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Abstract Traffic surveillance has been one of the essential attributes in smart city concept.

Nowadays, in such applications rotating camera is preferred over static camera. Motivation

behind this substitution is to reduce the cost of data transmission and Total of cost of

ownership. To design an optimal and performant wireless ‘smart city area network’ for

video surveillance systems, this paper focuses on some key areas, namely, transmission

efficiency, lossless video data coding, data congestion, edge computing at transmission

nodes. The end objective is to achieve high quality received video stream in spite of

compressed data transmission. Some research initiatives in this domain are pertinent. For

example, Structural Similarity Index (SSIM) based rate distortion optimization is an

effective tool in enhancing the perceptual video quality in wireless environments. How-

ever, prevailing system does not consider the network congestion conditions, affecting

quality of received video. Also, effect of distortion introduced by ‘channel noise’ is

unattended. This motivated us to propose a new dual metric traffic control mechanism,

wherein both metrics i.e. distortion and data congestion are considered. It is based on an

‘improvised SSIM’ method which incorporates the ‘Rate of allocation’ algorithm as a

function. Experimental results unveil that the proposed traffic control using similarity

index under noise diversity can achieve better video quality and more data throughput.
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1 Introduction

In various real time applications, traffic surveillance has gained its interest due to rapid

growth in vehicular traffic density and the criticality in monitoring it. It has been extremely

important to monitor the traffic flow in real time. In automation of traffic monitoring, the

captured traffic video data need to be monitored at a remote monitoring unit. In legacy

implementations, multiple static video cameras were installed at traffic junctions or on

highways to capture the traffic data of moving vehicles. Video streams from each of these

cameras were fed to the centralized monitoring network. Therefore, it is needed to route

the data to the monitoring station at a faster rate and with maximum visual accuracy. In the

transmission process, video frames are forwarded in a multihop manner, where each link

point located at a distance route the data to the next destination. In this routing process,

probability of congestion arises due to continuous and volumetric data streaming. Hence,

such nodes need to be made ‘congestion control’ to have higher throughput.

More recently, there is a trend to replace the static cameras with rotating video camera

with an endeavor to reduce the data transmission cost and reduce the hardware require-

ments. In earlier work [1], we were able to achieve the suppression of redundant data along

with rejection of false positives of motion element by using a recurrent block matching

approach. This reduces transmission data and thereby transmission cost. As the video

cameras are installed at remote locations demanding a wide observation area, it is required

to consolidate all observations at a centralized location for further analysis. The infor-

mation from individual cameras needs to be conveyed over a wireless network to the

central monitoring office. The challenges for setting up such a wireless network are

bountiful. Some of the important are video data throughput, nonlinear nature of channel

and received data accuracy. To reduce the transmission overheads, this paper intend to

compress the video data at the node itself. This is done by detecting a moving object with

the intention to suppress repetitive background information. To achieve the objective of

error resilient coding in video streaming, a rate distortion optimization (RDO) using the

structural similarity index metric (SSIM) was proposed in [2]. This solution optimizes the

wireless video streaming operation. It also defines a Lagrange optimization method for

video coding process. The said approach improves the conventional model of SSE-based

error-resilient RDO for wireless video streaming, wherein less computing resources are

needed. Though SSIM-RDO is more accurate (w.r.t. transmitted and received values of

pixel data) and uses lesser computing resources [2], yet it lacks functionalities like error

control. Moreover, no emphasis on the transmission model and network topology was laid.

This is essential to know to avoid the errors due to congestion. If a hop based network is

considered for communication, the probability of developing congestion proliferates as

each hop can contribute to its part of the queue build up. This is depicted in Fig. 1.

Congestion may be caused by many factors. If, packets begin arriving on multiple

ingress channels and all are multiplexed towards a common egress channel, then the

aggregator node can experience higher load compared to the other nodes in the hop. Plus

each node adds on to its own traffic. So it is imperative that if there is insufficient buffer,

packets will be lost. Therefore congestion control needs to be addressed in such a network.

In [3], an adaptive queue mechanism based on context modelling is proposed, wherein,

context-aware adaptive active queue management (CA-AQM) approach of controlling the

flow of packet based on network condition and video compression characteristics is pro-

posed. In this queue management process, the flow of a video sequence is controlled by

dropping or forwarding the data based on the queue size. Further it is observed, the

distortion at the channel level are highly variant in nature, which introduces dynamic noise.
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The work carried out in [4] defines an approach towards provision of rate distortion

optimization using SSIM metric under channel variant conditions.

