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Abstract The wireless sensor networks (WSNs) have imminent constrains that makes

security a crucial issue. Weak defense capability makes WSN a soft target against worm

attacks. A single compromised node can spread the worm via communication in the entire

network. In this paper, we propose a mathematical model that studies the epidemic

behavior of such digital worms. Furthermore, we study the effect of these worms with

various communication radius and node distributed density. We investigate the proposed

model using the stability theory of differential equations. Basic reproduction number is

found that helps us to find the threshold values for communication radius and node density

distribution. The proposed model is checked and validated through extensive simulation

results. Finally, we compare our scheme with the existing schemes. Comparison analysis

shows that the proposed model is efficient as it has the low rate of the infectious node for

different communication radius.
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1 Introduction

WSN are extensively used in todays life. WSN composed with many sensor nodes. Sensor

node is a small device which assemble with four units sensing, processing, energy source

and communicating. Sensor node may consist additional component depends upon purpose

of use. In a sensor network, sensor node generates data by their surrounding and sends this

data to the sink node with the help of intermediate nodes. Sensor node has limited com-

munication range so it takes help from the neighboring nodes. Sensor nodes deployed in a

hostile environment so charging a sensor node is a tough task. Limited capacity and

defense capability constraints make sensor nodes vulnerable to many attacks. Sensor nodes

can easily be targeted by software attacks like biological worm attack. It is a well-known

truth that worms spread very fast due to the malicious object and propagate easily from one

node to another node via communication in a susceptible network. Control on the worms is

necessary for smooth functioning of the network. Mathematical modeling is an important

tool to analyze the dynamics of worm propagation.

If a single node influenced with the worm than it may affect the entire network through

different broadcast protocol [1, 2]. There is a close similarity between biological worms

and the software generated worms. The worm attack is the most dangerous form of cyber

attack that propagates in the computer and telecommunication networks. New types of

worms have emerged in last few years. These types of worms do not need the internet

connectivity for their propagation. They can be spread from device to device through

wireless communication technology such as wi-fi or Blue tooth. Cabir is a computer worm

that sends itself repeatedly in blue-tooth enabled devices. Mabir, is a variant of Cabir and

has the capability of spreading not only via blue tooth but also via MMS. The spreading

behavior of the Mabir and Cabir worms are epidemic in nature [13]. There is a basic

similarity between worms spread among the population and the transmission of worms

from device to device in a computer networks. Thus, security mechanisms that can defend

sensor nodes against software attacks is of great interest to the sensor network community.

To defend the sensor nodes against these types of malware attacks, we propose a security

mechanism using epidemic models. Security and energy efficiency of a sensor network has

been a recent research topic. Spread of malicious object through epidemic model based

study is widely used in sensor networks . The objective of this paper is to present a strong

defense mechanism and analyzing the effect of introducing vaccinated and exposed class in

the network. The main contribution of this paper is to assess the feasibility of epidemic

models in order to sending an information in WSN. In particular, we first show that

epidemic modelling in WSN is meaningful. Later, we introduce two categories in the

existing model and show that the proposed model works well. Experiments do support our

analytical findings. Finally, we highlight some further research directions. Outline of the

proposed paper is as follows: Sect. 2 presents the related work. Section 3 describes

notations and terminology for the proposed work. Section 4 presents the dynamics of

proposed SEIRV model. Section 5 presents the stability analysis of proposed model.

Simulation results and numerical results on worm propagation is given in Sect. 6. Com-

parison analysis is given in Sect. 7. Section 8 concludes the presented work.
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2 Related Work

Kermack and Mckendrick [3] presented a mathematical model for predicting worm spread

within a population. Later, such models have been applied to many networks. Repro-

duction number R0 is one of the basic element in mathematical biology. Heesterbeek

studied about the concept of R0 from demography to epidemiology and found that R0 is

‘one of the foremost and most valuable ideas that mathematical thinking has brought to

epidemic theory’ [4]. Originally R0 is developed for the study of demographics, it is now

widely used in the study of infectious disease, and more recently, in models of in-host

population dynamics. Epidemic models for worm spread over the internet have been

widely studied by researchers [5, 6].

Some mathematical model based on epidemic models have been proposed for WSN.

