
Cooperative Caching for Efficient Data Search in Mobile
P2P Networks

Kyoungsoo Bok1 • Jaegu Kim1
• Jaesoo Yoo1

Published online: 3 August 2017
� Springer Science+Business Media, LLC 2017

Abstract In this paper, we propose a cooperative caching scheme for structured data via

clusters based on peer connectivity in mobile P2P networks. In the proposed scheme, a

cluster is organized for cache sharing among mobile peers with long-term connectivity, and

metadata are disseminated to neighbor peers for efficient data search performance. It

reduces data duplication and uses cache space efficiently through integrative cache man-

agement of peers inside the cluster. The proposed scheme reduces data replacement time in

the event of changes in topology or cache data replacement using the concept of temp

cache. It performs data recovery and cluster adjustment through cluster management in the

event of an abrupt disconnection of a peer. In the scheme, metadata of popular data are

disseminated to neighbor peers for efficient data searching. In a data search, queries are

processed in the order of local cache, metadata, the cluster to which it belongs, and

neighbor clusters, in accordance with cooperative caching strategy. Performance evalua-

tion results show that the proposed scheme has a higher cache hit ratio, and lower cost for

data replacement and query processing than existing schemes.

Keywords Mobile P2P � Cooperative cache � Cluster � Structured data � Temp

cache

& Jaesoo Yoo
yjs@chungbuk.ac.kr

Kyoungsoo Bok
ksbok@chungbuk.ac.kr

Jaegu Kim
jgns0101@naver.com

1 Department of Information and Communication Engineering, School of Information and
Communication Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu,
Cheongju, Chungbuk 28644, Korea

123

Wireless Pers Commun (2017) 97:4087–4109
DOI 10.1007/s11277-017-4714-1

http://orcid.org/0000-0001-9926-9947
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-017-4714-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-017-4714-1&domain=pdf

1 Introduction

Since Client/Server (C/S) architecture consists of a server that provides a service and a

client that receives it, it cannot provide normal service in the event that a server failure or

bottleneck occurs. In addition, it not only increases server loads but problems occur with

scalability, reliability, and flexibility when there are more users. To address these issues,

peer-to-peer (P2P) networks for each peer to share and use necessary resources autono-

mously have been proposed. In a P2P network, peers simultaneously function as both client

and server to each other without the notion of a separate client or server [1, 2]. It takes a

form in which peers share resources with one another through equivalent horizontal net-

works. With recent improvements in performance of mobile devices and communications,

studies have been conducted on mobile P2P which combines P2P networks and the mobile

environment [3–5].

Mobile P2P allows functions including file sharing, content transfer, social networking,

and advertising among mobile devices, using short-range wireless communications such as

IEEE 802.11, Bluetooth, and Ultra Wide Band (UWB) [3, 6]. While wired P2P networks

allow stable communications by ensuring reliability, mobile P2P networks cannot guar-

antee network reliability due to frequently changing connections, and mobile devices have

limitations in data access due to their limited power source and small storage space

[3, 5, 7–9]. These limitations make it difficult to apply P2P technology used in wired

networks to mobile P2P networks [7, 10–12].

To improve performance data sharing and search among mobile devices in mobile P2P

networks, caching methods are used [13, 14]. Caching is a strategy to reduce disc I/O and

access time by storing frequently used resources, or resources to use later, to provide fast

replies to data requests [14]. Existing caching schemes hold data redundantly because they

manage caches independently without considering the condition of neighbor peers. This

makes popular data access easier, but reduces cache utilization in the overall network,

resulting in a decreased cache hit ratio and wasted storage space [15–18]. Therefore, to

improve performance in data access and search, cooperative caching is required, which not

only uses one’s own local cache but also shares the caches of neighbor mobile devices to

process user requests. This cooperative caching increases the cache hit ratio as well as

reducing the cost for communications among peers and battery consumption.

In recent years, studies have been conducted to investigate data processing schemes

using cooperative caching in mobile P2P networks [15, 17, 19–24]. In an attempt to

improve cluster formation and data utilization, Chow et al. [25] has defined a tightly-

coupled group (TCG) as an aggregate that exhibits data preference similar to the movement

patterns of peers. Caetano and Bordim [26] proposed a cluster configured with peers to

maintain cached data jointly. These schemes increase cache diversity and hit ratio by joint

maintenance and management of popular data in shared caches. Existing caching schemes,

however, have no data exchange for clusters or popular data in the event of a change in

topology in a mobile P2P network [16, 17]. As a result, when a peer leaves or connects to a

cluster, duplication and loss of popular data occurs. Therefore, in mobile networks where

topology changes frequently, data loss and additional communication cost occurs when

peers are connected to, or leave, a cluster.

To address this problem, this paper proposes a cache sharing scheme for structured data

by considering peer connectivity in mobile P2P networks. The proposed scheme improves

reliability through cache sharing by configuring a cluster with peers with long-term con-

nectivity. It reduces data duplication and uses cache space efficiently by using peers inside

the cluster as a single cache. In addition, it reduces data loss by dividing cache space into

4088 K. Bok et al.

123

data cache and temporary, and using the temporary for popular data exchange in the event

of topology change or cache data replacement. It also reduces the data search cost by

distributing each peer’s metadata of popular data to neighbor peers. Moreover, it performs

cluster management to prevent loss of shared cache data. Data dissemination is performed

using Multi Point Relay (MPR) [27].

The rest of this paper is organized as follows. Section 2 provides a summary of previous

related studies, and Sect. 3 describes the proposed cache sharing scheme. Section 4

describes the results of performance evaluation to demonstrate the superiority of the

proposed scheme over existing schemes. Finally, Sect. 5 provides the conclusion of this

paper and future directions.

2 Related Work

Chow et al. [15] proposed COoperative Caching (COCA) to share the cached data coop-

eratively via the P2P communication. In COCA, a cache layer is inserted between the

mobile client cache layer and the MSS cache layer. Each Mobile Host (MH) and its

neighboring peers are clustered to share their cached data cooperatively via the P2P

communication. The peers share their cache with one another to reduce the number of

server requests and power consumption. To summarize a local cache in an MH, a cache

signature is generated. The cache signature is a bit string, which represents all data sig-

natures of the data in the local cache.