However, all the conventional methods developed were confined to node level. In the

network level, the blockage factor at link node could reduce the traffic flow, which brings

the rate allocation efficiency down. Hence, the conventional model of SSIM-RDO system

needs to be optimized with dual optimization metric of distortion variability and rate

allocation considering similarity index as observing metric. In this work, a novel approach

is presented for data rate allocation with dual metrics, distortion and network congestion

for wireless network with bit error rate (BER) .001. Wherein, non variable and variable

channel conditions are considered. The rest of the paper is organized as follows. Section 2

outlines the work done so far on the traffic surveillance in a wireless environment and its

real time applications. Section 3 presents the ‘State of the Art’ of the SSIM-RDO approach

for error-resilience coding and queue management technique. In Sect. 4, the proposed

approach with data flow control with consideration of distortion and data traffic congestion,

under non-variable and variable channel conditions, is explained. The experimental results

for the developed approach are presented in Sect. 5. Section 6 presents the conclusions and

future scope for the present work.

2 Past Work

There has been a considerable volume of research in the domain of video transmission for

surveillance systems. This section lists out some of these researches that focus on the

algorithmic approaches and the methods that are available currently. In [5], an analysis of

power consumption in video coding based on the constant bit rate over the 3G service is

presented. The approach of radio resource utilization based on the control transition state

machine was proposed for a 3G network. A relay based communication for video trans-

mission was presented in [6], wherein receiver-based solution with video transmission

decoupled from relay node selection (REDEC) was developed. The approach uses receiver

modeling considering the excessive collision and overhead due in the exchange of video

packets at a high frequency. In [7], a source rate control technique for video streaming is

controlled over a wireless channel by restoring on a reduced reference (RR) quality
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estimation approach. The process extracts the content feature of the video sequence, which

is transmitted with the video sequence. The transmitted features are used to analyze the

quality of the video received. The source rate is then controlled to achieve the objective of

a higher throughput and visual quality. But, RR approach of quality estimation is less

accurate and efficient than full reference (FR), like SSIM. In [8], an integrated model of

multi source video monitoring for traffic surveillance is proposed. A block partitioning of

the video data into macroblocks for efficient streaming is proposed. The approach analyzes

the impact of different multipath conditions for data streaming over vehicular ad hoc

networks (VANET), taking various network parameters into consideration. But, no

attention on network throughput is given in this work. To add intelligence to the video

streaming operation in [9], a neuro-fuzzy modeling for MPEG-4 video transmission over

IEEE 802.15.4.zigbee wireless device was proposed. The approach defines two schemes

for monitoring the input and output of the data storage in traffic regulation. The approach

controls the bit rate coding for traffic application to overcome the picture loss quality in

MPEG-4 video coding over the zigbee applications only. In [10], a real time vision system,

for automatic traffic monitoring was presented. The system was designed for automated

capturing and processing of images from the pre-calibrated cameras. The method was

developed under the framework of TRAVIS (Traffic Visual monitoring) project work.

Here, more focus is given on video processing aspects than data communication issues.

Towards the seamless transmission in [11], a new protocol based on network-based

localized mobility management group working of the internet engineering task force was

proposed. The protocol minimizes the issues for network switching under the mobility

scenario. The protocol focuses on mobility management to minimize latency, jitter, and

packet loss in the video streaming application. In this work, more attention is given on

avoidance of network delay than visual experience at receiving end. A cross layer approach

of video streaming over a wireless network is presented in [12]. The scheme proposes a

rate adaptation for data link and a physical layer, whereas the quality adaptation in the

application layer. The rate adaptation is used for the adjustment of the allocated rate, where

as the quality adaptation scheme controls the video quality offered. In this work, effect of

congestion due to network conditions is not considered for data rate adaptation. In [13], to

improve the video quality a joint selection of the quantization offset is presented. The

statistical distribution of the transformed coefficient in an encoded video sequence is

developed using a Laplacian model. The multi level optimization solution results in an

optimal path selection for lower path failure probability. The seamless transmission of a

video sequence using H.264/AVC was developed. Here, distortion metric to check the

video quality at receiving end is not matching with requirements of the HVS. In [14], the

effective channel bandwidth and the current channel state are analyzed for the automatic

repeat request error controlling operation. The constraint of buffer and end-to-end delay is

considered as a trans-coding parameter. It is illustrated that the approach of trans-coding

results in improved video picture quality. But, in this work, rate adaptation is done for

H.263 system and visual quality metrics used is PSNR. A scalable mode of video coding is

presented in [15]. The approach of vehicle monitoring, in the multi-Hop communication

model is presented. However, perceived video quality of experience is compromised. In

[16] a motion based compensation of rate allocation using SSIM metric was outlined. The

method proposes a data rate compensation for transmission. However, the source side

encoding is not been evaluated for rate allocation. In [17] a complex wavelet based coding

for SSIM based rate allocation is suggested. However, effect of dynamic channel condi-

tions is not considered in the work.
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3 State of the Art (SSIM Measure for RDO)

The use of SSIM-RDO for error resilience coding in video streaming is very popular. The

reason behind this, SSIM outperforms traditional methods, such as peak signal to noise

ratio (PSNR) and mean squared error (MSE), which have proven to be consistent with

human perception. As proposed algorithm of this paper uses the concept of SSIM-RDO, it

is imperative to know the essence of the same.

