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Abstract Wang et al. propose the cross layer resource allocation algorithm considering

channel state information in layer 1 and rate-distortion function in layer 5, for uplink

convolutional coded OFDMA video transmission systems. In this paper, we propose the

use of hybrid automatic repeat request protocol (HARQ) and the turbo code to improve

Peak-Signal-to-Noise Ratio (PSNR, the measure of the video quality). We define this

HARQ overhead consumption and adjust PSNR for HARQ redundancy. The simulation

results show that, for the HARQ redundancy adjusted PSNR, the proposed turbo-coded

HARQ scheme outperforms the proposed convolutional coded HARQ scheme and the

convolutional coded no HARQ scheme in Wang et al. by 3.25, and 3.95 dB, respectively,

when maximum two retransmissions are allowed for HARQ. The proposed turbo-coded

HARQ scheme achieved maximum HARQ redundancy adjusted PSNR for just 2

retransmissions allowed; while the proposed convolutional coded HARQ scheme achieve

maximum (but still lower than the proposed turbo-coded HARQ scheme) for 4 retrans-

missions allowed. Thus the proposed turbo-coded HARQ scheme has smaller delay than

the proposed convolutional coded HARQ scheme.
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1 Introduction

Recently, Orthogonal Frequency Division Multiple Access (OFDMA) become more and

more popular in almost all areas of wireless communications including LTE-A. Because of

the benefit of OFDMA, the demand for the quality of service (QoS) is growing fast.

However, due to limited power and spectrum resources, the resource allocation to get

better QoS (sum data rate, delay time, etc.) is a critical issue [3, 8, 10, 12, 16].

OFDMA is a flexible and low-complexity way of managing communication resources

[21]. [9, 16, 22, 23] use the user’s channel state information (CSI) to allocate power and

spectrum resource. Instead of considering physical layer, [5], [2, 11, 15] focus on rate

distortion (RD) function information of the user’s video content and to allocate the

communication resource base on it. However, they consider only one layer in the resource

allocation.

A cross layer 1 and 5 resource allocation algorithm in uplink convolutional-coded

OFDMA video transmission sytsem has been proposed in [19] (Scheme A). The algorithm

combing physical layer (layer 1) information (CSI) and application layer (layer 5) infor-

mation (RD) to allocate power and spectrum resource, and it shows that the average PSNR

is better than the previous schemes only considering either layer1 CSI or layer 5 RD

information.

In this paper, we add HARQ [13] to the scheme in [19] and propose the novel cross

layer 1, 2, and 5 resource allocation algorithm in uplink convolutional-coded OFDMA

video transmission sytsem (Scheme B) to increase target symbol error rate (for the same

packet error rate constraint), then increase information rate, and finally improve the video

quality PSNR. Although the HARQ is common in cross layer 1 and 2 resource allocation

[7, 14], but has not appearred in cross layer 1, 2, and 5 resource allocation.

To improve PSNR further and reduce the times of retransmissions, we also propose to

use the turbo code instead of the convolutional code (Scheme C). Moreover, we define the

extra overhead consumption due to HARQ retransmissions and compare the proposed

Schemes B and C fairly with the convolutional coded no HARQ case in [19], Scheme A.

The contribution of this paper is as follows:

(1) We extend [19] and propose cross layer 1, 2, and 5 resource allocation algorithm

where HARQ is added in layer 2. Previous schemes are cross layer 1 and 2 [7, 14],

or cross layer 1 and 5 [19].

(2) We propose to replace the convolutional code by the turbo code.

(3) We define the extra overhead consumption due to HARQ into account and compute

HARQ-overhead-adjusted PSNR gain.

The rest of this paper is organized as follows: Sect. 2 introduces system model and

video distortion model. The cross layer resource allocation algorithm in [19] is briefly

summarized in Sect. 3. The simulation results are presented in Sect. 4. Finally, the con-

clusion is drawn in Sect. 5.
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2 System Model

2.1 Uplink OFDMA System Description

The system block diagram is shown in Fig. 1. The blocks in gray are different from those

in [19]. The HARQ-Chase Combining is applied, and the convolutional code is replaced by

turbo code. Consider a cellular OFDMA video communication system with the set of users

k = {1, 2, 3,…, K}, where K is the number of users. The system occupies a total frequency

band of W (Hz) which is equally divided into M orthogonal subcarriers m = {1, 2, 3,…,

M}.