In [25], GROup-based COoperative Caching (GroCoca) is proposed to support P2P

based cooperative caching in mobile environments. GroCoca used Tightly Coupled Group

(TCG) which is a cluster of MHs that possess similar mobility pattern and similar data

access pattern. Two cooperative caching management protocols such as cooperative cache

admission control and cooperative cache replacement are developed. The cooperative

cache admission control provides a means for the MHs to control data replicas in their

TCGs. The cooperative cache replacement allows the MH to collaborate with its TCG

members to replace the least valuable data.

Shen et al. [20] and Joseph et al. [21] proposed a new cooperative caching called

Proximity Regions for Caching in Cooperative MP2P Networks (PReCinCt) to efficiently

support scalable data retrieval in large scale mobile P2P networks. In PReCinCt, the entire

network is divided into geographical regions where each region is responsible for set of

keys representing the data. A hash function is used at each peer to map a key to a region’s

location. PReCinCt caches relevant data among a set of peers in a region. PReCinCt

suggested Greedy-Dual Least-Distance (GD-LD) replacement algorithm which consider

the access count, the size, and the region-distance.

Caetano and Bordim [26] proposed a cluster based cooperative caching consisting of

Shared Cache Area (SCA) and Private Cache Area (PCA) in mobile ad hoc networks. To

reduce the number of duplicated data found in the neighbor peers, the cache space of all

cluster member are classified into two parts: SCA and PCA. SCA is used to store data that

are of interest of the members of the cluster. PCA is reserved for each peer to cache data of

its particular interest and are managed as an individual cache system. The cluster head

manages data which pare promoted to SCA and selects which data should be stored in

SCA.

Ting and Chang [19] proposed Group Caching (GC) to maintains the local caching

status of 1-hop neighbor peers among the cluster member. A cluster is organized by each

Cooperative Caching for Efficient Data Search in Mobile P2P… 4089

123

MH and its 1-hop neighbor peers. The caching status is exchanged in a cluster periodically.

When an MH receives a data, it caches the data object if the cache space is enough.

Otherwise, the receiving MH checks the available cache spaces of its group members. If

the available cache space of any group member is sufficient to store the data, the receiving

MH puts the data to the group member randomly.

Joy and Jacob [23] proposed a key based cache replacement scheme called E-LRU in

mobile ad hoc networks. E-LRU considers the time interval between the recent reference,

size and consistency for cache replacement. If data referenced only once has in cache

space, LRU is used for replacement. If data is referenced more than once, inter arrival

between the most recent two references is considered for replacement.

Paul et al. [22] proposed a service cache management scheme called SCM for mobile

P2P networks to enhance the service retrieval. SCM used a Distributed Spanning Tree

(DST) algorithm to convert the unstructured mobile P2P network to DST structures. The

DST is optimized by Ant Colony Optimization (ACO) to find the optimal routing path

between nodes in unstable networks. Every DST should have its Home Node (HN). HN

manages a HN_Table storing the service item ID and LeafNodeID that has the service

item. Each Leaf Node (LN) manages a LN_table to store the service item ID and the value

of the service item.

Kumar et al. [16] proposed a new cooperative cache replacement scheme using multiple

parameters such as size, access count, Time To Live (TTL) in mobile ad hoc networks.

When a node requires data, it sends request to data server and then caches data locally. The

set of one-hop neighbor nodes forms a cooperative zone. Each node in the zone maintains a

caching information table (CIT), which stores n data information. Three factor such size,

access count, TTL of data are considered to replace a cache in each node. When size and

access count is equal, data with lower TTL is removed in a cache. When size and TTL is

equal, the data with higher access count is removed. When access count and TTL is equal,

the data with big size is removed.

Elfaki et al. [17] proposed a cooperative caching priority (CCP) to ensure that priority

requests are served with minimum cache discovery overhead. A mobile ad hoc network

consists of three nodes such as cluster header, cache node, and request node. The cluster

header stores information of cached data of the cache nodes. The cluster header makes

decisions in serving requests based on the needs of the requested node. CCP exchanges the

information of the cached data among neighbor nodes. A number of cluster headers are

used to organize the distributed indexing to store the information of the cached data. CCP

serves requests based on the request’s classifications either priority or normal.

Kumar and Lee [18] proposed a P2P based cooperative caching called P2PCC for

Vehicular Ad Hoc Networks (VANETs) to share the traffic information among vehicles.

Whenever two vehicles want to share the most commonly used information, they do the

same using cooperative caching in a P2P technique. If the requested information is not

found in their cache, then they request to the central server. The data with a minimum

probability is selected to replace the cached data. The greater the time spent in the waiting

time, the greater the frequency of the data to be accessed by the vehicle and hence the

lesser its probability of replacement.

Parvathya and Kumarb [28] proposed a two-tire cooperative caching scheme called

2TierCoCS for VANETs. Each vehicle stores the information of its 1-hop neighbors by

exchanging beacon messages. Each RSU maintains a Neighbor Cache Index (NCI), which

represents the mapping of vehicles and the cached data and stores a popular cache which

caches the most frequently requested data in its zone. Data in popular cache are prefetched

from the server. Cache replacement is processed at two levels; local caches and popular

4090 K. Bok et al.

123

cache. In vehicles, when there is no space to store new data items, the item with lowest

TTL will be replaced. The popular cache is replaced by request count.

3 The Proposed Cache Sharing Scheme for Structured Data

3.1 System Architecture

In existing cooperative caching schemes, each peer in a cluster has an individual

replacement strategy, meaning that a lot of duplicate data are maintained within a cluster or

neighbor peers. While this makes data access easy, it reduces cache utilization and makes it

difficult to store diverse data, resulting in inefficiency in terms of storage space. In addi-

tion, cost increases due to the presence of duplicate data during the data search. To address

this problem, this paper proposes a cluster based cache sharing scheme by considering peer

connectivity in mobile P2P networks. The proposed scheme uses multiple cache spaces as

a single large cache space by eliminating duplicate data among peers included in a cluster.

In addition, popular data is partitioned and maintained among peers. This allows efficient

use of cache space through storage of diverse data, and increases cache utilization among

peers through data partitioning, ultimately reducing load and data search cost. In terms of a

data search scheme, metadata of popular data are disseminated among neighbor peers in

addition to a shared cache to increase communication efficiency and reduce cost. Each peer

performs the data search by utilizing the received metadata. This reduces the cost to

transmit queries to cluster headers or neighbor clusters, reducing overall search cost.