3.1 SSIM-Based RDO Formulation Based on SSE-RDO

In [2], the SSIM-RDO based error-resilient scheme for H.264/AVC is presented. To

improve the wireless video streaming performance, a numerical relation was derived

through the Lagrange method to obtain minimum distortion, wherein the SSIM is used as a

distortion metric. A low-complexity Lagrange multiplier for SSIM-based RDO for error-

free coding is derived initially. The SSIM-based decoding for distortion minimization is

introduced in the encoder to formulate error resilient video coding. For the distortion

optimization in video streaming, similarity index measurement is a qualitative measuring

index parameter for video streaming.

In the SSIM based video coding, the encoding process can be determined by reaching

the best trade-off between the coding bits amount and the obtained video quality. This

problem can be modeled as;

min
mf g

Df g ) Re �Rl ð1Þ

Which indicates that the video encoder should minimize the apparent distortion ‘D’

with the number of encoding bits amount ‘Re’, following the constraint of bits amount ‘Rl’

by selecting the appropriate encoding mode ‘m’ [2]. In video streaming, the Lagrange

optimization approach is used to make the objective as;

min
mf g

Jf g ¼ Dþ k:Re ð2Þ

where ‘J’ is Lagrange cost and ‘k’ is the Lagrange multiplier for RDO. Normally in

Lagrange optimization, the distortion metrics such as SSE and SAD are used as measures

of video quality. However, these methods are not able to model the quality that is per-

ceived by the Human Visual System (HVS). Human perception is naturally adapted to

luminance, contrast and structure in an image, which is basis for SSIM.

The SSIM metric is measured as a similarity metric, for the original (I) and the distorted

video data (I0), which is used with the Lagrange multiplier to control the encoding bits. The

SSIM metric is given as a correlative factor defined as a function of mean, standard

deviation, cross correlation for the two video data.

The SSIM metric is defined by;

SSIM I; I0ð Þ ¼
2uIuI0 þ Að Þ 2sI;I0 þ B

� �

I2 þ I0 2þAð Þ s2I þ s02I þ Bð Þ
ð3Þ

where ‘uI’, ‘sI’ and ‘sI;I0 ’ are the mean, standard deviation, and cross correlation between

the two video data respectively. ‘A’ and ‘B’ are used as a stabilizing parameter for the

means and variances to set near to zero.

To optimize the distortion metric, the Lagrange optimization is defined by,
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min mf g Jf g ¼ DSSIM þ kSSIM � Re ð4Þ

where ‘DSSIM’ denotes the SSIM-based distortion and ‘kSSIM’ is the Lagrange multiplier

for the SSIM-based RDO. To optimize the rate allocation the Lagrange operator is to be

suitably chosen to fix an optimal rate.

It is worth to note; in SSIM based method the Lagrange multiplier is theoretically

derived from sum of squared (SSE) based Lagrange optimization process, thereby reducing

mathematical complexity.

kSSIM ¼ � DSSIM

Re

¼ �
DSSE

f

� �

Re

¼ � 1

f
� DSSE

Re

¼ kSSE
f

ð5Þ

Thus, for the SSIM-based Lagrange optimization process, it can be modeled by only

scaling the existent SSE-based Lagrange optimization formulation with a fixed factor ‘f’ as

[2];

min
mf g

kSSE
f

� �
with

kSSE
f

¼ DSSE

f
þ kSSE

f
� Re ð6Þ

3.2 Approach A: SSIM-Based Error-Resilient Video Coding Under Non
Variant Channel Condition

For the error distortion minimization in this approach, to provide the network optimality,

the video coding layer (VCL) and the network abstraction layer (NAL) are designed for the

H.264/AVC video coding standard. The VCL operates for the compression process

whereas; the NAL operates at the network level to provide proper allocation of resources.