Khelil et al. [8] proposed a SI model for a simple information diffusion to analyze worm

attacks in mobile ad hoc networks. They derived an expression which shows the depen-

dency of infection rate with node density. Khayam et al. [9] proposed a worm propagation

model, the topologically aware worm propagation model (TWPM) for WSN and they

consider susceptible and infected two possible states. Akdere et al. [10] has shown the

applicability of epidemic theory on WSN and a comparative analysis of epidemic algo-

rithms for data dissemination has been done. Zheng et al. [11] presented an epidemic

model for mobile phone and consider the three main characteristics, distribution density,

coverage radius, and moving velocity of mobile phone. De et al. [12] presented a model for

WSN to analyze the spread of worms and study on random graphs considering the network

parameters such as key sharing, distance. Tang et al. [13] proposed an epidemic theory

based susceptible-infective-recovered with maintenance (SIR-M) model that captures both

the spatial and the temporal dynamics. Tang [14] proposed a modified SI model to improve

the anti-worm capability of networks by leveraging sleep mode. Wang and Li [15] pro-

posed an epidemic theory based iSIRS model which define the process of worm propa-

gation and they also considered the energy consumption of sensor nodes. Mishra and

Keshri [16] proposed a SEIRS-V model. That model captures temporal and spatial both

types of dynamics of worm propagation but communication radius and node density are

not considered which is the main characteristic of WSN. A SIR model was proposed by

Feng et al. [17] which consider the communication radius and node density both. Zhu et al.

[18] developed a delay reaction diffusion model and described the process of male-ware

propagation for mobile WSN. We extend the model proposed by Feng et al. [17] by

including exposed and vaccination class.

3 Notations and Terminology

In order to develop a model, we first need to define the notations and terminology used in

the paper. Notations and terms used in this paper are described below (Table 1).

3.1 The Basic Reproduction Number

The basic reproduction number, R0, is defined as the expected number of secondary cases

produced by a single infection in a completely susceptible population. When
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R0\1

each infected node will produce less than one new case of the infected node among all

susceptible nodes. It means worm will die out and system becomes free from worms. But

if,

R0 [ 1

each infected node will produce more than one infectious node so that the infection will

take hold and becomes an epidemic.

3.2 Equilibrium Points

For the differential equation

dx

dt
¼ f ðx; tÞ; x 2 Rn

if f ðx�; tÞ ¼ 0 for all t, x� is knows as equilibrium point.

There are two types of equilibrium: stable and unstable. A small disturbances in the

system parameters does not affect the system, then the equilibrium is said to be stable.

Otherwise, it is considered an unstable equilibrium.

3.3 Stability of the System

The proposed system represent the set of nonlinear ordinary differential equations. The

stability at equilibrium point is checked by finding the Jacobian matrix to linearize the

system model. The system is stable if all the eigenvalues of the evaluated Jacobian matrix

at the equilibrium points are negative.

3.4 Lyapunov Function

A Lyapunov function for the first order autonomous system u ¼ FðuÞ is a continuous real-
valued function L(u) that is non-increasing on all solutions u(t), meaning that

Table 1 Notations
q Average node density in the unit area

r Communication range of sensor node

R0 Basic reproduction number

l Birth and death rate of node

a Rate of exposed node become susceptible

b Infection rate

c Recovery rate of infectious node

d Probability of recovered node become susceptible

r Vaccination rate

� Probability of vaccinated node become susceptible
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LðuðtÞÞ�Lðuðt0ÞÞ for all t[ t0

whenever u(t) is a non-equilibrium solution to the system. The Lyapunov function must be

constant on an equilibrium solution.

– L is a positive definite.

– _L� 0 so that _L ¼ 0

Every trajectory of _x ¼ f ðxÞ converges to zero as t ! 1 (i.e., the system is globally

asymptotically stable). Lyapunov functions are scalar functions and used to analyze the

global stability of the equilibrium for the system of ordinary differential equations. There

are different types of Lyapunov theorems to obtain Lyapunov function. One common

approach is to assume the values of parameters so that the required conditions hold.

3.5 Routh–Hurwitz Criteria

It is an important criterion to determine the stability of a linear system without finding all

the roots of the characteristic polynomial. It is a mathematical test, which provides nec-

essary and sufficient conditions for stability. The system with characteristic equation

PðkÞ ¼ 0 is stable if all the roots of PðkÞ ¼ 0 are negative. Stability criteria for the second,

third and fourth degree polynomial with characteristic equation PðkÞ ¼ 0 is as follows:

1. For a second degree polynomial PðkÞ ¼ k2 þ a1kþ a0, all the roots are negative if and

only if both coefficients a1 and a0 satisfy the condition a1 [ 0, a0 [ 0.