Fig. 1 Architecture of the proposed cache sharing scheme

Cooperative Caching for Efficient Data Search in Mobile P2P… 4091

123

Figure 1 shows the architecture of the proposed cache sharing scheme. The cluster is

configured up to n-hop, creating small clusters. The peers formed into the cluster manage

the cache data with redundancies eliminated. A cluster header manages the data of peers

belonging to its cluster, and returns data using information on the cluster header’s table if a

peer requests data of O1. Each peer manages cache space by dividing it into data cache and

temporary. Data cache is the cache storage space that maintains data. Generally, it is the

space where cache data are managed and the replace strategy is performed. Temporary is a

space to store cache data temporarily, and is used like a buffer to reduce data replacement

time. In addition, it is used for data exchange in the event that a peer connects to or leaves a

cluster. Data dissemination can increase communication efficiency and reduce cost. To

explain this from the data dissemination standpoint, the metadata of popular or frequently

used data (O1), including data identifiers, paths, and scores among the data existing in P0
are sent to neighbor peers. When P1 receives the metadata searches for O1 data, P1 can

request the data from P0 that has O1 by utilizing the metadata, making the search fast and

reducing communication cost.

3.2 Cluster Generation

In this paper, a small cluster with up to n-hop is generated by considering connectivity

among peers. Clustering peers eliminates data duplication and stores diverse data in cache

space, improving efficiency. In addition, peers and data belonging to the cluster are

managed through a cluster header, improving efficiency in data searches. The cluster must

satisfy connectivity and must not exceed the maximum number of hops. The proposed

cluster generation scheme generates a cluster with peers that can maintain connectivity

continuously. Connectivity refers to the time length for which direct communications

among peers are possible, and is calculated with the motion vector values that represent the

mobility of peers. When the connectivity value exceeds a reference threshold, peers are

connected to a cluster. Once a cluster is formed, duplicate data are eliminated and the

cluster is configured into a cache sharing environment. A cluster header enables fast data

access when a data request is made by utilizing information on peers in the cluster and on

the data that each peer has, as well as performing overall cluster management.

When a peer is in a state communicable with a specific cluster while on the move, a

determination is made as to whether it can become a member of the cluster. The peer can

become a member if it satisfies connectivity with the cluster and does not exceed the

maximum number of hops. Figure 2 shows the cluster generation process. Figure 2a shows

the connectivity determination process. If a peer P0 satisfies connectivity and number of

hops requirements, P0 is connected to the cluster as shown in Fig. 2b. If P0 makes the

number of hops exceed the maximum number of hops for the cluster, P0 cannot be con-

nected to the cluster. In addition, as shown in Fig. 2d, if the connectivity between P0 and a

peer in the cluster which has the strongest connectivity with P0 is lower than the threshold

value, P0 cannot be connected to the cluster.

The cluster header selects peers that can maintain the longest communication time

among peers. It manages all peers in the cluster and communications are performed via the

cluster header. In addition, it collects, manages, and maintains all information on the

cluster. The cluster header manages the header table that maintains information on data and

peers existing in the cluster. The header table has a structure of\Did, Pid, Rv[, where Did

is data identifiers, Pid is peer identifiers, and Rv is the path from the header to a peer. Each

peer maintains a peer table to manage the data it retains and information on other peers.

The peer table has a structure of \Did, Dv, Pos, Plist, CHeader[, where Did is data

4092 K. Bok et al.

123

identifiers, Dv is the value that represents data, Pos is motion vector information of a peer,

Plist is the list of peers with which 1-hop communication is possible in the network, and

CHeader is the information on the header of the cluster to which it belongs.

3.3 Basic Cache Management

Once a cluster is formed with consideration to connectivity through the proposed cluster

generation scheme, peers perform cache sharing. By eliminating duplicate data among

peers included in the cluster, multiple cache spaces are used as if they comprise a single

large cache space. In addition, popular data are partitioned and maintained among peers.

Cache space is managed by dividing into data cache and temporary. Data cache is a cache

storage space that maintains data shared in the cluster, arranged by data priority. Temp

cache is a space to store cache data temporarily, and a fixed portion of cache space is

devoted to temporary. Initially, when a peer is connected to a cluster, an empty space is

generated for the temp cache. When a particular node is connected to a new cluster, it

temporarily keeps the temp cache information so that the new cluster can utilize the

popular data in the previous cluster. A typical cache space executes replacement strategy if

it becomes full, receiving new data and eliminating existing data. However, to replace data

Fig. 2 Cluster generation process. a Determination of connectivity, b P0 being connected to a cluster,
c exceeding the maximum number of hops, d low connectivity

Cooperative Caching for Efficient Data Search in Mobile P2P… 4093

123

every time the cache is full results in a delay. Therefore, to prevent the problem, the empty

space of the temporary is used to temporarily store data to replace. In addition, the tem-

porary is used for exchange of popular data when a peer leaves a cluster as its connectivity

with the cluster weakens, as well as to decompose popular data which was in the previous

cluster when the peer becomes connected to a new cluster.

When the peer leaves the cluster, popular data that each peer in the cluster has are

transmitted to the peer that leaves. When the peer becomes connected to another cluster, it

disseminates the popular data, minimizing data loss. Figure 3 shows the situation where P0
leaves a cluster. If there is no data exchange when P0 leaves the cluster, a problem occurs

in that P0 and the cluster cannot access each other’s upper rank data. Therefore, P0 and

other peers in the cluster exchange upper rank data. Each of the other peers in the cluster

transmits their upper rank data (O1, O3, O4) to the temporary of P0, and P0 transmits its

upper rank data (O6, O10) to the temporary of the cluster. P0 that leaves the cluster keeps

the data in its temporary until it gets connected to a different cluster. Once P0 becomes

connected to a different cluster, it disseminates the popular data received from the previous

cluster to the newly connected cluster.

When a peer becomes connected to a new cluster, it transmits its cache data information

to the cluster header, and sets up an environment for cache sharing. Figure 4 shows the

situation where P0 becomes connected to a new cluster. P0 transmits its cache data

Fig. 3 Situation where P0 leaves a cluster

4094 K. Bok et al.

123

information to the cluster header, and the cluster header compares it with cache data

information of the cluster. If there is data that overlaps between the cache data information

of P0 and the cluster, the cluster header deletes the duplicate data in P0’s cache. Once

duplicate data are deleted, P0 disseminates its temporary data to the temporary of the peers

in the cluster, providing the popular data from the previous cluster to the newly connected

cluster. This can maintain recency data and can reduce communication cost in the search

process. Once P0’s temporary data transmission is complete, all of P0’s temporary data are

deleted. The peers that receive data from P0 perform a local cache replacement strategy for

the data in the data cache and temporary spaces, to determine which data to store in the

data cache. Upon completing the local cache replacement strategy, the data in the tem-

porary space of each peer are deleted.