For wireless communication, the transmission channel is time-varying and erroneous in

nature. For the minimization of an error during signal propagation, an independent channel

model is used. Knowing the bit error rate (BER) of the transmission channel, the packet

loss probability ‘q’ for a NAL unit containing ‘L’ bits is related as;

q ¼ 1� ð1� berÞL ð7Þ

During the encoding process, the video streams are divided into frame slices represented

as sn;m. For the mth slice in the nth frame, the BER is defined by bern;m(which is the

channel BER for the transmission of the mth slice of the nth frame), and qn;m is the packet

loss rate for slice sn;m. The Lagrange multiplier ‘kSSIM’ was adjusted to achieve the

objective of the error resilient to a minimum. The Lagrange multiplier was developed

based on the distortion metric ‘DSSIM’. Since the distortion estimation is conducted at the

encoder end, a module in the encoder is added, to simulate the decoding process with the

help of the acknowledgement message, which informs the encoder whether the transmitted

packet is received by the receiver or not. For an acknowledgement message of ‘nr’ frame

received by the encoder while encoding the ‘n’ frame, the encoding information is stored

and the added decoding unit decodes the ‘nr’ frame and gets the expected decoded frames

from the nr ? 1 to the n – 1 frame. Given the decoded reference frames or the expectations

of the decoded reference frames, the pixel values were obtained. Further, the expected

decoding distortion is estimated by;
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E DSSIMn;m;k

� �
¼ 1� qn;m � SSIM bn;m;k; b

e c
n;m;k

� 	
� 1� qn;m
� �

� SSIM bn;m;k; b
n l
n;m;k

� 	

ð8Þ

where bn;m;k, b
e c
n;m;k and b

n l
n;m;k indicate the original MB, the error concealed MB with packet

loss and the decoded MB without packet loss, respectively. The proper adjustment of the

Lagrange multiplier based on the distortion metric is evaluated as;

k0SSIM ¼ DSSIM Reð Þ
Re

¼
1� qn;m � SSIM bn;m;k; b

ec
n;m;k

� 	
� 1� qn;m
� �

� SSIM bn;m;k; b
nl
n;m;k

� 	� 	

Ren;m:k

¼
qn;m � SIM bn;m;k; b

ec
n;m;k

� 	� 	

Ren;m�k

þ
1� qn;m
� �

� SSIM bn;m;k; b
n l
n;m;k

� 	� 	

Ren;m�k

ð9Þ

Approximately, represented as;

qn;m � SIM bn;m;k; b
e c
n;m;k

� 	� 	

oRn;m:k
¼ �

1� qn;m
� �

� SSIM bn;m;k; b
nl
n;m;k

� 	� 	

Rn;m:k
� kSSIM ð10Þ

where ‘kSSIM’ indicates the Lagrange multiplier for the RDO in the error-free environment.

When the Lagrange multiplier, ‘k0SSIM’ is adjusted to be smaller than ‘kSSIM’ the error-

resilient RDO will select more intra-coded bits to restrain the error propagation. The

Eq. (10) indicates that ‘k0SSIM’ is adaptively adjusted to be smaller than ‘kSSIM’ with the

different packet loss rates to promote the error robustness of the video streaming. However,

the work in [2] does not provide queue management for data traffic flow in the wireless

network for congestion control.

3.3 Approach B: Queue Management Scheme Using CA-AQM [3]

To optimize the data traffic flow modeling, a cross layer optimization of video stream

traffic at the router level was proposed in [3]. Here, coding was introduced at the network

abstraction layer (NAL), where the queue based congestion control following Active

Queue Management (AQM), and relative quality of Service (QoS) is mapped to schedule

the rate of traffic flow. The cross layer approach is called as the CA-AQM process on a

measured queue length, and derives the packet enqueue or dropping probability based on

the receiving data traffic. At the Video coding layer (VCL), the video source is placed into

slices and passed to the NAL for rate allocation. The method computes the drop probability

dp(t) as;

dp tð Þ ¼
0; ql tð Þ\minth
1; ql tð Þ[maxth

maxp �
ql tð Þ �minth

maxth �minth
; otherwise

8
>><

>>:
ð11Þ

where minth is the minimum queue threshold, maxth is the maximum queue limit, and ql is

the current blockage factor. In the approach of cross layer modeling (CA-AQM), the drop

probability is modified as; dp tð Þ ¼ 1� /�p tð Þ, where p tð Þ is the price in period t and /
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constant value 1.001 defined as REM (random exponential marking). The price is updated

from time to time according to the average queue length, the input rate, and the output rate

of the queue. The CA-AQM approach controls the flow of traffic by accepting or dropping

the video packets based on the probability index d tð Þ and the importance of the packet to

drop. The price is incremented if the input rate exceeds the output rate, and is decremented

otherwise. The suggested controlling algorithm of CA-AQM is outlined in Fig. 2.