The system operates in a slotted manner and the length of one time slot is Ts (sec). One

Group of Pictures (GOP) will be transmitted in one time slot. Let T be the data duration and

Tcp be the length of the cyclic prefix. We define T0 = T ? Tcp to be the duration of an

OFDM symbol.

If the modulation format is M-QAM, from [17], the symbol error rate (SER) can be

approximated as

SER � 4Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where Pk,m is the transmission power of user k in subcarrier m, and the noise power PN can

be calculated as [19].

The channel response Hk;m
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for user k in subcarrier m consists of both the path loss

and multi-path fading, and the magnitude square of the channel [6] is given by

Hk;m
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�

�

2¼ a2 � K0 �
d0

dk
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where c = 2.4 is the path-loss exponent [6]. dk is the distance between user k and the base
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station, and d0 is set to 10 m [6]. a is a Rayleigh random variable, and K0 is a constant of

-24 dB.

Given the target symbol error rate SERt, we obtain the information rate (bits/symbol) as

Rk;m Pk;m;Hk;m

� �

¼ min log2 1þ gPk;m Hk;m

�

�

�

�

2
h i

;
n

Rmaxg ð3Þ

where g ¼ 3
PN

Q�1 SERt=4ð Þ½ ��2
and Rmax is the largest alphabet size the system allows.

In this paper, we add HARQ-Chase Combining and divide data in packets of fixed

number of symbols. On the contrary, there is no HARQ-Chase Combining in [19]. By

adding HARQ-Chase Combining, we can increase SERt and keep its packet error rate close

to that of the original SERt without HARQ-Chase Combining. Because Q-1 function is a

decreasing function, g increases as SERt increases, and so will Rk,m.

2.2 Video Rate-Distortion Model

The video rate distortion model is the same as that in [19]. Define Dk
s(B) is the rate

distortion function of the k-th user in time slot s, where B is the number of bits the encoder

generated. For each Group of Pictures (GOP), the mean square error (MSE) distortion can

be approximated as [18]

Ds
k Bð Þ ¼ ak þ

xk

Bþ tk
ð4Þ

where ak, tk and xk are the constants depending on the video content. For the video with

high complexity (e.g., high motion), xk is relatively large.

Bk ¼ u � Rk;m Pk;m;Hk;m

� �

� Ts=T0 ð5Þ

To protect the data, a channel code of fixed rate u is added. If we substitute (5) into (4),

then the MSE distortion for the k-th user is

ak þ
bk

Rk;m Pk;m;Hk;m

� �

þ ck
ð6Þ

where bk ¼ xk

u�Ts=T0ð Þ, and ck ¼ tk
u�Ts=T0ð Þ.

2.3 HARQ-Chase Combining

In HARQ-Chase Combining, maximal-ratio combining (MRC) is a method of diversity

combining. The received packets from each transmission (original and retransmissions) are

saved even if they cannot be decoded correctly. We consider an example of N transmis-

sions. The least squares solution in this case is known as MRC and

ŝ ¼ h�0y0 þ h�1y1 þ h�2y2 þ � � � þ h�N�1yN�1

h0j j2þ h1j j2þ h2j j2þ � � � þ hN�1j j2
ð7Þ

where hi
* is the channel coefficient in the i-th transmission, and yi is the received signal in

the i-th transmission, i = {0, 1, 2,…, N - 1}.
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2.4 Turbo Code