3.4 Cluster Adjustment

In mobile P2P networks, disconnections occasionally occur without warning when a peer

device is turned off or due to communication failure. To minimize data loss in such

circumstances, a request is made to neighbor peers for the disconnected peer’s upper rank

data, and adjustment is performed in the event that an inefficient cluster structure occurs.

Figure 5 shows the process of requesting lost data and cluster adjustment when a cluster

peer is disconnected, based on a 3-hop structure. When a peer is suddenly disconnected in a

cache sharing environment, some of the upper rank data are lost. In this situation, as in

Fig. 5a, the cluster header recovers the data by requesting neighbor cluster headers for the

Fig. 4 The situation where P0 becomes connected to a cluster

Cooperative Caching for Efficient Data Search in Mobile P2P… 4095

123

data. When P3 is disconnected from the cluster as in Fig. 5b, the maximum number of hops

is exceeded and, therefore, the number of hops is adjusted by eliminating (P0, P2) or (P7)

that exist outermost of the cluster. The peers to be eliminated in the adjustment are

determined by the number of peers to be adjusted and the amount of popular data.

When the cluster header is disconnected from the cluster, both the request for lost data

and adjustment are difficult to perform because the cluster cannot be managed. As a result,

the peers that belonged to the existing cluster generate multiple smaller clusters with peers

with similar connectivity. Figure 6 shows an example in which a cluster is divided into two

clusters as its cluster header is disconnected.

3.5 Data Dissemination

In a typical mobile P2P search, a peer checks both the cluster to which it belongs and

neighbor clusters and, therefore, an additional search cost occurs. To solve this problem,

the proposed scheme disseminates metadata of popular data of each peer to neighbor peers,

preventing communication overloading of the cluster header and reducing search cost

through fast search of data using metadata. The proposed data dissemination scheme dis-

tributes metadata of popular data in each peer’s cache using MPR. Metadata contains

Fig. 5 Cluster management when a peer is disconnected. a Requesting lost data, b cluster adjustment

Fig. 6 Cluster management when a cluster header is disconnected. a Requesting lost data, b cluster
adjustment

4096 K. Bok et al.

123

information on data identifiers, paths, and scores. The metadata received from neighbor

peers are stored in cache, and improve data search performance by reducing search

requests for outside clusters. In addition, the increased throughput of each peer reduces the

amount of data search for the cluster header to process, preventing overloading of the

header.

In this scheme, metadata on popular data or frequently used data among the data in

cache are transmitted to neighbor peers. It transmits messages by selecting a specific peer

using MPR because transmitting metadata with flooding increases the amount of message

transmission and duplicate message transmission. This can reduce the size of data dis-

seminated in the network and the frequency of transmission. Reduction in transmission

frequency is an advantage in terms of network transmission cost; however, it can be a

disadvantage in terms of reliability of transmission. In a mobile network with unreliable

connections, low frequency of transmission may lead to reduced data reception. Because

the proposed dissemination scheme transmits small sized data, such as metadata instead of

the entire data, reception failure is less likely and communication cost are reduced.

Figure 7 shows metadata dissemination using MPR. Let us suppose that P0 disseminates

metadata of O1 and O2 in cache. First, 1-hop peers add peers that provide the only available

paths to 2-hop peers. The peers like P1, which has no peer to which to transmit the

metadata, stores the metadata and ends the communication. In the case of P2, it stores the

received metadata and transmits it to the next peer that added P2 as a path. Because

network topology keeps changing, the scheme updates metadata to the latest information

by iterating the above process at regular intervals.

3.6 Data Search

In the proposed scheme, data search is performed using metadata received from neighbor

peers in addition to a shared cache to increase communication efficiency and reduce cost.

Fig. 7 Metadata dissemination using MPR

Cooperative Caching for Efficient Data Search in Mobile P2P… 4097

123

This can reduce cost for sending queries to, and receiving replies from, the cluster header

because a data search can be directly requested to the peers within a 1-hop or 2-hop cache

that has the data to satisfy the query. In addition, the scheme reduces the frequency of

query requests to neighbor clusters, reducing communication cost.

Figure 8 shows the data search process. As shown in Fig. 8a, when P0 makes a query, it

searches for corresponding data in its own local cache. If the local cache does not satisfy

the query, it checks its metadata list (Fig. 8b). If the metadata list does not have data for the

query, it sends the query to the cluster header to check the cluster cache (Fig. 8c). The

cluster header that received the query compares it with data identifiers in the header table.

If there is a hit for the query, the cluster header requests the peer for the data, and returns

the searched data to P0. If the cluster cache has results for the query, a query request is sent

to a neighbor cluster. When the data for the query exists in the peer on the path to a

neighbor cluster header, the data is returned to P0. Otherwise, a query is sent to the

neighbor cluster header, and the data search is processed in the same manner as described

earlier for a within-cluster search.

Figure 9 shows the algorithm to perform the data search in cooperative caching. First,

the query_processing() function is executed, and pID sends a query to look up the data

search result. Lines 02–06 of query_processing() execute the data search for a the local

cache. If Did equals Q in a comparison in the peer table, the data is returned to Pissue. If

the algorithm fails to find a hit in local cache, it executes the data search section to check

the metadata list. Pissue calls peers in Plist a forward() function, a query transmission

Fig. 8 P0’s data search process. a Checking P0’s local cache, b checking P0’s metadata list, c checking
cache of the cluster, d checking cache of a neighbor cluster

4098 K. Bok et al.

123

algorithm containing Q and the type. Lines 02–05 of forward() compares Did and Q if type

is Pone and, if they are equal, returns the data to Pissue. If the data search with metadata

list fails to return data, it sends the query to the cluster header. To prevent duplicate query

checks for the peers, the algorithm adds Ptotal to Ep, sets the type as CHeader, and then

calls forward() to send the query. Lines 12–16 search data by calling search() if there is a

peer on the path while the query is transmitted from Pissue to the cluster header. If the peer

does not have a hit for the query, the algorithm adds the peer to Ep and then calls forward()

again. Once the query has been sent to CHeader, the algorithm compares Did and Q in the

cluster table and looks up Pid and Rv for the hit. For a data request, a request function is

called by adding Pid and Rv to a request algorithm, request(). It gets to Pid via Rv, and

returns the data to Pissue via R by calling a response algorithm, response() function. If it

fails to find a hit in the cache of the cluster to which it belongs, it sends a query request to a

neighbor cluster. The request process shows the same flow as the process of transmission to

its own cluster header, as described above.