Where, U ið Þ is the importance index of i packet in the queue. In the conventional queue

mechanism (CA-AQM), it is seen that, the data traffic model is developed in observation to

the current blockage level. This approach improves the network flow and intern network

throughput, however, the effect of channel distortion on this traffic model is not evaluated.

In other words, the allocation is not governed by the channel distortion level. Hence it can

be inferred that, work of [3] does not cover the aspect of error resilient coding.

Therefore, it is imperative to have a multi attribute monitoring system, where the

distortion level and the congestion factors are monitored simultaneously for the final

allocation of data rate. To develop this concept, this paper proposes a novel data traffic

approach at link level, called ‘Dual Metric Traffic control’ (DMTC), wherein two metrics,

data congestion and distortion level are considered.

4 Dual Metric Traffic Control (DMTC)

To develop an optimal data traffic model with low blockage streaming, each link node is

defined with a queue management scheme. Here, the data traffic flow is governed by the

current congestion level per node and the rate control is applied with two quality metrics,

blockage factor and data accuracy level.

No 

Calculate the average queue length  in period t

Receive packet

Calculate the drop probability d(t), Randomize a number ; 

Yes 

if (d(t)< ) 

Enqueue packet 

Drop the packet  with 

Fig. 2 Flow diagram for CA-AQM [3]
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For a noise minimization in progressive streaming, iterative distortion estimate (IDE)

was presented in [4]. In channel, noise effects are highly dynamic in nature. In this

scenario, similarity measure factor for channel distortion estimation is non-effective. To

overcome the problem of distortion diversity, the conventional SSIM based approach is

modified to a cumulative distortion SSIM (CDSSIM) with iterative distortion measure and

is given as,

CDSSIM ¼ 1� SSIM ð12Þ

To retain the loss control, the error estimate is defined on a per frame inter correlation

basis. In the transmission of video frame, a group of block (GOB) coding is made. This

approach defines the error values in each of the transmitting frame, where GOB are used to

decode the error condition. The Errror (E) for a video sequence is defined by,

¼ P0 D1ð Þ þ P1 D2ð Þ þ P2 D3ð Þ ð13Þ

here Pi is the probability of the condition Dið Þ. Di are defined as three possible conditions

of GOB data, where D1 reflect the accurate reception of current GOB, D2 reflect the loss of

current GOB but last GOB received, and D3 reflect the loss of current and last GOB data.

In the decoding process under these three cases, when the GOB are received correctly, the

pixel data are reconstructed with minimal distortion DSSIM. While the case where current

GOB is lost in channel, the last accurate GOB is taken as reference to rebuild the frame

data. In case of both current and last GOB lost, cumulative distortion measured, CD-SSIM

is then used and the pixels are estimated based on the minimization of CDSSIM factor. The

Cumulative distortion SSIM reflects the distortion level, which are dynamically varied over

a period of time. The integrated distortion estimate (IDE) in this case is defined as,

IDE ¼ 1� eð Þ D1ð Þ þ e 1� eð Þ D2ð Þ þ e2 D3ð Þ ð14Þ

where e is the packet loss.

4.1 DMTC Approach

From the queue management technique, described in previous section, it is observed that,

the congestion level is governed at two levels and the dropping probability is then defined

as of ‘1’ or ‘0’ as presented in Eq. (11). It is also observed; traffic flow under minth is

considered as a non-congestive zone and above maxth is considered as a congestive zone.

The region in between these two limits is taken as a random zone, where the packets have

randomly been enqueued or dropped based on the probability of dropping dp tð Þ.
The rate of allocation (ROA) for the traffic flow in this case is presented as;

Ra tð Þ ¼

Re tð Þ þ at if Qcur\minth
Re tð Þ þ at� dp tð Þð Þ if minth\Qcur\maxth

Re tð Þ � Re tð Þ
dp tð Þ if Qcur �maxth

8
>><

>>:
ð15Þ

where Ra tð Þ = data rate allocated, Re tð Þ = offered Data rate, at = step of incremental

data rate, Qcur = current queue length, minth = minimum queue limit, maxth = maximum

queue limit, dp = dropping probability.

It can be seen from Eq. (15), the allocated data rate is varying with respect to the link

blockage level. If the current queue length is below the minimum level, the rate is allocated

with an increment of ‘at’. Where ‘at’ is a constant increment factor defined by the network
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condition. If the current queue length is in between the minimum and maximum levels,

representing partial blockage, the allocated data rate depends on the dropping probability

(16). However, if the current queue length exceeds the maximum queue length, repre-

senting high congestive level, the allocated data rate is decreased as a fraction of drop

probability. Here, the observation is, allocation of data rate is a function of blockage factor.