In [19], the channel encoder of data transmission is a rate 1/2 convolutional code with

memory 4 and generator polynomial g Dð Þ ¼ 23 35½ �.
To reduce the number of retransmissions, we propose the use of the turbo code instead

of the convolutional code. The turbo code encoder uses the same g Dð Þ but in recursive

form. Because of the need to meet the packet size of 2000 bytes (16,000 bits) before

encoding, we use Berrou–Glavieux interleaver with block length = 16384 in [1, 4]. We

take N ¼ 128;L ¼ 128 and define eight primes p 1ð Þ ¼ 17; p 2ð Þ ¼ 37; p 3ð Þ ¼ 19; p 4ð Þ ¼
29; p 5ð Þ ¼ 41; p 6ð Þ ¼ 23; p 7ð Þ ¼ 13; p 8ð Þ ¼ 7. For each 0� i\N � L, the corresponding

positions is given by:

p ið Þ ¼ c ið Þ þ L � r ið Þ ð8Þ

where r ið Þ ¼ mod p lþ 1ð Þ � c0 þ 1ð Þ � 1;Nð Þ, c ið Þ ¼ mod L
2
þ 1

� �

� r0 þ coð Þ; L
� �

,

r0 ¼ mod i; Lð Þ, co ¼ i�r0
L
, l = mod((r0 ? c0), 8).

3 Resource Allocation Algorithm

The iterative cross layer resource allocation algorithm is the same as that in [19]. In this

section, we describe this iterative algorithm in [19] briefly. For details, please see [19].

1. Initially assigning each subcarrier to the user with the maximum channel coefficients.

2. Each user uses water filling to upgrade performance.

3. Each user computes the rate at each subcarrier.

4. The slope of each user’s rate-distortion curve is computed, and the user with the

steepest slope is given an extra subcarrier currently assigned to another user.

5. The user chosen to give up a subcarrier is the one whose distortion is increased the

least.

4 Simulation Results

The simulation parameters are mostly the same as [19]: an uplink OFDMA system with 16

subcarriers, each with a 50 kHz bandwidth, and the modulation format of M-QAM, with

M = 4, 8, 16, 32, 64, 128 or 256. The channel response is also the same as [19]. The

average SNR (dB) is calculated by

ave SNR ¼ 10� log10

PK
k¼1

P

m2Ak
P�
k;m Hk;mj j2

MAk

K
ð9Þ

where P�
k;m Hk;m

�

�

�

�

2
is the user k’s transmitted power using water filling multiplied by

channel response, Ak is the set of subcarriers that system assigned to user k, MAk
is total

number of subcarriers in this set, and K is the number of users. Subcarriers are assumed to

fade independently. The coherence time of the fading channel in each subcarrier is one

time slot (a GOP), Ts (s).
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However, the HARQ-Chase Combining is not used in [19], so data is not divided into

packets of symbols. In this paper, we set the size in one HARQ-Chase Combining packet to

be 2000 bytes (16,000 bits), which follows the standard of IEEE 802.11 [20].

A sequence of CIF videos (the same as [19]) of total length 50 s at 30 frames per second

was used. The group of pictures (GOP) size is 15 frames and the frames inside one GOP

are encoded using H.264 rate control. The number of symbols of each users was assigned

by the randomly start points of the same video, and the resource allocation decision is done

in each time slot (GOP).

In the simulation results, we consider the following schemes:

• Scheme A [19]: The channel code is the rate 1/2 convolution code and SERt = 0.1.

• Scheme B (proposed): HARQ-Chase Combining is used. and SERt = 0.3. The channel

code is still the rate 1/2 convolution code. The maximum retransmission for HARQ is 6

times.

• Scheme C (proposed): HARQ-Chase Combining is used. and SERt = 0.3. The channel

code is changed to the rate 1/2 turbo code. The maximum retransmission for HARQ is

6 times.

We presume the SERt = 0.1 without HARQ-Chase Combining can be modified to

SERt = 0.3 by HARQ-Chase Combining without affecting the packet error rate, and the

simulation result in Fig. 2 shows that presumption can be supported.

The average PSNR is calculated by 10� log10
255�255
MSE

like [19], and it’s derived from

the average of all users’ PSNR.