4 Performance Evaluation

4.1 Analysis

In recent years, various caching schemes to improve the performance of data retrieval and

sharing in mobile ad hoc network have been proposed [16, 17, 22, 23, 25, 26]. In addition,

caching schemes for information sharing among vehicles in VANET environments that are

01: function Query_Processing(Q, L, Plist, R)
// Search local cache data
02: for each data = L.Did[i]
03: | if L ≠ null and data = Q then
04: | | return Dv[i]
05: | end if
06: end for each
// Check metadata list
07: Plist ← Pissue as a list of peers in 1-hop from Pissue
08: for each Plist[i]
09: | forward(Plist[i], Pissue, “Pone”, Q)
10: end for each
11: Ptotal = Plist + Pmpr
12: Ep.add(Ptotal)
// Check the cache of the cluster it belongs to
13: if Pissue ≠ CHeader and Pissue C then
14: | forward(CHeader, Pissue, “CHeader” Q, Ep)
15: else if Pissue = CHeader then
16: | search(“CHeader”, R, Q, Ep)
17: end if
18: Clist ← CHeader as a list of peers connected to CHeader
19: Ep.add(Clist)
20: forward(NC, CHeader,“NCHeader”, Q, Ep)

Fig. 9 Data search algorithm in cooperative cache environment

Cooperative Caching for Efficient Data Search in Mobile P2P… 4099

123

special types of mobile ad hoc networks have been proposed [18, 28]. The existing caching

schemes provide various access methods according to cache management methods, cluster

construction methods, data retrieval methods, and replacement strategies. We compare the

functional differences between the proposed scheme and the existing schemes in order to

prove the superiority and originality of the proposed scheme.

GroCoca is the most representative method for cooperative caching and defines tightly-

coupled group (TCG) as a set for data preferences similar to the moving patterns of peers

[25]. It increases data accessibility through cooperative cache management such as

cooperative cache admission control and cooperative cache replacement. However, it

increases data redundancy although each cache keeps meaningful data through data

preferences.

CBCCA constructs clusters according to connectivity among peers and retrieves data

through inter-cluster communication and intra cluster communication [26]. It divides cache

space into private cache and shared cache. All peers in the shared cache cluster keep data in

common. It increases the diversity of caches and cache hit ratios by keeping and managing

popular data in common in the shared cache. However, as the shared cache area increases,

the efficiency of storage spaces degrades. Chow et al. [25] and Caetano and Bordim [26]

did not consider the popular data exchange method when a peer leaves a cluster.

SCM was proposed to support efficient data retrieval in mobile P2P networks [22]. It

provides efficient cache service and retrieval in mobile P2P networks since it builds the

mobile P2P networks using distributed spanning tree. However, SCM spends additional

routing costs because it conducts data retrieval based on headers. Since it manages cache

spaces individually, it can replace data that neighboring nodes need in cache replacement.

KCR provides E-LRU (Extended LRU) that conducts cache replacement by considering

recent accesses, time intervals of the recent referenced data, and the most recent reference

time. KCR does not provide cooperative cache management and construct clusters because

each node keeps a cache space independently. It does not use the storage space of a peer

efficiently since some parts of cache spaces remains empty in order to reduce data

replacement times.

CCR constructs clusters in 1-hop in mobile ad hoc environments and has a cache

replacement scheme using SAT method [16]. In CCR, each node manages information

individually and retrieves cache information using the neighboring peers when requesting

data. It does not provide cooperative cache management because each node manages a

cache space independently. It also does not consider the request or status of a neighbor peer

in cache replacement.

CCP manages the cached data of each node through multiple cluster headers [17]. A

cache node caches data from a server or other cache nodes and performs the role of a

requested node (RN) in a data request. Since it assumes that all cluster headers are con-

nected to a server, it cannot be applied to mobile ad hoc networks. It spends high routing

costs in data replacement because a cluster is constructed focusing on in interests. It also

has additional costs that it should transfer all requests to a header since it retrieves data

based on a header.

P2PCC is for P2P based cache sharing in VANET environments [18]. In P2PCC, a

cluster is composed of vehicles that can communicate with RSU and each vehicle caches

the data independently. 2TierCoCS manages cache spaces exchanging information among

1-hop vehicles [28]. Since each RSU manages the cached data of each vehicle, it causes

data request costs to RSU in data retrieval. Since [18, 28] are based on vehicles in a road

with constrained moving patterns, they increases maintenance and retrieval costs when

they are applied to unconstrained mobile ad hoc networks.

4100 K. Bok et al.

123

The proposed scheme generates clusters and proposes a cache sharing scheme by

considering peer connectivity in mobile ad hoc environments. The proposed scheme im-

proves reliability through cache sharing by configuring a cluster with peers with long-term

connectivity. It reduces data duplication and uses cache spaces efficiently by using peers

inside the cluster as a single cache. In addition, it reduces data loss by dividing the cache

space into data cache and temporary, and using the temporary for popular data exchange in

the event of topology change or cache data replacement. It also reduces the data search cost

by distributing each peer’s metadata of popular data to neighbor peers. Moreover, it

performs cluster management to prevent loss of shared cache data.

Table 1 shows the comparison of the proposed scheme and the existing schemes in

terms of Management, Clustering, Discovery, Mobility and Replacement. Management

means a cache management scheme, where Cooperative represents a cooperative strategy

for cache replacement and management, Central represents a cache management strategy

by a server or cluster headers, and Individual represents a strategy that each node manages

a cache individually and collaborates with other nodes only in data retrieval. Clustering

means properties that are considered when clusters are constructed. Discovery means a

retrieval scheme using cache when data is requested. Here, Neighbor represents a

scheme that retrieves the caches of neighbor peers using a P2P method, Header represents a

scheme that retrieves the caches of neighbor peers using a sever or cluster headers,

Neighbor ? Header combines Neighbor and Header, and Neighbor ? RSU represents a

scheme that combines Neighbor with a retrieval method using RSU in VANET environ-

ments. Replacement means a method that is used as a replacement strategy.