2. For a third degree polynomial PðkÞ ¼ k3 þ a2k
2 þ a1kþ a0, all the roots are negative

if and only if all coefficients a2, a1 and a0 satisfy the condition a2 [ 0; a0 [ 0 and

a2 � a1 [ a0.

3. For a fourth degree polynomial PðkÞ ¼ k4 þ a3k
3 þ a2k

2 þ a1kþ a0 ¼ 0, all the

coefficients must be positive and a3 � a2 [ a1 and a3 � a2 � a1 [ a21 þ a23 � a0.

4 Proposed Model (SEIRV Model)

We consider following five states in the proposed model:

1. Susceptible state (S) The nodes, which are not infected but vulnerable to worms called

in the susceptible state.

2. Exposed state (E) The nodes, which are infected but not infectious belong to the

exposed state. This type of nodes does not infect other nodes.

3. Infectious state (I) The infected nodes, which are capable of infecting other nodes

belong to the infected state.

4. Recovered state (R)When an infected node become free from infection then it belongs

to the recovered state.

5. Vaccinated state (V) The nodes, which get vaccination belong to the vaccinated state.

Consider the total number of nodes in the network are N(t) at any time t, which are

uniformly distributed in the area L� L (m2) with average density q ¼ N
L2
(nodes/m2). The

communication range of sensor nodes is r. Let S(t), E(t), I(t), R(t) and V(t) are the number

of susceptible, exposed, infectious, recovered and vaccinated nodes at any time ‘t’
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respectively. A node dies after exhausting its energy, the addition of new nodes is

necessary.

New infections arise in the exposed class by contacts between susceptible and infectious

individuals at a rate bS0I. The transition relationship between the states of the nodes is

depicted by the Fig. 1.

Let the communication area of a sensor node is pr2 and the density of susceptible nodes

in a unit area is given by qðtÞ ¼ SðtÞ
L2
. Then, the total number of neighboring nodes in the

communication range of a sensor node is given by

S
0 ðtÞ ¼ qðtÞ � pr2 ¼ SðtÞ � pr2

L2
ð1Þ

According to the Fig. 1, we consider the following mathematical model for the rate of

change of different classes.

dS

dt
¼ lN � /SI � lS� rSþ �V þ dR ð2Þ

dE

dt
¼ /SI � ðlþ aÞE ð3Þ

dI

dt
¼ aE � ðlþ cÞI ð4Þ

dR

dt
¼ cI � ðlþ dÞR ð5Þ

dV

dt
¼ rS� ðlþ �ÞV ð6Þ

where,

/ ¼ bpr2

L2
ð7Þ

Note The basic reproduction number R0 for the proposed system plays an important role in

the study of worm propagation. Therefore, we evaluate it before analyzing the set of

differential Eqs. (2–6).

S E I R

V

Fig. 1 The transition relationship between the states of the nodes
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4.1 Basic Reproduction Number (R0)

The basic reproduction number (R0) is the largest eigenvalue (spectral radius) of the next

generation matrix [7]. The F and W matrix are defined as:

F ¼
0 /S�0
0 0

� �
and W ¼

ðlþ aÞ 0

�a ðlþ cÞ

� �

R0 is the largest eigenvalue of the matrix ½FW�1�. Hence, the basic reproduction number is

given by

R0 ¼
/S�0a

ðlþ aÞðlþ cÞ : ð8Þ

4.2 Equilibrium Points for the Worm Free and the Epidemic States

We solve the system of differential Eqs. (2) to (6) for equilibrium such that

dS

dt
¼ 0;

dE

dt
¼ 0;

dI

dt
¼ 0;

dR

dt
¼ 0;

dV

dt
¼ 0:

On solving (2) to (6), for the worm free equilibrium, we get

P�
0 ¼ ðS�0;E�

0; I
�
0 ;R

�
0;V

�
0 Þ ¼

Nðlþ �Þ
lþ �þ r

; 0; 0; 0;
Nr

lþ �þ r

� �
ð9Þ

Now, let ðS�;E�; I�;R�;V�Þ are the equilibrium points for the epidemic state. To find

equilibrium points for epidemic state, again we solve (2) to (6) for epidemic equilibrium.