The average video PSNR performance (without considering extra overhead consump-

tion due to HARQ) as a function of the number of retransmissions allowed is shown in

Fig. 3. In terms of the average PSNR, Scheme B outperforms Scheme A by 2–5 dB

because of HARQ, Scheme C is better than that of Scheme A by 4 * 5 dB due to HARQ

Fig. 2 Packet error rate versus average SNR, 16 subcarriers, one packet has 2000 bytes (16,000 bits)
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and turbo code. We note that Scheme C reaches saturation performance if maximum two

retransmissions allowed but Scheme B does so if maximum four retransmissions allowed.

Therefore, the extra overhead (redundancy) and latency due to HARQ is expected to

decrease for Scheme C, compared to Scheme B.

The average redundancy (HARQ overhead) is shown in Fig. 4. The redundancy s is

defined by

s ¼ 10 � log10 utotal=u0ð Þ dBð Þ ð10Þ

where utotal is total number of original and retransmitted packets, and u0 is number of

original packets. For example, utotal = 14,076 and u0 = 10,000, it means 10,000 original

packets and there are 4076 retransmitted packets in total during all retransmissions (each

original packet can be retransmitted at most 6 times).

In Fig. 5, the average HARQ overhead adjusted PSNR gain over Scheme A, g, is

shown. g is defined as

g ¼ PSNR of SchemeB or C � PSNR of SchemeA� s ð11Þ

We can see that Scheme C[Scheme B[Scheme A in terms of HARQ overhead-

adjusted PSNR.

We note that Scheme C reached saturated overhead adjusted PSNR gain after 2

retransmissions and stay at top if maximum number of retransmission allowed is greater

than 2 because the turbo code corrects almost all errors during the the first two retrans-

missions. We note also Scheme B reached saturated overhead-adjusted PSNR gain at 4

retransmissions and get worse if the number of retransmission is greater than 4 because too

many retrnamissions introduce too much overhead. For maximum overhead adjusted

PSNR, Scheme C has latency of 2 and Scheme B has latency of 6, so Scheme C out-

performs Scheme B in terms of latency.

Fig. 3 Average video PSNR versus number of retransmissions allowed, average SNR = 8 dB, number of

user = 12, 16 subcarriers
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We also discuss the different coherence time with respect to retransmission time in

Fig. 6. That coherence time = 6 retransmission time means channel coefficient for each

retransmission is the same. On the other hand, that coherence time = 1 retransmission time

means channel coefficient for each retransmission is independent. From Fig. 6, when the

the cohenct time gets smaller, the PSNR performance better because the Chase-Combining

gets larger diversity gain. The Figs. 2, 3, 4, and 5 assume coherence time = 1 retrans-

mission time.

Fig. 5 Average HARQ overhead adjusted gain versus number of retransmissions allowed, target symbol
error rate = 0.3, average SNR = 8 dB, number of user = 12, 16 subcarriers

Fig. 4 Average redundancy versus number of retransmissions allowed, target symbol error rate = 0.3,

average SNR = 8 dB, number of user = 12, 16 subcarriers
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5 Conclusions

We propose the cross layer 1, 2 and 5 resource allocation algorithm for turbo-coded uplink

OFDMA video transmission systems adding HARQ-Chase Combing in layer 2. For

comparison, the prior art in [19] is the cross layer 1 and 5 resource allocation algorithm for

convolutional-coded uplink OFDMA video transmission systems. Because of the use of

turbo code, the vast majority of the errors can be corrected during the first two retrans-

missions. The simulation results show that the proposed turbo-coded HARQ scheme out-

performs the previous scheme in [19] by 3.95 dB in HARQ-Chase Combing overhead

adjusted PSNR, when maximum two retransmissions are allowed for HARQ. The proposed

turbo-coded HARQ scheme achieved maximum HARQ redundancy adjusted PSNR for

just 2 retransmissions allowed and remains at the maximum for more than 3-6 retrans-

missions allowed; while the proposed convolutional coded HARQ scheme achieve max-

imum (but still lower than the proposed turbo-coded HARQ scheme) for 4 retransmissions

allowed (larger delay than the proposed turbo-coded HARQ scheme) and drops from the

peak if more than 4 retransmissions due to increased HARQ redundancy.
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