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Abstract As Cloud services are gaining importance, many recent works have discovered
vulnerabilities unique to such systems. Specifically, like it promotes a risk of information
leakage across virtual machine isolation via side-channels. Cloud environment allows
mutually distrusting clients access to the shared hardware simultaneously, which can be
termed as the main reason for a side-channel attack (SCA). This paper tries to investigate
the current state of side-channel vulnerabilities involving the central processing unit cache
and identifies the shortcomings of earlier defenses in a Cloud environment. Through cache-
based SCA, fined grained information can be collected by attacker easily, and this infor-
mation may be used by the attacker to infer meaningful results like a secret key, etc. In this
article, we detect the SCA at an earlier stage through flush-reload based statistical tech-
niques which exploit the vulnerabilities of Square and Multiply algorithm. Upon detection
of SCA, we proposed random permutation function for cache mapping to hide the pattern
of cache replacement policy. Additionally, we take the concept of hypothesis testing,
deterministic formalism, and information theory to validate our approach.
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1 Introduction

Virtualization concept has moved in the vanguard of the biggest trend in the IT world over
the past decade. Whether it is related in running different operating systems on the same
machine or partitioning one physical server to many virtual servers, it has provided a
pathway to increase the utilization power of the system. Virtualization acts as a cornerstone
for cloud computing in the computer industry. As it is recent in the industry, so there had
been many security issues related to virtualization, some of the eminent attacks are Service
Provider Attack, SCA, and Distributed Denial of Service attack.

The internet has become so vulnerable in the modern era that government, business as
well as an individual we are facing the threat of cyber attack. Recently according to
Ponemon University USA had 43% cloud data breaches in past year [1]. Cache based SCA
first came into lime light in the year 2009 but was declared the 4th most threatening attack
in 2012 and the year 2016, this has been declared the topmost dangerous attack by cloud
security alliance named as shared Technology issue [2]. This attack utilizes the basic
concept of sharing pages and cache memory. So we have initially tried to simulate the
attack and then proposed ideas that may provide a pathway for countermeasure of this
cache-based SCA.

Due to the advancement in the cloud architecture, that provides a shared environment
for many users to access simultaneously. This sharing of the resource among different user
can be problematic. When two distrusted user work on common hardware that is shared in
the cloud environment, the malicious user can setup of SCA to learn about the other user
activities. From this learned activities, the malicious user can predict user information that
can cause great security threat to the user.

As a new design model, cloud computing brings with it a unique set of features and
vulnerabilities. Specifically, the Cloud introduces the concept of mutually distrusting co-
resident clients to execute simultaneously on common hardware. This is a relatively new
concept in computing. As one might imagine, providing co-residence for clients has
brought to light a new set of vulnerabilities in the model. Specifically, the attackers use of
hardware as a side-channels to gain information about data and functionality that they
should not have access to. Such attacks exploit co-resident systems by inferring software
functionality from observed hardware phenomena. This allows an attack to be performed in
any context where the attacker and victim have access to the same hardware, so long as
proper safeguards are not in place.

While side-channel attacks have existed in the past [3], the novel co-residency feature of
Cloud computing makes them particularly more effective in this context. As the attacker is
no longer required to gain unauthorized access or otherwise restricted access to the victim
hardware, this essentially bypasses all defences against such attacks. Since a side-channel
requires the exploitation of a specific piece of hardware, each solution must also be adapted
specifically for that hardware channel. This allows us to classify side-channel attacks and
defences based on the hardware medium they exploit. The CPU cache is one of the most
frequently used pieces of shared hardware, and often deals with sensitive data that makes it
one of the most common targets for use in a side-channel attack as it can more easily be
used to extract useful data at a high rate. An attack made on this channel is referred to as a
cache-based side-channel attack.

Cloud computing is becoming more popular, but the number one concern of technol-
ogists heading to the Cloud is security. CPU cache-based side-channel attacks are currently
believed to be the most dangerous, among side-channel attacks. In recent years, there have
been multiple publications about Cloud-specific vulnerabilities and exploits, specifically
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the use of side-channels to bypass the virtualization technology used in Cloud systems [4].
Among other exploits, they have recently been used to extract private keys in a Cloud
environment and yield high-bandwidth information leakage [5].

Because they are so specific to the medium, the solutions to a side-channel are specific
to the hardware medium being exploited. As such, the most significant and robust threat
comes from CPU-cache based attacks. Because of this, the scope of this paper is limited to
side-channel attacks that exploit the CPU cache.

In response to these attacks, there have been publications attempting to remove such
situations. Solutions to such problem require the client using them to modify their software
to work with their technology [6, 7] or the underlying hardware [8]. But this solution still
has scope for the SCA that is completely removed by enhancing design that thwarts SCA.

Rest of the paper is structured in following sections. Section 2 describes the cache based
SCA and models the general procedures of cache based SCA in virtualized cloud envi-
ronment to extract private key. Section 3 depicts the proposed prevention algorithm based
on random permutation functions. In Sects. 4 and 5, we simulated the cache based SCA
through in-house simulation and also simulate the proposed prevention algorithm.
Sections 6 to 8 devoted to deterministic formal modelling of attack and information the-
oretic security proof. At the last we concluded the results and future direction in Sect. 9.

2 Related Existing Research Contributions
2.1 General Classes of Side-Channel Attack

Cache Based Attack Here the shared cache is exploited to gain information by analyzing
the hit/miss ratio and time required to access certain cache lines.

Timing Attack Attacks based on measuring how much time various computations take to
perform.

Power Monitoring Attack  Attacks which make use of varying power consumption by the
hardware during computation [9].

Electromagnetic Attacks Attacks based on leaked electromagnetic radiation which can
directly provide plaintexts and other information.

Data Remanence In this sensitive data are read after supposedly having been deleted.

Differential Fault Analysis In which secrets are discovered by introducing faults in a
computation Out of above SCA we will consider the cache-based SCA because it very
important attack and it can help the attacker to gain fine-grained information through which
user can easily construct the useful information.