Then P� for epidemic state as follows:

P� ¼ ðS�;E�; I�;R�;V�Þ

¼ ðlþ aÞðlþ cÞ
/a

;
ðlþ cÞI�

a
;AðR0 � 1Þ; cI�

ðlþ dÞ ;
rðlþ aÞðlþ cÞ

/aðlþ �Þ

� � ð10Þ

where,

A ¼ ðlþ aÞðlþ cÞðlþ dÞðlþ �þ rÞ
/ðlþ �Þfl2 þ lðaþ cþ dÞ þ adþ dcþ cag ð11Þ

It should be noted that the epidemic equilibrium is meaningful if R0 [ 1. The epidemic

equilibrium points ðS�;E�; I�;R�;V�Þ will be positive if R0 [ 1. The stability of the system

(for the worm free and the epidemic state both) at equilibrium points is checked in next

section.

5 Stability Analysis of Proposed Model

In order to check the stability at point P�
0 and P�, the proposed system defined by the

Eqs. (2–6) is linearized by estimating the Jacobian matrix as follows:
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J ¼

�ð/I þ lþ rÞ 0 �/S d �

/I �ðlþ aÞ /S 0 0

0 a �ðlþ cÞ 0 0

0 0 c �ðlþ dÞ 0

r 0 0 0 �ðlþ �Þ

2
6666664

3
7777775

ð12Þ

5.1 Stability Analysis for Worm Free Equilibrium

Stability analysis for the worm free equilibrium at point P�
0. Since I ¼ I�0 ¼ 0 and S ¼ S�0,

the Eq. (12) implies that

JðP�
0
Þ ¼

�ðlþ rÞ 0 �/S�0 d �

0 �ðlþ aÞ /S�0 0 0

0 a �ðlþ cÞ 0 0

0 0 c �ðlþ dÞ 0

r 0 0 0 �ðlþ �Þ

2
6666664

3
7777775

ð13Þ

Theorem 1 The worm free equilibrium is locally asymptotically stable for the proposed

model if R0\1.

Proof In order to check the stability at the point P�
0, we will find all the eigenvalues (k) of

the matrix (13). Three eigenvalues are given as

k ¼ �l;�ðlþ dÞ;�ðlþ rþ �Þ ð14Þ

and are negative. Remaining two eigenvalues are given by,

fk2 þ kð2lþ aþ cÞ þ ðlþ aÞðlþ cÞð1� R0Þg ¼ 0 ð15Þ

Since all the coefficients of the Eq. (15) are positive, the Routh Hurwitz criteria for the

second degree polynomial suggests that its eigenvalues (roots) are negative if R0\1. h

Theorem 2 The worm free equilibrium is said to be globally in steady state if R0 � 1.

Proof Taking the Lyapunov function as follows:

_L ¼ x1
_E þ x2

_I ¼ x1f/SðtÞIðtÞ � ðlþ aÞEðtÞ þ x2faEðtÞ � ðlþ cÞIðtÞg ð16Þ

Let x1 ¼ ðlþ aÞ and x2 ¼ a gives _L ¼ ðR0 � 1ÞIðtÞ� 0 so that _L ¼ 0. From the above

results, it is clear that worm free equilibrium is globally asymptotically stable. h

5.2 Stability Analysis for Epidemic Equilibrium

In this section, stability analysis for epidemic equilibrium state at point P� is given. On

putting I ¼ I� and S ¼ S� in Eq. (12), we get the following matrix:
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�ð/I� þ lþ rÞ 0 �/S� d �

/I� �ðlþ aÞ /S� 0 0

0 a �ðlþ cÞ 0 0

0 0 c �ðlþ dÞ 0

r 0 0 0 �ðlþ �Þ

2
6666664

3
7777775

ð17Þ

Theorem 3 The epidemic equilibrium is locally asymptotically stable if R0 [ 1.