4.2 Evaluation Results

Performance evaluation was conducted on a PC with Intel(R) Core(TM) i7 processor and

Windows 7 with 4G memory. The experimental environment is shown in Table 2. The

basic experiment setting was the number of peers, 200; the number of data, 500; cache size,

30 in a 500 9 500 space; and the number of cluster hops was configured as 2-hop. Here,

the locations of peers and data were randomly generated. Many studies for efficiently

supporting data sharing and retrieval in mobile ad hoc environments have been conducted.

As we mentioned in Sect. 4.1, SCM [22] constructs cache spaces using DST and manages

Table 1 Comparison of cooperative caching schemes

Feature Management Clustering Discovery Mobility Replacement

GroCoca [25] Cooperative Mobility Neighbor ? Header Unconstraint TTL

CBCCA [26] Cooperative Connectivity Neighbor ? Header Unconstraint LRU

SCM [22] Central DST Header Unconstraint N/A

KCR [23] Individual N/A Neighbor Unconstraint E-LRU

CCR [16] Individual 1-hop Neighbor ? Server Unconstraint SAT

CCP [17] Partial
cooperative

Interest Header Unconstraint LRU ? TTL

P2PCC [18] Individual RSU Neighbor Constraint Waiting time

2TierCoCS [28] Partial
cooperative

RSU RSU Constraint TTL, request
count

The proposed Cooperative Connectivity Neighbor ? Header Unconstraint Popularity,
access time

Cooperative Caching for Efficient Data Search in Mobile P2P… 4101

123

them based on headers. KCR [23] and CCR [16] construct clusters and manage cache

spaces individually. CCP [17] shares some cache spaces through cooperative caching but

manages them based on headers. Kumar and Lee [18], Parvathya and Kumarb [28] are

based on vehicles in a road with constrained moving patterns. GroCoca [25] that is the

most representative cooperative caching scheme in mobile ad hoc environments constructs

clusters according to peer mobility and manages cache spaces cooperatively. CBCCA [26]

constructs clusters according to connectivity among peers and manages cache spaces in

common by peers in a cluster. The proposed scheme provides cooperative cache sharing

among nodes with unconstrained moving patterns. In this experimental evaluation, we

chose GroCoca and CBCCA that are cooperative caching schemes as the existing schemes

for performance comparison. The reason is that they are cooperative caching schemes that

their execution environments are similar to those of the proposed scheme. We compared

the performances of the existing schemes and the proposed scheme in terms of cache hit

ratio, data replacement time, and energy consumption as the number of data, cache size,

and the number of peers changes. The proposed scheme conducts data dissemination to

improve retrieval performance. In order to prove the superiority of the data dissemination

proposed in this paper, we evaluate the performance of the proposed scheme according to

data dissemination.

The cache hit ratio is the most important element of the cache management scheme. Hit

ratios are evaluated because higher hit ratios suggest successful searches and the superi-

ority of the cluster structure in a mobile P2P network. The cache hit ratio means the rate

that when a cluster consists of n nodes, the requested data can be found in the cluster. The

cache hit ratio is calculated as Eq. 1, where CoP is the number of nodes in a cluster, and

localhiti is 1 when the local cache of node i hits and is 0 otherwise.

hitratio ¼
Pn

i¼1 localhiti

CoP
ð1Þ

Figure 10 shows cache hit ratios as a function of the number of data. It indicates that

cache hit ratios decrease with increased numbers of data because of the limited amount of

data maintained in cache. When the number of data increases, CBCCA and GroCoca show

more similar hit ratios. Because CBCCA employs joint maintenance of cache in a cluster,

which results in reduced diversity of data in the cluster when the number of data increases,

the cache hit ratios sharply decline with the increase in the number of data. The proposed

scheme was found to outperform GroCoca and CBCCA by approximately 16 and 9%,

respectively, in cache hit ratio.

Figure 11 shows cache hit ratios as a function of cache size. Because CBCCA has a

shared cache, the cluster maintains more diversity and greater quantities of data when the

cache size increases. The proposed scheme shows high hit ratios because the entire cache is

Table 2 Experimental
environment

Parameter Value

Number of peers (count) 50–400

Number of data (count) 500–900

Cache size (number of data) 10–50

Communication range (m) 50

Network size 500 9 500

Temporary size (number of data) 4–20

4102 K. Bok et al.

123

shared and, therefore, even caches that are small in size make a large cache for the entire

cluster, resulting in diverse data that are maintained. The proposed scheme was found to

outperform GroCoca and CBCCA by approximately 21 and 10%, respectively, in cache hit

ratio.

Figure 12 shows cache hit ratios as a function of the number of peers. In an environment

with a small number of peers where it is difficult to form a cluster, the conventional

scheme and the proposed scheme show similar hit ratios. In CBCCA and the proposed

scheme, a cluster is formed with more peers and the amount to share increases as the

number of peers increases. As a result, the cache hit ratio shows a marked increase with the

Fig. 10 Cache hit ratios for the number of data

Fig. 11 Cache hit ratios for cache size

Fig. 12 Cache hit ratios for the number of peers

Cooperative Caching for Efficient Data Search in Mobile P2P… 4103

123

increase in the number of peers. The proposed scheme was found to outperform GroCoca

and CBCCA by approximately 21 and 9%, respectively, in cache hit ratio.

Data replacement time refers to the amount of time used to check the cluster header for

data duplication when data eligible for replacement comes into local cache, and to insert

the data after deleting a data item with top priority for replacement if there is no dupli-

cation. A smaller amount of data replacement time means higher search performance and

cluster management efficiency. Figure 13 shows data replacement time as a function of the

number of data. It shows that an increased number of data results in reduced diversity of

data in the cluster, causing more frequent data replacement and, therefore, increasing data

replacement time. The proposed scheme was found to outperform GroCoca and CBCCA

by reducing data replacement time by approximately 50 and 16%, respectively.

Figure 14 shows data replacement time as a function of cache size. When cache size is

small, GroCoca and CBCCA show a larger amount of data replacement time compared to

the proposed scheme. The proposed scheme maintains diverse data because the entire

cache is shared and, therefore, even caches that are small in size make a large cache for the

entire cluster. As a result, replacement strategy is not employed frequently, keeping the

amount of data replacement time low. The proposed scheme was found to outperform

GroCoca and CBCCA by reducing data replacement time by approximately 56 and 20%,

respectively.