2.2 Different Way in Which Information can be Leaked from Cache Memory

Scheduling of Preemptive Type(Uniprocessor) In this attacker and victim VM both uses
the same CPU core and when the context switch happens due to pre-emption the attacker
can learn from the state in which the victim leaves the cache.

Hyper-Threading Hyper-Threading is a technology that allows threads to run on a single
CPU core. The threads share some CPU resources and all of the cores caches. This gives
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rise to some side channels, so scheduling of threads from different VMs on the same core is
generally considered to be unsafe.

Multi-core  Under this attacker and victim are running on the different core but concur-
rently on shared cache memory. The attacker can probe the L3 cache while the victim is
running.

2.3 Side Channel Attack

In SCA, attacker creates secret channel over shared hardware resources through which
important information are collected by the attacker. In this attack, victim performs a certain
operation and this information can be utilized to derive useful information like crypto-
graphic key or any other sensitive information [8]. Side channel attacks were present since
a long time but their impact increases by many folds due to the advent of cloud technology,
where the basic idea is to share resources to bring down the cost of computing.

While the measured phenomena vary with the specific properties of the hardware in
question, any phenomenon that can be reliably correlated to the software function can be
used as a side-channel. Examples may include the timing of specific hardware functions or
the acoustic properties of a hardware device. Typically, the higher-rate hardware functions
are more interesting to explore as side-channels because they can communicate informa-
tion more quickly, and, therefore, can yield more details about the state of the program in
execution.

Previous work has demonstrated that cache-based side-channels can be exploited to
perform attack in the Cloud to glean information that service providers do not want users to
have access to. Such cases include determining whether two machines are co-resident [10],
and more dangerously, the extraction of cryptographic private keys from unwary hosts
[11].

2.4 Cache Based Side Channel Attack in Cloud

The SCA dates long back, earlier SCA was in non-cloud environment as described by
Lampson [12]. Later with the introduction of cloud architecture the SCA gain a momentum
because in cloud architecture all the resources are shared that makes the task of attacker
easy to carry out the side channel at any level.

The SCA can be carried in many different ways. It uses the physical property of the
hardware to predict the operation performed by the hardware like power measurement
attack, cache based attack, execution time-based attack, etc. Among all the most important
is the cache-based SCA because this kind of attack helps the attacker to gain fine-grained
information that could be very useful to draw significant useful information from it.

Various papers have been published which showed how a SCA is carried out to gain
access to important information for which they were not authorized like gain information
about the secret key used for encryption. The SCA has been already used to the gain the
private key for the RSA encryption [3] in a cloud environment. In this paper, it is explained
how the cross-VM SCA is carried out and how with the help of it the secret/private key is
generated. The basic approach used is of prime and probe to measure the cache access time
of VM by malicious VM. The exponent operation during the encryption is done by square
and multiplication method and squaring require more time then multiplication operation
and similarly by measuring the cache execution time we can relate which operation is
performed and with the help of this information the key can be generated.
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Similarly approach by Acicmez [13] in his paper, side-channel cryptanalysis exploits
the information leakage from execution time, power consumption or any such side-
channels during the computation of cryptographic operations, Cryptographic implemen-
tations leak sensitive information because of the physical properties and requirements of
the cryptographic implementations and computational environments.

After discussing and analyzing cache-based SCA, we focus on two general procedure of
cache-based side channel attack in virtualized cloud environment to extract private key.
Here we focus on two type of cache based side channel attack, one is time driven cache
attack and the other is trace driven side channel attack.

2.5 Time Driven Cache Attack

Time driven cache attack is also known as timing attack. In this type of attack, execution
time acts as a side channel for attack. Memory access time directly depends upon the state
of cache. Different types of process or function takes different execution time. Such time
difference could be used for performing side channel attack such as deducing crypto-
graphic key (AES, RSA or ElGamal key). Encryption process is the function of plaintext
and key, so the number of cache lines accessed during encryption directly depends upon
plaintext and key. Similarly decryption process is the function of key and cipher text. So
the access of cache lines by decryption process depends upon key and cipher text. Such
dependency leads to cache based side channel attack. Attacker deduces the cryptographic
key by utilizing the execution pattern as side channel.

Bernstein [14] perform attack on AES key, as S-Box lookup of AES algorithm depends
on AES key and plaintext. Here, attacker performs encryption on sufficiently large number
of known plaintexts and exploits the execution time differences of S-Box table lookup
process and deduce the key after performing offline analysis. Similar to Bernstein, Osvik
et al. [15]; performed time driven cache based side channel attack and recovered complete
128 bit of AES key.

2.6 Trace Driven Cache Attack

Prime + Probe based attack strategy is the example of trace driven cache attack. In Prime
phase, attacker fills the cache line with its own content and later in Probe phase, attacker
measure the access time for accessing its own data from the same memory address (i.e.
cache line). If the execution time varies sufficiently large, it means the memory location
(i.e. cache line) is evicted by some other process, and the content is fetched from the RAM
in place of cache i.e. the victim accessed the pre-image of the same cache lone from the
RAM.

Yarom and Katrina [16] demonstrate the FLUSH + RELOAD technique is using to
extract private encryption key from victim program. FLUSH + RELOAD is technique is
type of PRIME-PROBE technique that depends on sharing pages on victim and attacker
process.

What is FLUSH + RELOAD technique? There are spy and victim processes running on
different cores. Codes are loaded in shared memory; victim accesses the code and when it
executes it, the spy can access it and read data.

Initially, Spy flushes the shared code from the cache. Now the spy waits, while he waits
the victim may access or may not access the specific code After spy finishes waiting, it
reads the specific data , if it takes a long time then data has come from memory, otherwise
it is from cache. The signature is performed using the CRT-RSA algorithm implemented in
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the libgcrypt shared library. This algorithm uses the Square-Multiply algorithm to perform
exponentiation that results in revealing the private-key bits of the victim (see Algorithm 1).

We can see from the above algorithm that if bit of the exponent is O then the operation
would be square followed by reduce and not followed by multiply and if the bit is 1 then
the operation would be square followed by reduce followed by multiply followed by
reduce. If we can recover the sequence of operations we can get the bits of the exponent
which in our case is the key bits.