To introduce the nonlinear distortion variations due to dynamic channel conditions, as

second monitoring parameter, following possible cases arises:

4.2 Case 1: Under Invariant Channel Condition

In the transmission system, where the channel is invariant with time, a fixed scaling factor

can be defined. According to the Eq. (15), the data rate allocated is dynamic in nature. This

also effects the adjustment of the Lagrange multiplier in Eq. (8). The Lagrange multiplier

in this case is defined by,

k0SSIM�DMTC ¼ E

Ra n;m;kð Þ tð Þ

where E is defined as,

E ¼ 1� qn;m � SSIM bn;m;k; b
ec
n;m;k

� 	
� 1� qn;m
� �

� SSIM bn;m;k; b
nl
n;m;k

� 	� 	

¼
qn;m � SSIM bn;m;k; b

ec
n;m;k

� 	� 	

Ra n;m;kð Þ tð Þ
þ

ð1� qn;m
� �

� SSIM bn;m;k; b
n l
n;m;k

� 	
Þ

Ra n;m;kð Þ tð Þ

ð16Þ

Approximately represented as;

qn;m � SIM bn;m;k; b
e c
n;m;k

� 	� 	

Ra n;m;kð Þ tð Þ
¼ �

ð1� qn;m
� �

� SSIM bn;m;k; b
nl
n;m;k

� 	
Þ

Ra n;m;kð Þ tð Þ
� kSSIM ð17Þ

From the above Eq. (17), it can be seen, the Lagrange Multiplier depends on the rate

allocated for a particular nth slice in the mth frame. Thus, by adjusting the allocated data

rate, the Lagrange multiplier is also adjusted, and provides an efficient error resilient and

congestion free coding. From the Eq. (17), the SSIM-based Lagrange multiplier kSSIM in

Eq. (5) can be modified as;

kSSIM DMTC ¼

�DSSIM

Re tð Þ þ at
if Qcur\minth

�DSSIM

Re tð Þ þ at� dp tð Þð Þ if minth\Qcur\maxth

�DSSIM

Re tð Þ � Re tð Þ
dp tð Þ

if Qcur �maxth

8
>>>>>>>><

>>>>>>>>:

ð18Þ

From the above Eq. (18), it is clear that the adjustment of the Lagrange multiplier in

Lagrange optimization depends on the allocated data rate. For the measured distortion

DSSIM and for the measured Lagrange multiplier kSSIM DMTC, the Lagrange Optimization

scheme (2), can be modified as
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min
mf g

Jf g ¼ DSSIM þ kSSIM DMTC � Re ð19Þ

where ‘DSSIM’ denotes the SSIM-based distortion and ‘kSSIM DMTC’ is the Lagrange

multiplier. The Dual measuring metric of distortion monitoring and data rate allocation is

made here based on the current queue length. The Dual metric monitoring hence guarantee

a higher network throughput with better coding accuracy in video monitoring. The oper-

ational flow chart for the given approach is illustrated in Fig. 3.

4.3 Case 2: Under Variant Channel Condition

In the dynamic interference condition, the integrated distortion estimation is used for the

optimization of Lagrange function, defined by the evaluation of network estimate. For the

minimization of distortion (under variant noise condition) an optimization regression

model, which minimizes the input–output based residual, is derived. The regression

coefficient obtained through the sum of absolute value is then defined as [4],

min
W0;W

1

2n

Xn

i¼1

CDSSIM�W0 �WTIi
� �2þk Wj jj j

( )

ð20Þ

where ‘n’ represents the total number of blocks in GOB. The term w is the vector of

regression coefficients, w0 is the intercept and k is the regularization parameter. Substi-

tuting the Lagrange regularize parameter, the regression coefficient is then defined by,

min

W0;W

1

2n

Xn

i¼1

CDSSIM�W0 �WTIi
� �2þkSSIM0 Wj jj j

( )

ð21Þ

where k
0

SSIM is the regularizing parameter, using similarity index measure at the allocated

transmission rate, and CDSSIM reflects the distortion measured over a period of obser-

vation. The proposed approach has the notion of dual metric observations for distortion

minimization, wherein the similarity measure is used as a measuring parameter for rate

allocation using k
0

SSIM and W0;W to optimize CDSSIM. Hence, the dual metric opti-

mization achieves the data rate allocation and distortion minimization under dynamic noise

condition.

The rate allocation approach (ROA) under variant channel condition is dependent on the

cumulative error function. It is defined by the optimization of regression parameter, where

the minimization of cumulative distortion error due to Similarity index is carried out. The

Lagrange regulator and the CDSSIM parameters are observed for rate allocation.

