in 1996, 1999, and 2003, respectively. Since 2004, he has been
with Korea Maritime and Ocean University, where he is currently a
professor in the Division of Electronics and Electrical Information
Engineering. His research interests include sense network, signal
processing, and computer vision.

778 J.-H. Seong, D.-H. Seo

123


	Environment Adaptive Localization Method Using Wi-Fi and Bluetooth Low Energy
	Abstract
	Introduction
	Related Theories
	The Wi-Fi Based Fingerprinting
	Log-Distance Path Loss Model

	Proposed Radio Map Algorithm
	Experiment
	Experimental Environment
	Experiment Results

	Conclusion
	Funding
	References