Gruss et al. [17] replaced the flush instruction by evict instruction and proposed evic-
t+reload technique, but this technique has no practical application on X86 CPUs. How-
ever, it can be used on ARM CPU.

Further, Gruss proposed FLUSH + FLUSH [18] technique. This technique does not
perform memory access like other similar techniques, but it exploits the timing pattern of
the flush instruction to determine the victim activities.

2.7 Prevention Approaches of Cache Based Side Channel Attack

In the previous section, it is explained how side channel or covert channel is used to pass
on important information of victim by attacker VM [13]. On this side channel or covert
channel is setup over the shared cache memory. To prevent cache based side channel attack
in virtualized environment, in the year 2007, Wang and Lee [19], proposed a hardware
solution. In their solution, for each cache line, two new fields are introduced. One is locked
field or L field and the other is identification or ID field. Here if the cache line is marked as
locked than that cache line cannot be evicted by any other VM expect for the VM which
has marked it locked and for this, the ID of VM is also stored along with the field which is
locked. The limitation of this scheme is that it increases the hardware cost as hardware
addition is required to existing scheme and if the number of VM increases then the ID field
length is also increases.

Kong et al. [20] identified that the cache interference is the main cause of side channel
attack. Authors proposed randomized approach to randomize the cache interference to
short out the problem of cache interference. Now it is difficult for an attacker to gain
sensitive information from the pattern of cache hits and misses. In their approach, they
presented two new cache designs, one is partition locked cache and the other is random
permutation cache. However, the approach provides security against SCA but at the cost of
large performance degradation. Locking of cache is not a performance friendly solution as
due to this cache utilization is degraded.

Zhang et al. [21] discussed the other approach of co-residency detection, which brought
out the approach of securing the cloud by using a VM from the server side to detect any
suspicious actions caused by any attacker and to stop them. This paper suggested that the
monitoring of cloud can be done in the same way as any attacker monitors the cloud to find
its victim or victims. The paper proposed prototype system that allows customers who use
cloud computing services to confirm that their data is safe from attacks using the same
service provider.

Raj et al. [7] proposed page coloring approach for the prevention of cache based SCA.
In this approach, cache is partitioned into different region. Each region is assigned a
specific color. Each VM can access the cache region of specified color for which it is
allowed to access. With this idea, authors remove the problem of cache interference and
hence no cache based side channel attack can be carried out to gain sensitive information.
This solution can be seen as the guard against the cache based side channel attack but the
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problem is that this protection is gained at huge cost of performance degradation and only
up to certain limit the performance degradation can be traded with protection.

Another approach to overcome the above problem is given by the Kim et al., in this paper, a
new technique is proposed and it is called the stealthmem. In this technique, the basic idea is
drawn from the page coloring technique explained above [22]. Here the cache is partitioned
into different region as in page coloring technique, and the partition is based on the number of
the cores of processor. In this way, the drawback associated with the page coloring technique
has been removed and the numbers of partition is now fixed and depends on the number of
cores in place of number of VMs. This approach provides isolation for the cache region but
still two VMs can access the same core that would create a security question. In a scenario
where two VMs, one is attacker VM and the other is victim VM operate on the same core in
alternate fashion, provides a suitable condition for carrying cache based SCA.

Zhou et al. [23] proposed a mitigation approach for access driven side channel attack in
Last level caches (LLC). This approach dynamically manages shared physical memory
pages to disable sharing of LLC lines. This approach prevents from the FLUSH+RELOAD
and Prime + Probe based attack in LLC with small performance overhead.

Liu et al. [24, 25] proposed a light-weighted protection system CATalyst for the cloud
providers as well as for the customers. This system protects sensitive code and data against
side channel attack based on LLC. Compared to page coloring technique CATalyst system
design is simpler as CAT provides the isolation of secure and insecure cache partitions. In
addition to this, CATalyst is having the feature of memory deduplication [26] which is
missing in page coloring scheme.

Recently, Han et al. [9], proposed policy model that protects cloud system from co-
resident attack. In this attack, attacker performs side channel attack and extract private key
of co-located VM on same server. Authors improved current VM allocation policy and
developed new balanced policy previously-selected server-first (PSSF), which creates
difficulty for an attacker to co-locate with their targets. The proposed solution uses security
metrics for accessing the attack; thereby solution not only mitigates the threat of CSA but
also fulfils the requirements of workload balance as well as power consumption.

2.8 Motivation and Contributions

The Internet has become so vulnerable in the modern era that government, business as well
as an individual we are facing threat of cyber attack. Recently according to Ponemon
University, the USA had 43% cloud data breaches in past year. Cache based SCA first
came into limelight in year 2009, but was declared the 4th most threatening attack in 2012,
and in the year 2014. In Unisys conference, this attack has been declared the topmost
security attack; this attack utilizes the basic concept of sharing pages and cache memory.
So we have initially tried to simulate the attack and then proposed some ideas which may
provide a pathway for countermeasure of this cache based SCA.
Our article has achieved the following major contributions.

e To verify whether our environment is being attacked or not we have simply generated a
large sample of hit-ratios without any cache interference and then generate the normal
curve plot. Using the knowledge of confidence interval and hypothesis testing we have
predicted whether there is something malicious or not.

e On verifying if the result of attack is positive, then we perform Random permutation
during mapping of ram data to cache. Applying this attacker fails to collect relevant
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information during probing and he is unable to find a pattern. We have applied XOR of
ram address and private key as the random permutation function.

o Initially, what we thought to apply random permutation for every RAM access despite
of the fact that we are being attacked or not. Though this was pre-serving the key still it
had a lot of overhead, to reduce the overhead we verify after some intervals whether
there is attack or not and if there is attack then we do the mapping.