Proof In order to check the stability at the point P�, we will find the eigenvalues (k) of
the matrix (17). One of the eigenvalue is k ¼ �l. Remaining eigenvalues are given by the

Eq. (18) in k as:

ðkþ /I� þ lþ rÞðkþ lþ aÞðkþ lþ cÞðkþ lþ dÞ
þ �ðkþ lÞðkþ lþ aþ cÞðkþ lþ /I� þ dÞ
� /S�aðkþ lþ dÞðkþ lþ �Þ � /S�arðkþ lþ dÞ þ /I�d�ðkþ lþ aþ cÞ
þ ac�ðkþ lþ /I� þ dÞ � /I�acd ¼ 0:

ð18Þ

Equation (18), is equivalent to the equation

a4k
4 þ a3k

3 þ a2k
2 þ a1kþ a0

� �
¼ 0: ð19Þ

where,

a4 ¼ 1

a3 ¼ ð4lþ aþ dþ cþ rþ /I� þ �Þ
a2 ¼ ðlþ cÞðlþ /I� þ rÞ þ �ð2lþ aþ cþ dþ /I�Þ

þ ð2lþ aÞð2lþ rþ /I�Þ þ dð2lþ cþ rþ /I�Þ þ adþ dlþ cl

a1 ¼ ð2lþ cþ /I� þ rÞðlþ aÞðlþ dÞ þ ð2lþ aþ dÞðlþ cÞðlþ /I� þ rÞ þ �d/I�

þ ac�þ �lð2lþ aþ cþ dþ /I�Þ þ �ðlþ aþ cÞðlþ dþ /I�Þ
� ðlþ aÞðlþ cÞð2lþ �þ dþ rÞ

a0 ¼ ðlþ aÞðlþ cÞðlþ dÞð/I� � �Þ þ �d/I�ðlþ aþ cÞ þ ac�ðlþ dþ /I�Þ
þ �lðlþ aþ cÞðlþ dþ /I�Þ � adc/I�:

The coefficients of the Eq. (19) are satisfied the Routh Hurwitz criteria for the fourth

degree polynomial if R0 [ 1. Thus, it suggests that its eigenvalues (roots) are also negative

and therefore, the system is stable. This completes the proof. h

6 Simulation and Numerical Analysis

It is shown in analysis of SEIRV model that system gets the stability for worm free

equilibrium if R0\1 and system become stable for epidemic equilibrium when R0 [ 1. So

R0 is a threshold value. We evaluate radius and density threshold from R0. To verify the

result, we simulate the proposed system on MATLAB. First we consider different com-

munication radius and then different density threshold. Results are discussed below.
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6.1 Communication Radius (r)

We can rewrite R0 as

R0 ¼
bpr2Nðlþ �Þa

L2ðlþ aÞðlþ cÞðlþ �þ rÞ :
ð20Þ

If R0 ¼ 1 then r ¼ rth, where rth is threshold radius. There are two types of cases.

1. Case 1: Communication radius (r) is less than threshold radius. When r� rth then

R0 � 1. In this case worms will die out and system will stabilize for worm free

equilibrium.

2. Case 2: Communication radius (r) is greater than threshold radius. If r� rth then

R0 � 1. In this case worms exist in the system consistently and system will stabilize for

epidemic state.

We simulate SEIRV model for both cases. For simulation on MATLAB We take following

values of parameters.

N ¼ 1000; L ¼ 10; l ¼ 0:001; b ¼ 0:0003; a ¼ 0:0004; c ¼ 0:0025; � ¼ 0:001; r ¼
0:0014; d ¼ 0:001 With using these values, we calculate rth ¼ 1:486 from Eq. 20. Let

initially number of susceptible, exposed, infectious and recovered nodes are,

Sð0Þ ¼ 990;Eð0Þ ¼ 5; Ið0Þ ¼ 5;Rð0Þ ¼ 0;Vð0Þ ¼ 0:

Simulation results are shown by Figs. 2, 3 and 4. Communication radius (r) takes different

values. In Figs. 2 and 3, r ¼ 0:1 and 0.5 respectively. Both the figures represent case 1, as

both radius are less than the threshold radius. Simulation result shows that system is

stabilized for worm free equilibrium.

In Fig. 4, r ¼ 2. It represents case 2, as communication radius (r) is greater than the

threshold radius. Result shows that system is stabilize for epidemic state. Hence simulation

result verifies the result shown in Sect. 4.