The stated rate allocation is then defined as,
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Fig. 3 Operation flow chart for the proposed SSIM based rate allocation approach
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kSSIM DMTC

¼

� CDSSIM

Re tð Þ þ at
if Qcur\minth )

min

W0;W

1

2n

Xn

i¼1

CDSSIM�W0 �WTIi
� �2þk0SSIM Wj jj j

( )

� CDSSIM

Re tð Þ � at
if Qcur\minth;

min

W0;W

1

2n

Xn

i¼1

CDSSIM�W0 �WTIi
� �2þk0SSIM Wj jj j

( )

� CDSSIM

Re tð Þ þ at� dp tð Þð Þ if minth\Qcur\maxth )
min

W0;W

1

2n

Xn

i¼1

CDSSIM�W0 �WTIi
� �2þk0SSIM Wj jj j

( )

� CDSSIM

Re tð Þ � at� dp tð Þð Þ if minth\Qcur\maxth;
min

W0;W

1

2n

Xn

i¼1

CDSSIM�W0 �WTIi
� �2þk0SSIM Wj jj j

( )

� CDSSIM

Re tð Þ � Re tð Þ
dp tð Þ

if Qcur �maxth )
min

W0;W

1

2n

Xn

i¼1

CDSSIM�W0 �WTIi
� �2þk0SSIM Wj jj j

( )

0; if Qcur �maxth;
min

W0;W

1

2n

Xn

i¼1

CDSSIM�W0 �WTIi
� �2þk0SSIM Wj jj j

( )

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð22Þ

Here, the allocation problem is defined as a optimization of Lagrange function k
0

SSIM which

is a function of allocation data rate w.r.t. similarity index measure. In the dynamic con-

ditions the variant is measured as a factor of cumulative distortion measure (CDSSIM)

which is also to optimize for rate allocation. In case the minimization cost function is

satisfied, the rate allocation is subjected to increase by a factor of at under the constraint of
minimum threshold. In the same case if the regression model doesn’t obtained to an

optimization value, the allocation rate is decreased to achieve the convergence of minimum

distortion. Under the intermediate region the data are dropped in a random manner based

on the drop probability and the allocation is controlled, subjected to the minimization of

regression error. The similar process is made with the maximum bound limit under two

observing cases. Here, the data traffic is totally closed under the condition of convergence

not meeting to the minimization criterion. The dual monitoring factor results in maximum

accuracy and higher throughput under dynamic channel condition. Here the cumulative

distortion results in minimization of distortion in channel variant condition.

5 Experimental Results

To simulate the proposed approach a video compression algorithm at the video coding

layer (VCL) is used, which is developed in [1]. The illustration of the communication

model is shown in Fig. 4.

The constituting unit for the traffic surveillance approach is illustrated in Fig. 5.

At the video coding layer, the captured video is processed for compression. The motion

elements are extracted using a recurrent block matching approach. The extracted motion

vectors are compressed using an entropy encoder and stream out to Network abstraction

layer (NAL). At each node, the NAL computes the current congestion level and computes

the allocable rate of transmission in consideration with the error factor as briefed earlier.

To evaluate the proposed approach, a subjective and objective analysis of the developed

system is done with the approach of the SSIM based Rate allocation method. The per-

formance of the proposed approach was evaluated with respect to SSIM, throughput, node

overhead, end-to-end delay, and the allocated data rate. A network layout with a capturing
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node, two intermediate hop nodes and a monitoring node is developed as illustrated in

Fig. 6.

The network parameter used for the communication model is defined in Table 1.

The Fig. 7 illustrates the captured sequence from a traffic junction. The capturing unit

was installed at the existing traffic light poles with a rotation of 360 degree orientation.

The video is captured from a high resolution camera at a frame rate of 25 fps, with a

272 9 352 pixel resolution.

To process the video sample, the captured video sequence is extracted as frames. The

frames are extracted at a skip of ten frames to ease the computation overhead. The

extracted frame for processing is shown in Fig. 8.

Frames are recovered using conventional SSIM-RDO, but without data flow control

(Fig. 9).

Frames are recovered using SSIM-RDO along with data flow control (Non-variant

channel conditions) (Fig. 10).

Frames are recovered using SSIM-RDO along with data flow control (Variant channel

conditions) (Fig. 11).