3 Proposed Prevention from Cache Based Side Channel Attack

In order to prevent from cache based SCA first it is needed to detect the possibility of
attack. Our detection program (running on monitor VM) continuously monitor the activ-
ities performed on the cache. First it checks whether consecutive cache misses occur due to
same processes in RAM. Through tag bits in cache address, it is identified that which
process in RAM maps to the particular cache line. In set associative cache, mapping is
performed from RAM to cache. If it happen, there are two possibilities, first legitimate
system process may evicts the cache line so that misses occur or the malicious process
evicts the cache line. On the occurring of multiple cache misses from the same process of
RAM, may leads to the threat of SCA. When this happen, a random permutation function
(RPF) works with (encryption function) (refer Algorithm 1).

Algorithm 1 Square-Multiply Algorithm

begin

Function exp-by-squaring (x,n)

if n < 0 then return exp-by-squaring (1/x, —n);

else if n=0 then return 1;

else if n=1 then return x;

else if n is even then return exp-by-squaring (x 2 , n/2);
else if n is odd then return x * exp-by-squaring (x 2, (n-1))
End

This random permutation function is an inverse function, so to extract the data from the
cache, inverse mapping takes placed. In general when a process do not find the data (word)
in the cache block, it fetches the block from the RAM to the cache where this word resides,
assume according to the locality of references nearby word in the block will be accessed in
near future. Random permutation function permutates each word of the block to a different
location of the cache. Each word is remapped to a different location.

In Fig. 1, we have shows that word address in cache memory is re-maped using Random
permutation function into new word address.

After re-mapping of word in the cache, each word of the same block is re-mapped to a
different block of a different set.

] (
RPF

Fig. 1 Replacement of word after applying random permutation function
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Before re-mapping

word; € set; where i: 1 — n
word; € block; where i: 1 — k

After re-mapping;

word; € set; where j: 1 —n
word; € block; where j: 1 — k

There is a consequence, after re-mapping of word in different block and different set;
there are possibilities of various cache evictions resulting in various cache misses thereby
performance overhead. To reduce, cache misses or increase performance, in general
various replacement policy are there to solve the problem of cache misses. Upon missing
the word in cache, a block consists of missing word is replaced from the RAM to cache.
But in our case, the missing word is not replaced by the whole block of words. In our
replacement policy, specific word is replaced from the RAM in spite of whole block as
in Fig. 2.

In a cloud environment, there are various virtual machines are running on the server.
Any virtual machine can perform cache-based SCA machine and steals the cryptographic
key. So to perform a check for invoking random permutation function, the system has to
learn the pattern of a cache hit and cache miss.

Before applying the Random Permutation Function, we must determine whether the
victim VM is being attacked or not that helps in avoiding unnecessary overhead generated
by the function if the victim is not being attacked. For this, we apply Hypothesis testing to
the hit-ratio. Before we dive into the details, first lets get familiar with some basic
concepts.

We apply the central limit theorem to the hit-ratios collected from operations without
any malicious cache interference. It states that the arithmetic mean of a large number of
random variables, each with a well-defined expected value and well-defined variance, will
be approximately normally distributed. We take 100,000 samples of the hit-ratios gener-
ated from a code that consists of 4 virtual machines. Each virtual machine has a random
probability of being selected to map its data, once selected they map their data on the
corresponding address slot on the cache, if another virtual machine data preoccupy the slot
then it is cache miss otherwise a hit. At the end overall hit ratio is computed, and a plot is
generated which is the usual bell-curve representing a normal distribution. Figure 6 rep-
resents the flow of activities.

A
P

Suppose this word evicts the word that resides in the cache, replaced by the RAM
individually.

Fig. 2 New replacement policy for specific word in cache memory
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The confidence interval is the interval that is tolerable for any average probabilistic
mean. The Central limit theorem is used to calculate the confidence interval.

Suppose X1,X2,...,Xn be a set of n independent variables. X; has probability
distribution P(x1,x2,...,xn) with mean values (u;,y,...,1,) N is the number of
samples. Now if S is standard deviation of all mean values and Z is the normal
distribution, then the Confidence Interval (CI) by Central Limit Theorem is shown in
Eq. 1.

S
Cl=p+7 %= (1)

VN

Value of Z varies according to Confidence Interval (CI).

For 90% CI, Z = 1.645
For 95% CI, Z = 1.960
For 99% CI, Z = 2.576

Hypothesis testing is the use of statistics to determine the probability that a given
hypothesis is true. There are two hypotheses the Null hypothesis and the alternative
hypothesis. We define the Null hypothesis to be hit-ratio of the current execution to be
greater than or equal to the population mean of the samples we have collected. Therefore,
we apply one-sided tail test to check whether the hit-ratio lies within the 99% confidence
interval. If it does not then the virtual machine is being attacked and preventing the
attacker from being successful we apply a random permutation function to map the RAM
address to some other location so that the attacker cannot determine whether the Square
operation is performed or the Multiply operation is performed. Hence, the attacker is
unable to determine the bits of the key failing to find the private key of the victim. The
approach is depicted in the prevention algorithm.

4 Proposed Random Permutation Function and Prevention Algorithm

The random permutation function should be as less time consuming as possible because it
is applied whenever we have to access RAM, thus accessing shared cache. We have taken
the random permutation function to be the XOR function. We XOR the RAM address, and
the private key of the virtual machine and the new address obtained becomes the address
that should be mapped to the cache, thus giving new cache lines to the Square—Multiply
operations of the victim virtual machine. The attacker now unaware of this change mon-
itors the previous cache lines and generates the wrong key. The random permutation
function is depicted in the Algorithm 2.
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Algorithm 2 Proposed Prevention algorithm

Input: hit_ratio,ram_addr, priv_key,n

output: new_addr

/I The Victim VM before performing any operation checks whether it
is being attacked or not.

if (is . attacked (hif _ratio , n) = true) then
addr « random_perm(ram_addr)
else

addr < ram_addr

is.attacked(hit _ratio,n)

begin

std_err «— 2.576*(std/sqrt(n))
if(hit _ratio ! mean)then return

true

end

random_perm (ram_addr)

begin

new_addr — ram_addr @ priv_key
return new_addr

end

To verify whether our environment is being attacked or not we have simply generated a
large sample of hit-ratios without any cache interference and then generate the normal plot.
Using the knowledge of confidence interval and hypothesis testing we have predicted
whether there is something malicious or not.