Figure 15 shows data replacement time as a function of the number of peers. As the

number of peers increases, a cluster is formed with more peers and the amount to share

Fig. 13 Data replacement time for the number of data

Fig. 14 Data replacement time for cache size

4104 K. Bok et al.

123

increases as the number of peers increases. As a result, replacement strategy is not

employed frequently, keeping the length of data replacement time low. The proposed

scheme was found to outperform GroCoca and CBCCA by reducing data replacement time

by approximately 47 and 25%, respectively.

In order to show the performance superiority of the proposed scheme, we compared it

with the existing schemes, GroCoca and CBCCA. We also evaluated the performance of

the proposed scheme in terms of data dissemination. In performance evaluation, the pro-

posed scheme without data dissemination is called Proposed1 and the proposed

scheme with data dissemination is called Proposed2. In other words, Proposed1 is a

scheme that when data is requested in a status that it does not disseminate popular data like

CBCCA, it first checks the local cache and then if the data does not exist in the local cache,

it transfers the request to a cluster header. Proposed2 is a scheme that when data is

requested in a status that it disseminates popular data, it first checks the local cache and

then if the data does not exist in the local cache, it transfers the request to cluster headers

continuously until data is retrieved. As the routing cost for data retrieval increases, the

energy consumption of a node increases. Therefore, we evaluate the energy consumption

of the proposed scheme according to data dissemination.

Figure 16 shows the power consumption according to the number of data. GroCoca and

CBCCA decrease cache hit ratios according that the number of data increases. They also

increase the retrieval costs since when each peer does not have the desired data in the local

cache, it transfers the retrieval request to the neighbor peers and a header. Proposed1

increases the cache hit ratio over the existing schemes, But it increases the retrieval costs.

The reason is that since it does not use data dissemination, it transfers the retrieval request

to the neighbor peers and a header when there is not the desired data in the local cache like

the existing schemes. Proposed2 significantly reduces the energy consumption over the

existing schemes. The reason is that it knows meta data and retrieval paths in advance

through data dissemination. As a result, it is shown through performance evaluation that

the proposed scheme reduced the power consumption by about 21 and 14% over GroCoca

and CBCCA on average. Proposed2 reduced the power consumption by about 8% over

Proposed1.

Figure 17 shows the power consumption according to the cache size. As shown in

Fig. 17, as the cache size increases, the communication costs decrease and the power

consumption reduce. The reason is that as the cache size increases, the cache can include

much more data. As a result, it is shown through performance evaluation that the proposed

scheme outperforms GroCoca and CBCCA by about 17 and 14% on average. When

Fig. 15 Data replacement time for the number of peers

Cooperative Caching for Efficient Data Search in Mobile P2P… 4105

123

compared to Proposed1, Proposed2 allows efficient processing even when the cache size is

small because of its use of metadata. The proposed scheme was found to outperform

Proposed1 by reducing power consumption by approximately 4%.

Figure 18 shows the power consumption according to the number of peers. As the

number of peers in a cluster increases, the possibility that neighbor peers in the cluster

Fig. 16 Power consumption for the number of data

Fig. 17 Power consumption for cache size

Fig. 18 Power consumption for the number of peers

4106 K. Bok et al.

123

provides the desired data in a retrieval request increases. Therefore, as the number of peers

increases, the power consumption reduces. As a result, it is shown through performance

evaluation that the proposed scheme reduced the power consumption by about 18 and 15%

over GroCoca and CBCCA on average. Proposed2 reduced the power consumption by

about 4% over Proposed1.

5 Conclusions

In this paper, we proposed a cache sharing scheme for structured data by considering peer

connectivity in mobile P2P networks. The proposed scheme shares cache by configuring a

cluster with peers that can maintain long-term connectivity. It reduces data duplication and

uses cache space efficiently by using peers inside the cluster as a single cache. In addition,

it uses cache space by dividing it into data cache and temporary. Data cache is a space to

manage cache data and perform replacement strategy, and temporary is a fixed portion of

empty space created for data replacement where popular data are temporarily stored in the

event a change occurs in the topology of the cluster. In addition, when replacing cache

data, the empty space is used like a buffer, reducing data replacement time. Moreover, to

reduce the cost of communications to transmit queries, a data dissemination scheme was

added by introducing MPR. It disseminates metadata of popular data of each peer to

neighbor peers, resulting in efficient processing in data search and return. In addition, the

proposed scheme performs data recovery and cluster mediation through cluster manage-

ment in the event that a peer is suddenly disconnected. The scheme outperforms the

existing schemes in reducing communication overheads. Results of experimental evalua-

tion showed that the proposed scheme improved cache hit ratios by 9–25%, reduced the

data replacement times by 16–56%, and reduced power consumption by 3–6%, compared

to existing schemes. Further research is in plan to apply the proposed cache sharing

scheme to actual mobile P2P networks.

Acknowledgements This research was supported by the MSIT (Ministry of Science and ICT), Korea, under
the ITRC (Information Technology Research Center) support program (IITP-2017-2013-0-00680) super-
vised by the IITP (Institute for Information & communications Technology Promotion) and by the
‘‘Development of biomedical data network analysis technology based on high performance computing for
dementia researches (K-17-L03-C02-S02)’’ funded by Korea Institute of Science and Technology
Information.

References

1. Meng, X., & Li, T. (2013). A dynamic load balancing scheme with incentive mechanism in hetero-
geneous structured P2P networks. Computer and Electrical Engineering, 39, 2124–2134.

2. Shojafar, M., Abawajy, J. H., Delkhah, Z., Ahmadi, A., Pooranian, Z., & Abraham, A. (2015). An
efficient and distributed file search in unstructured peer-to-peer networks. Peer-to-Peer Networking and
Applications, 8, 120–136.

3. Bok, K., Kwak, D., & Yoo, J. (2012). A resource discovery with data dissemination over unstructured
mobile P2P networks. KSII Transactions on Internet and Information Systems, 6, 815–834.

4. Zeng, D., & Geng, Y. (2014). Content dissemination mechanism in mobile P2P network. Journal of
Networks, 9, 1229–1236.

5. Ahmed, D. T., & Shirmohammadi, S. (2007). Design issues of peer-to-peer systems for wireless ad hoc
networks. In Proceeding of international conference on networking, p. 26.