6.2 Node Density (q)

Node density is given by q ¼ N
L2
ðnodes

m2 Þ. Let threshold node density is qth. From Eq. 20, R0

can be written in terms of q as:

Fig. 2 Communication radius r ¼ 0.1
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R0 ¼
bpr2qðlþ �Þa

ðlþ aÞðlþ cÞðlþ �þ rÞ
ð21Þ

When R0 ¼ 1, then q ¼ qth. Here two cases arise for node density.

1. Case 1: Node density (q) is less than threshold node density. When q� qth then

R0 � 1. In this case, worms will die out and system will stabilize for worm free

equilibrium.

2. Case 2: Node density (q) is greater than threshold node density. If q�qth then R0 � 1.

In this case, worms exist in the system consistently and system will stabilize for

epidemic state.

We simulate SEIRV model for both cases. For simulation on MATLAB, We take fol-

lowing value of parameters.

N ¼ 1000; l ¼ 0:001; b ¼ 0:0003; a ¼ 0:0004; c ¼ 0:0025; � ¼ 0:001; r ¼ 0:0014; r ¼
1:5 and calculate qth ¼ 9:82 from Eq. 21. Let initially number of susceptible, exposed,

infectious and recovered nodes are,

Fig. 3 Communication radius r ¼ 0.5

Fig. 4 Communication radius r ¼ 2.0
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Fig. 5 Node density q ¼ 2

Fig. 6 Node density q ¼ 7

Fig. 7 Node density q ¼ 27
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Sð0Þ ¼ 990;Eð0Þ ¼ 5; Ið0Þ ¼ 5;Rð0Þ ¼ 0;Vð0Þ ¼ 0

Simulation results are shown by Figs. 5, 6 and 7 for different values of q. In Figs. 5 and 6

we take q ¼ 2 and 7 respectively. It represent case 1, as both values of q are less than

threshold value (qth). System is stabilized for worm free state as shown by the figures.

In Fig. 7, we take q ¼ 27 which is greater than qth. For case 2, Fig. 7 shows that system
is stabilize for epidemic equilibrium. Hence simulation result verify the result shown in

Sect. 4 for worm free and epidemic state.

7 Comparative Analysis

In this section, we compare our result with Mishra et. al’s [16] schemes. For comparison

we take following value of parameters. N ¼ 1000; L ¼ 10; l ¼ 0:001; b ¼ 0:0003; a ¼
0:0:0004; c ¼ 0:0025; � ¼ 0:001; r ¼ 0:0014; d ¼ 0:001. We plot the graph between

infectious number of sensor nodes with respect to time while considering different values

Fig. 8 Comparative analysis of schemes (r ¼ 1:0)

Fig. 9 Comparative analysis of schemes (r ¼ 1:8)
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of communication radius. We take different values of communication radius as r ¼
1; 1:8; 2:5 and 4. Figures 8, 9, 10, and 11 depict the comparative analysis. It is clear from

the figures for comparative analysis, that number of infectious sensor nodes is different for

different communication radius in proposed scheme. But in existing scheme number of

infectious sensor nodes remain same. So existing scheme is not appropriate for the prac-

tical approach. It is also notable that for every communication range, proposed scheme has

less number of infectious sensor nodes.

8 Conclusion

A SEIRV model is proposed in this paper, which is an extension of SIR model to control

worms spread in WSN. In particular, this paper exhibited that modeling in WSN via the

epidemic models is meaningful. We introduced two categories (E and V) in the existing

SIR model. A controller parameter R0 is evaluated. With the help of R0, the threshold

Fig. 10 Comparative analysis of schemes (r ¼ 2:5)

Fig. 11 Comparative analysis of schemes (r ¼ 4)
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values for the communication radius and the node density have evaluated. Further, we

analyzed the stability of the proposed SEIRV model for the worm free and the epidemic

states. It has shown that the system is stable in both of the cases. In addition, simulation

analysis of proposed model has verified the results. The comparative analysis with the

existing model has been done. The comparison shows that existing scheme gives the same

result while considering different communication radius and the proposed scheme has a

low rate of infectious nodes in every case. Hence, the proposed scheme is efficient than the

existing scheme against worms attack as it has minimized the number of infectious sensor

nodes. The experiment results have justified our analytical findings. It will provide help to

developing an anti-virus mechanism for WSN. Analysis of SEIRV model has shown that it

improves the efficiency of the network in terms of the stability and the energy efficiency.

Acknowledgements Authors are very thankful to D.P. Singh for various fruitful discussions which helped
us to improve our work.
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