On verifying if the result of the attack is positive, then we perform Random permutation
during mapping of ram data to cache. Applying this, attacker fails to collect relevant
information during probing, and he is unable to find a pattern. We have applied XOR of
ram address and private key as the random permutation function. Algorithm 2 describes the
proposed algorithm.

5 Simulation Setup of Cache-Based Side-Channel Attack an Results
Analysis

We simulated the cache-based SCA through in-house simulation. First we simulated the
memory organization. For this, we have taken the word size of 8 bytes. To simulate cache,
we have taken a one-dimensional integer array of size 1024, simulating that the cache can
contain up to [1024] cache lines i.e. CACHE [1024].

CACHE simulated as a 1D array of 2'° cache lines. Tt is considered to be one-way set
associative, i.e. each set has one block. To simulate RAM, we have taken a one-dimen-
sional integer array of size 65,536, simulating that the RAM can contain up to 65,536
words i.e. RAM [65,536].

We build the simulator on C++-, following classes were implemented to simulate
virtualized environment (see Fig. 3).

e victvm (Victim VM) class it symbolizes the victim virtual machine.
e attack (Attacker VM) class it symbolizes the attacker virtual machine
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L attvm victimvm
e +priv_key
+thresh ’Nb_k.’
+attvm()
+flush_cache()
+wait() +victimvm()
+probe() +perform_signature()
+generate_sequence(ll,il,il) +perform_A()
+final_sequence() +perform_B()
+get key() +display_priv_key()
+find_Address()
libgcrypt

+static void Squarei(ll y)

+static void Square2(ll y)

+static void Square3(ll y)

+static void Mod1(ll y)

+static void Mod2(ll y)

+static void Mod3(ll y)

+static void Mult1(ll y)

+static void Mult2(ll y)

+static void Mult3(ll y)

+static Il Square(ll y)

+static Il Mod(!l y,!l m)

+static 1l Mult(ll y,Il b)

+static Il funexpo(ll b, Il Il m)

Fig. 3 Class diagram

libgcrypt it symbolizes the libgerypt library that has all the encryption and decryption
function that have been performed.

Functions and Variables used in classes:

Victim VM class:

private key it is private key of victim vm.

public key it is public key of victim vm.

victvm() It is a constructer of class victvm which initializes public and private key of
victim class.

perform A() Some operation A performed by victim virtual machine

perform B() Some operation B performed by victim virtual machine.

void display priv key() It is used to display the private key generated by victim.

void perform signature() It is an encryption operation performed by victim virtual
machine.

Attacker VM class

sequence It stores the sequence of the operations performed by the victim VM
threshold 1t is the threshold value of the number of CPU cycles to distinguish between
the hit and the miss operation in cache.
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e artvm() It is a constructer of class attvm which is used to initialize the sequence and the
threshold value of attvm class.

e void flush cache() It is used to empty the cache.

e void wait() It is used for attacker to wait while the victim is performing some action.

e void probe() It is used by attacker to probe the cache memory for finding the operation
being performed.

e void generate sequence(longlonglong) It is used to generate the sequence of
operations dynamically.

e Jong get key() It is used to obtain the final key used in the exponent operation.

e void find address() It is find the address of the operation in the main memory.

Libgcrypt library class

e static void Squarel(long y) It is a part of the Square operation (the significance of this
function is to perform a single Square operation in multiple stages, meanwhile in
parallel the attacker is waiting for the cache to be filled).
static void Square2(long y) Similar to Squarel.

e static void Square3(long y) Similar to Squarel.

static void Modl(long y, long m) It is a part of the Mod operation( the significance of
this function is to perform a single Mod operation in multiple stages, meanwhile in parallel
the attacker is waiting for the cache to be filled).

static void Mod2(long y, long m) Similar to Mod1.

e static void Mod3(long y, long m) similar to Mod1.

e static void Multl(long b, long y) It is a part of the Multiply operation ( the significance
of this function is to perform a single Multiply operation in multiple stages, meanwhile
in parallel the attacker is waiting for the cache to be filled).

e static void Mult2(long b, long y) Similar to Multl.

e static void Mult3(long b, long y) Similar to Multl.

e static long funexpo(long b, long e, long m) It is the function to implement the Square—
Multiply algorithm.

In order to simulate the cache-based SCA, we implement three algorithms.

Simulation of cache-based SCA
Sample creation of hit and miss ratio.
Simulation of prevention of cache-based SCA

Initially victim performs the transaction, where it uses its private key for decryption and
attacker finds an opportunity to reveal it. Victim performs cryptographic signature oper-
ation through libgerypt library. Cryptography signature exponential operation based on
square, multiply algorithm.

Initially attack finds the RAM address of square, reduce and multiple operation, to map
the RAM address to the cache address ram_to_address () function is implemented.

As victim performs the cryptographic operation, sequences of square, reduce and
multiply operation are executed, first these operations are loaded into RAM for execution,
victim VM executes the operation taken from RAM. As these operations are executed
frequently on the basis of key pattern, so for fast execution, the operations are stored in
cache (see Fig. 4).

First victim VM finds out the cache address from the RAM address as in general the
mapping form RAM to cache address is set associative and try to access the S, R, M
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victim.perform_signature () [ attacker.find_address () ]
l attacker.flush_cache ()
Libgcrypt: funexpo (base,

key, mod)

l I attacker.probe ()
[ libgcrypt::Square(y) ] [ libgerypt::Mult (y, base) ] [ libgerypt::Mod (y, m) ]

[ attacker.wait () ]

attacker.flush_cache ()

attacker.wait ()

v
attacker.probe () ]

e U G

[ libgcrypt::Square(y) ] [ libgerypt::Mult (y, base) ] [ libgerypt::Mod (y, m) ]

attacker.flush_cache ()

Fig. 4 Process flow of SCA

operations from the cache and if somehow if the operations are not found in the cache i.e.
the cache miss occur, the respective operation is again loaded form RAM to cache then
executed, but this indirect execution takes some delay as loading operation from RAM
takes more time.