6. Li, H., Bok, K. S., Chung, K. Y., & Yoo, J. S. (2014). An efficient data dissemination method over
wireless ad-hoc networks. Wireless Personal Communications, 79, 2531–2550.

Cooperative Caching for Efficient Data Search in Mobile P2P… 4107

123

7. Li, H., Bok, K. S., & Yoo, J. (2015). A mobile social network for efficient contents sharing and
searches. Computers & Electrical Engineering, 41, 88–300.

8. Lim, H., & Kim, C. (2001). Flooding in wireless ad hoc networks. Computer Communications, 24,
353–363.

9. Qayyum, A., Viennot, L., & Laouiti, A. (2002). Multipoint relaying for flooding broadcast messages in
mobile wireless networks. In Proceeding of annual Hawaii international conference on system sciences,
pp. 3866–3875.

10. Shah, B., & Kim, K. (2014). Towards enhanced searching architecture for unstructured peer-to-peer
over mobile ad hoc networks. Wireless Personal Communications, 77, 1167–1189.

11. Liu, C., Chen, C., Chen, Y., & Wang, J. (2015). A mobile P2P semantic information retrieval system
with effective updates. KSII Transactions on Internet and Information Systems, 9, 1807–1824.

12. Chen, K., & Shen, H. (2015). Maximizing P2P file access availability in mobile ad hoc networks though
replication for efficient file sharing. IEEE Transactions on Computers, 64, 1029–1042.

13. Ye, F., Li, Q., & Chen, E. (2011). Benefit based cache data placement and update for mobile peer to
peer networks. World Wide Web, 14(3), 243–259.

14. Cao, G., Yin, L., & Das, C. R. (2004). Cooperative cache-based data access in ad hoc networks. IEEE
Computer, 37, 32–39.

15. Chow, C., Leong, H. V., & Chan, A. T. S. (2004). Cache signatures for peer-to-peer cooperative caching
in mobile environments. In Proceeding of international conference on advanced information net-
working and applications, pp. 96–101.

16. Kumar, P., Chauhan, N., Awasthi, L. K., & Chand, N. (2014). Cooperative cache replacement policy for
MANETs. International Journal of Advanced Pervasive and Ubiquitous Computing, 6, 36–47.

17. Elfaki, M. A., Ibrahim, H., Mamat, A., Othman, M., & Safa, H. (2014). Collaborative caching priority
for processing requests in MANETs. Journal of Network and Computer Applications, 40, 85–96.

18. Kumar, N., & Lee, J. (2014). Peer-to-peer cooperative caching for data dissemination in urban vehicular
communications. IEEE Systems Journal, 8, 1136–1144.

19. Ting, Y., & Chang, Y. K. (2007). A novel cooperative caching scheme for wireless ad hoc networks:
Group caching. In Proceeding of international conference on networking, architecture and storage,
pp. 62–68.

20. Shen, H., Joseph, M. S., Kumar, M., & Das, S. K. (2005) PReCinCt: A scheme for cooperative caching
in mobile peer-to-peer systems. In Proceeding of international parallel and distributed processing
symposium, p. 57.

21. Joseph, M. S, Kumar, M., Shen, H., & Das, S. (2005). Energy efficient data retrieval and caching in
mobile peer-to-peer network. In Proceeding of international conference on pervasive computing and
communications workshops, pp. 50–54.

22. Paul, P. V., Rajaguru, D., Saravanan, N., Baskaran, R., & Dhavachelvan, P. (2013). Efficient service
cache management in mobile P2P networks. Future Generation Computer Systems, 29, 1505–1521.

23. Joy, P. T., & Jacob, K. P. (2013). A key based cache replacement policy for cooperative caching in
mobile ad hoc networks. In Proceeding of international advance computing conference, pp. 383–387.

24. Chow, C. Y., Leong, H. V., & Chan, A. T. S. (2005). Distributed group based cooperative caching in a
mobile broadcast environment. In Proceeding of international conference on mobile data management,
pp. 97–106.

25. Chow, C., Leong, H. V., & Chan, A. T. S. (2007). GroCoca: Group-based peer-to-peer cooperative
caching in mobile environment. IEEE Journal on Selected Areas in Communications, 25, 179–191.

26. Caetano, M. F., & Bordim, J. L. (2010). A cluster based collaborative cache approach for MANETs. In
Proceeding of international conference on networking and computing, pp. 104–111.

27. Liang, O., Sekercioglu, Y. A., & Mani, N. (2006). A survey of multipoint relay based broadcast schemes
in wireless ad hoc networks. IEEE Communications Surveys and Tutorials, 8, 30–46.

28. Parvathya, P. R., & Kumarb, K. S. A. (2015). 2TierCoCS: A two-tier cooperative caching scheme for
internet-based vehicular ad hoc networks. Procedia Computer Science, 46, 1079–1086.

4108 K. Bok et al.

123

Kyoungsoo Bok He received the B.S. in Mathematics from Chungbuk
National University, Korea in 1998 and also received M.S. and Ph.D.
in Information and Communication Engineering from Chungbuk
National University, Korea in 2000 and 2005 respectively. He is now a
research professor in Information and Communication Engineering,
Chungbuk National University, Korea. His research interests are sensor
network, location based service, mobile ad-hoc network, social net-
work, and big data.

Jaegu Kim He received the B.S. and the M.S in Information and
Communication Engineering from Chungbuk National University,
Korea in 2013 and 2015 respectively. His research interests are mobile
P2P, social network, cloud computing, and big data.

Jaesoo Yoo He received M.S. and Ph.D. in Computer Science from
Korea Advanced Institute of Science and Technology, Korea in 1991
and 1995 respectively. He is now a professor in Information and
Communication Engineering, Chungbuk National University, Korea.
His research interests are database system, storage management sys-
tem, sensor network, distributed computing, and big data processing.

Cooperative Caching for Efficient Data Search in Mobile P2P… 4109

123

	Cooperative Caching for Efficient Data Search in Mobile P2P Networks
	Abstract
	Introduction
	Related Work
	The Proposed Cache Sharing Scheme for Structured Data
	System Architecture
	Cluster Generation
	Basic Cache Management
	Cluster Adjustment
	Data Dissemination
	Data Search

	Performance Evaluation
	Analysis
	Evaluation Results

	Conclusions
	Acknowledgements
	References