Monitoring 
Center 

Intermediate node at next junction 

Capturing device 
with transmission unit 

Fig. 4 Communication model
for traffic surveillance

Monitoring 
Center

Intermediate 
hop node 

Transmitting 
Unit 

Capturing 
Unit 

Wireless media 

Fig. 5 Operational data flow for traffic surveillance
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Fig. 6 Network model used for simulation

Table 1 Network parameter
used

Network parameter Values

Node placement Static

Transmission range 40 units

Network area 25 m 9 25 m

Number of nodes 4

Memory size 3 M

Qmin 0.15 9 M

Qmax 0.75 9 M

Initial blockage probability 0.1

Fig. 7 Captured surveillance video data
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Figures 12, 13, 14 and 15 show data transmission quality metrics i.e. route overhead,

throughput, end to end delay and allocated data rate of SSIM-RDO, flow control (DMTC

without channel noise) and DMTC approach. In this simulation, we considered ideal

channel i.e. 0% noise. The graph shows that the performance of DMTC is better than

existing approach of SSIM-RDO mechanism because of data flow control mechanism of

DMTC.

5.1 Observation Under Variant Channel Conditions

Case 1 Variance = 0.1 (Figs. 16, 17, 18, 19).

Figures 20, 21, 22 and 23 show route overhead, throughput, end to end delay and

allocated data rate of SSIM-RDO, flow control (DMTC without channel noise) and DMTC

Fig. 10 Recovered frame using flow control approach

Fig. 11 Recovered frame using dual metric traffic control approach

Fig. 8 Processing frames for the captured video sequence

Fig. 9 Recovered frame at receiver using SSIM-RDO approach
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approach. In this simulation, we considered channel noise level at 10%. The graph shows

that the performance of DMTC is better than existing approach of SSIM-RDO because of

effective data flow control in DMTC approach. There is some improvement in DMTC from

its counterpart i.e. flow control (without noise consideration).

Case 2 Varaince = 0.3 (Figs. 24, 25, 26, 27).
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Fig. 13 Throughput plot for the developed approaches under non-variant channel condition

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

90

100

communication Iteration

R
ou

te
 O

ve
rh

ea
d

Network Overhead Plot

SSIM-RDO Approach [2]
Flow control Approach
DMTC Approach

Fig. 12 Network overhead plot under non-variant channel condition
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Figures 28, 29, 30 and 31 show route overhead, throughput, end to end delay and

allocated data rate of SSIM-RDO, flow control (DMTC without channel noise) and DMTC

approach. In this simulation, we considered channel noise level at 30%. The graph shows

that the performance of DMTC is better than existing approach of SSIM-RDO because of

effective data flow control in DMTC approach. Also, there is some improvement in DMTC

from its counterpart i.e. flow control without noise consideration. Normally, increase in
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Fig. 15 Allocated data rate plot for developed approaches under non-variant condition
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Fig. 14 End to end delay for developed approaches under non-variant condition
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channel noise affects aforementioned quality metrics. But, it is evident from figures,

DMTC approach does not let it to decrease, rather it is almost constant. Therefore, we term

this as an improvement in the performance.

6 Conclusions and Future Scope

Novelty of proposed DMTC mechanism is an integration of the data traffic congestion

metric with SSIM-RDO under variable and non variable channel conditions. The approach

of error resilience with a high data traffic flow under channel variant condition is presented.

Fig. 18 Recovered sample at variance = 0.1 using flow control approach

Fig. 19 Recovered sample at variance = 0.1 using DTMC approach

Fig. 16 Noised sample at channel variance = 0.1

Fig. 17 Recovered sample at variance = 0.1 using SSIM approach
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Also, dynamic data flow control model with probabilistic route density is developed, to

control the flow of the captured video data over a multi-hop wireless network model. In

this approach, the video quality improvement is achieved with error resilience coding using

the SSIM factor. The error resilience coding is then improved for high throughput using

data flow controlling through rate allocation approach under variant channel condition.
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Fig. 21 Network throughput plot at variance = 0.1
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Fig. 20 Route overhead plot at variance = 0.1
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From the experimental results, it is evident that an improvement in system throughput

along with video quality is achieved.

Despite the effectiveness of proposed algorithm, there is a scope for further improve-

ment. With improved variable block size segmentation or with improved motion vector

prediction, work can be extended for H.265 codec in place of H.264, thereby increasing

data compression and reducing communication overheads.
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Fig. 23 Allocated data rate plot at variance = 0.1
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Fig. 22 End-to-end delay plot for channel variance = 0.1
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Fig. 26 Recovered sample at variance = 0.3 using flow control approach

Fig. 27 Recovered sample at variance = 0.3 using DTMC approach

Fig. 24 Noised sample at channel variance = 0.3

Fig. 25 Recovered sample at variance = 0.3 using SSIM approach
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Fig. 29 Network throughput plot at channel variance = 0.3
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Fig. 28 Route overhead plot at channel variance = 0.3
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Fig. 31 Allocated data rate plot at variance = 0.3
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Fig. 30 End-to-end delay plot at channel variance = 0.3
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