Attacker flushes the cache so that the victim has to reload the operation (S, R, M) it is
performing into the cache and the attacker will be able to reveal the operation. Now
attacker waits while the victim is performing the operation in parallel. The attacker
monitors or probes the cache lines corresponding to vulnerable code (Square—Multiply
functions) to check which operation was performed during the victim process. In the probe
process, first attacker find the physical addresses of square reduce and multiply operation,
then find the tag bits and corresponding cache addresses and finds the time to reload the
square, reduce and multiply code. After monitoring cache lines, add the performed oper-
ation to the sequence with the help of respective loading time of square, multiply and
reduce operations. Finally attacker generates the key with the help of sequence generated
(see Fig. 5).

In simulation process (see Table 1), first we created the set of virtual machines then we
declare private key and public key of the each virtual machine. The targeted victim virtual
machine (line 1.5-1.7) performs the signature operation, where it uses its private key and
the attacker finds an opportunity to reveal it, we simulated signature operation in line
2.1-2.13.

In simulation phase 2 (see Table 2), we simulated the behaviour of libgcrypt library. As
in cryptography signature operation, large exponent computation is required to calculate,
that is based on square—multiply algorithm discussed in section. Here Square—Reduce (SR)
and Square—Reduce Mult-Reduce (SRMR) operations are called based on binary digits(0
or 1) of the key value.

In simulation phase 3, attacker virtual machine vm performs SCA on selected
victim_vm.

Table 3 shows the simulation of attacker VM. Line 3.2 denotes string to store the
sequence of operations performed by the attacker and the threshold value which
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[ attacker.probe () ]

Cache line (Hit or Miss) Cache line (Hit or Miss) Cache line (Hit or Miss)

| , I |

{ Time to reload Square ‘ Time to reload Mod l ‘ Time to reload Multiply ’

generate_sequence () |

v

[ attacker.get_key () ]

!

[ attacker.final_sequence () ]

Fig. 5 Process flow of probe operation

Table 1 Simulation Phase 1: signature operation using Victim vm

Simulation Phase 1:Signature operationusing Victim vin

//Create set of virtual machines

1.1 vm[n]// vm[0],vm[1],vm[2]...vm[n]

/I Create public , private keys for each vim
1.2fori:0 —n

1.3 publicli]= vml[i].public_key

1.4 private_key = vmli].private_key

1.5 end for

/I Select victim vm to perform attack

1.6 victim,,,, = vm[i] for any value of i

1.7 victimy,, = victimy,.per form_signature();
1.8

distinguishes between a cache miss and a cache hit. Initially we set the seq to NULL string
and the threshold value. To flush the cache so that the victim has to reload the operation it
is performing into the cache and the attacker will be able to reveal the operation. We
simulated the cache flush operation (lines 3.4 and 4.1-4.3) (refer Table 4). Attacker waits
while the victim is performing the operation in parallel (line 3.5). In probe operation, the
attacker monitors the cache lines corresponding to the vulnerable code (Square—Multiply
functions) to check which operation was performed during the waiting process. During
probe operation, first we find the physical address of Square, Reduce and Multiply oper-
ation and its corresponding tag bits and cache addresses. Then find the time to reload the
square code, reduce code and multiply code (lines 5.1-5.6) (refer Tables 5, 6).

Line 3.7 is used to add the operation performed to the sequence with the help of
respective loading times Square, Multiply and Reduce operation. After getting the final
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Table 2 Simulation Phase 2: signature operation using Victim vm perform_signature();

Simulation Phase 2:Signature operation using Victim vm
perform_signature

/1 Using libgcrypt:funexpo(base,key,mod)
2.1 key = bit[n],bit[n-1],...bit[2],bit[ 1],bit[0]
22 fori:0 —n

2.3 if bit[i]l==0 //SR

2.4  libgerypy :: square(y)
2.5 libgerypt :: mod(y,m)
2.6 endif

2.7else //[SRMR

2.8  libgerypt :: square (y)
2.9 libgerypt :: mod(y,m)
2.10  libgcrypt :: mult(y,base)
2.11  libgecrypt :: mod(y,m)
2.12 endelse

2.13 endfor

Table 3 Simulation Phase 3: attack simulation (attackvm)

Simulation Phase 3 : Attack simulation (attackvm)

3.1 START

3.2 Input: SET threshold thresh
Output: Key_String, Key //Key_String is the sequences
generated in terms of SRM

3.3 //Attacker vm perform following operation to deduce key

3.4 void flush_cache(); 3.5 void wait();

3.6 void probe ();

3.7 void gererate_sequence();

3.8 string final sequence();

3.9 long long ger _key();

3.10 END

sequences of S, R and M, ger_key() function is used to extract private key through S, R, M

sequences (line 3.10).

6 Result Analysis

We test the results in machine having Ubuntu 14.04 operating system and Intel Core 17

6700K processors with 16 GB RAM and 8M cache (see Table 7).

In Fig. 6, we mentioned the statistical data of square reduce and multiply operations.
We calculated the average CPU cycles, taken to access S, R, M operations from cache
memory. Applying central limit theorem, we calculated the confidence interval for 90, 95
and 99%, and find out the lower and upper range of CPU cycles of corresponding S, R and
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Table 4 Simulation Phase 4: attack simulation (attackvm) method definitions flush_cache()

Simulation Phase 4 : Attack simulation(attackvm) Method
Definitions flush_cache()

// Methods Definitions
4.1.void attvm:: flush_cache()

4.2. //sets the cache to NULL, i.e. flushes the cache.
4.3.memset(CACHE,0,sizeof(CACHE));

}

Table 5 Simulation Phase 5: attack simulation (attackvm) method definitions probe ()

Simulation Phase 5 : Attack simulation (attackvim) Method
Definitions probe()

/I Methods Definitions
5.1. void attvm::probe()

5.2. //finds the time to reload the square code

5.3.  tsq=time_to_reload(ram-add,cache_add,tag);
//finds the time to reload the reduce code

5.4. tmod=time_to_reload(ram_add,cache_add,tag);
//finds the time to multiply the square code

5.5. tmult=time_to_reload(ram_add,cache_add,tag);
//adds the operation performed to the seq string.

5.6  generate_sequence(tsq,tmod,tmult);

}

M operations. As according to our hypothesis, if CPU cycles to access S, R and M
operations exceeds the confidence interval, it may be an attack, as accessing Square,
Reduce and multiply operations from RAM takes extra time.

Figure 7 shows the normal distribution curve for S, R and M and a combined sequences
of the operations under an attack situation (Note this is code generated graph).

7 Formalization of Cache Based Side Channel Attack

Side channel attack can be performed by cache behavioral pattern generated by time,
access and traces. In our model, we consider multiple virtual machines on the same
hardware, performing RSA encryption/decryption on data. In the meanwhile, attacker VM
performs cross-vm SCA to retrieve victim VMs RSA decryption key i.e. private key. RSA
or asymmetric key cryptographic operation is performed a large exponential operation. To
perform a large exponential operation, Square and Multiply algorithm (consist of square,
reduce and multiply functions) is used.
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Table 6 Simulation Phase 6: attack simulation (attackvm) method definitions generate_sequence (11 tsq,ll
tmod,ll tmult)

Simulation Phase 6 : Attack simulation (attackvim) Method
Definitions generate_sequence(ll tsq,ll tmod,ll tmult)

/I Methods Definitions
6.1. attvm::generate_sequence(ll tsq,ll tmod,1l tmult){

6.2. (tsq < thresh)
6.3. seq+="S’;

6.4. if(tmod < thresh)
6.5. seq+="R’;

6.6. if(tmult < thresh)
6.7. seq+="M’;

}

Table 7 Confidence intervals of mean of CPU cycles

Operation Mean of CPU SD Confidence Confidence Confidence
cycles taken interval—CI (90%) interval—CI (95%) interval—CI (99%)
S) 3385 573.018 +£66.65 +79.41 +104.37
3318.35-3451.65 3305.59-3464.41 3280.63-3489.37
(R) 5894.5 636.671 +74.05 +88.24 +115.96
5820.45-5968.55 5806.26-5982.74 5778.54-6010.46
M) 5800 465.34  +£54.12 +64.49 +84.76

5745.88-5854.12 5735.51-5864.49 5715.24-5884.76

All computation is performed on binary data (both key and data in binary form), as we
discussed in the previous section. If the key bit is O then only SR (Square—Reduce) is called
and when the bit is 1 then SRMR (Square—-Reduce Multiple-Reduce) is called. By this
concept, an attacker can retrieve private key after multiple traces.

Before Starting of formal modeling, we need to keep these behaviors of memory in our
mind, the first and foremost behavior is Cache can store a subset of main memory, and
Main Memory is logically divided into memory blocks and each memory block map into
particular cache location. When memory block is cached, it caches as a whole in a cache
line of the same size.

7.1 Formalization of Flush-Reload Technique

In the flush-reload technique, attacker flushes the cache memory and reloads his data (X, Y,
and Z) in place of Square (S), Multiply (M) and Reduce (R). He accesses his data after a
fixed period and again performs flush-reload. He calculates the hit and miss based on the
time required to obtain X, Y, and Z. Suppose X replace S, Y replaces M and Z replace R.
Let t1 time is required in case of a cache hit (data occur in cache) and t2 time is required
when cache miss occur.
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Fig. 6 Normal distribution curve for Square—-Reduce—Multiply operation

Suppose attacker takes time t2 to access data X, time tl to access data Y and time t2 to
access data Z. Its mean X and Z data is not found in cache while data Y occurs in the cache.
If data does not found in the cache, it is needed to load it from RAM to Cache which
requires a significant amount of extra time. As functions, S and R are replaced by X and Y,
it can be inferred that the operations sequences are SR i.e. bit 0.

Similarly if sequences SRMR are traced, means bit is 1.

In the formal Modelling, we consider a deterministic approach to find private key of
victim VM.
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Fig. 7 Sequences of Square—Reduce and Multiply operation under attack

We store traces of hit and miss sequences of cache memory based on time t1 required
for hit and t2 for miss. For this purpose, we require deterministic definition for running
Attacker program and their computation.

Formal Definition of Program and Computation

Traces can be defined in 5 tuples system as mention below:

T ={X,Io,F,E,d} 2)

where X, set of states; Iy, set of initial states; F, set of final states; E, set of events; 9,
transition relation defined as; 0 C XxExX. Note Events are work as input for present state.
Present state is defined as instances of cache and memory at particular time.

2=MxC

where M represent memory instance at particular time and C represent cache instance at
particular time.

In our model, computation of key bit sequences can be find using states and inputs
(events) as it simulate as deterministic finite automata, where next states always
deterministic.

Here we represent state as s and Event/input as e. In computation of private key (Py,,) is
an alternate sequence of state and inputs.

soepSey. . ., such thats;ely and e;eE forall ie{0, 1,2...n — 1, n}{s;, e;, 8:11 }&d
The set of all traces are used to collect semantics.
Collection(Py,y) C traces of computation

where traces denotes all sequence of states and events (inputs).
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Fig. 8 DFA presentation of eo/k
computation traces 2 e - @

We are terminating the computation of key, the trace process to collect the semantics as
the fix-point of the next function/operator containing I.

Collection(Py,y) = if P; e traces U next(s;)

where s; is trace or state.

next(s;) = {t‘snensnﬁ |t‘s,1£S/\(sn7e,,7sn+1)85}

In our formal modelling computation is performed through no of states passes which can
be represented by formal DFA definition:

Where ke{0,1}

In the Fig. 8, we shows that traces start from initial states and on each state input is
events which made changes in cache and memory. We get output on each transition of
state, which is either O or 1.

So traces did collecting the value of k and computation process had been end when
again reach to initial state.

8 Information Theoretic Security Guarantee of Proposed Prevention
Approach

Information leakage may create vulnerability of confidentialities breaches that can be
exploited by an attacker to perform a side-channel attack. In Cache based SCA, an attacker
can use the side channel information like access times of different functions, collections of
traces of hit and miss sequences of cryptographic operations. So confidentiality of secret
information is one of the most important security issues. We maintain the confidentiality
with our prevention scheme by random permutation of an address of S, M, and R, which
generate wrong information regarding time, access and traces for an attacker. So infor-
mation about the private key is not completely leaked, and system will maintain the
confidentiality of private key.
We know that

Initial uncertainty = information leaked + remaining uncertainty

In our model, we try to minimize information leakage and maximize the remaining
uncertainty. Here we consider deterministic probabilistic program P, that receives a high
input (private key info) H, assumed to satisfy a publicly known a priori distribution and
produce a low output (publicly encryption information about S, M, and R) L. P is a system
program which perform encryption. Adversary/Attacker A, that run the program P, to find
encryption key or private key.
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Fig. 9 Formalization process flow of proposed security model

Suppose private key length is Ly, = 256.

After 64 bits, our system detects this attack (in worst case), as system detects attack, a
program Py, is activated. This program provides randomness by exchanging functions (S,
M and R) with other system functions F1, F2, F3 without the knowledge of attacker/
adversary A (Note that F1, F2, and F3 are the functions which are currently used by some
other program, because it is loaded in cache memory). After 64 bit encryption time period,
(approximate) again reset the S, M and R at its own place or until attacker will detect
continuously by detection process (see Fig. 9).

Py is having two important features, the first one is address hiding of new generated
address of S, M and R by EX-OR operation, which hide occurrence of S, M and R from
attacker. And the second one is exchange of Address of S, M and R, increases the
uncertainty of Information. In the next subsections we define the properties of P, in
detail.
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8.1 Address Hiding

As soon as we detect attack by detection process, we immediate shift our S, M and R
functions to some other places of cache. We generate new address place with the help of
random variable value that is perfectly masked because the new address value is statisti-
cally independent of the current address (sensitive data) value [].

Apew = Aold@”«

where A,.,, new address of S, M and R (separately); A,;s, Old address of S, M and R
(separately); r, random values.

Eldib et al. [27] say that any encoding is satisfiable (secure) if and only if all inter-
mediate nodes of encoding are perfectly masked.

Note 1 is tandom variable, uniformly distributed over (0,1)".

8.2 Hiding of Information About S, M and R Occurrence

Given program P, which may leak information from H (secret key) to L (occurrence of S,
M and R), we want to define how much information P; leaks.

In the literature, such definitions are usually based on information theoretic measures,
such as Shannon entropy. First we briefly review some of these measures. Let X be a
random variable whose set of possible values is X. The Shannon entropy H(X) is defined

by

H(X) = ZP[X = x]logﬁ (3)
xeX

The Shannon entropy can be viewed intuitively as the uncertainty about X; more
precisely it can be understood as the expected number of bits required to transmit X
optimally.

Given two (jointly distributed) random variables X and Y, the conditional entropy
H(X||Y), intuitively the uncertainty about X given Y, is

H(X|Y) = 3 PIY = yH(X]Y =) @
yeY

where

HOXIY =) = 30 PIX = 3lY = log g )

Note we assume that log denotes logarithm with base 2.
If X is determine by Y Then

H(X|Y) =0

The mutual information I(X; Y), intuitively the amount of information shared between
Xand Y, is

1(X;Y) = H(X) — H(X]Y).
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Table 8 Entropy in best, average and worst cases

H(H) I(H;L) H(HIL) Comments

256 0 256 Best Case Attack detect immediately

256 64 192 Average Case Attack detect after 25% of information leakage
256 128 128 Worst Case Attack detect after 50% of information leakage

Mutual information turns out to go be symmetric:

1(X;Y) = 1(Y;X).

The guessing entropy G(X) is the expected number of guesses required to guess X
optimally; of course the optimal strategy is to guess the value of X in non-increasing order
of probability.

If we assume that Xs probability are arranged in non-increasing order
Py>P,> --- > P, then we have

n

G(X)=>_'P; (6)

i=1

Now we consider how these entropy concepts can be used to quantify information
leakage.

Suppose

Initial uncertainty about H = H (H)

Remaining Uncertainty about H, conditional entropy = H (HIL)

Information leaked to L, the entropy is = H (L)

In SCA, we are unable to correct process Ps, where Pg is probabilistic. L is the positive
entropy because information leaked from H to L.

We know that Py is deterministic, and then L is determined by H.

So H(L|H) = 0, which implies that

I(H|L) = I(L;H) = H(L)H(L|H) = H(L).

In this scenario, the mutual information I (H; L) can be simplified to the entropy H (L).

So we need to reduce leakage information by masking of occurrences of S, M and R. In
our prevention scheme we change the address space of S, M and R, as soon as detect SCA.

We assume secret key size is 256. Table 8 shows that in best case attack is detected
immediately as H(H|L) = 256 i.e. with any information leakage, and in worst case attack
is detected after 50% information leakage.

In consensus Definitions

In Guessing Entropy

G(H|L) >2HWHID=2 4
> 212872 41
Z 2126 +1
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And actual expected numbers of guesses are:
(2128 +1)/2
In Fano inequality

H(H|L) — 1

" log(|H| - 1)
128 — 1

~ 1log(2%%6 — 1)

Since here the adversary (Attacker) has no knowledge of 128 of the bits of H, which
implies that

2128 —1
Pez 7128

9 Conclusion and Future Work

In this paper, we have demonstrated an attack using cache-based side-channel analysis in
virtualized environments. We have simulated the attack with two VMs (attacker and
victim) as objects and considering the host machine architecture as a multi-core archi-
tecture. We have also proposed a solution to prevent this attack to happen with a con-
siderably less performance degradation.

We have implemented an approach in which we first discover whether the attack is
being performed on the victim or not. This is achieved by Hypothesis testing and confi-
dence intervals. Now, if the victim is being attacked then it performs a permutation
function to map the physical address of the operation to some other cache location than the
one calculated by associative mapping of the cache. The permutation function is applied
only when the victim finds out that it is being attacked, this ensures that the performance of
the shared cache is degraded less in comparison to other solutions. We have used a simple
permutation function for now but in future there is scope for enhancing complexity of the
permutation function.
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