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Abstract Identification of a person using voice is a challenging task under environmental

noises. Important and reliable frame selection for feature extraction from the time-domain

speech signal under noise can play a significant role in improving speaker identification

accuracy. Therefore, this paper presents a frame selection method using hybrid technique,

which combines two techniques, namely, voice activity detection (VAD) and variable

frame rate (VFR) analysis. It efficiently captures the active speech part, the changes in the

temporal characteristics of the speech signal, taking into account the signal-to-noise ratio,

and thereby speaker-specific information. Experimental results on noisy speech, generated

by artificially adding various noise signals to the clean YOHO speech at different SNRs

have shown improved results for the frame selection by the hybrid technique in comparison

with any one of the techniques used for the hybrid. The proposed hybrid technique out-

performed both the VFR and the widely used Gaussian statistical model based VAD

method for all noise scenarios at different SNRs, except for the Babble noise corrupted

speech at 5 dB SNR, for which, VFR performed better. Considering the average identi-

fication accuracies of different noise scenarios, a relative improvement of 9.79% over the

VFR, and 18.05% over the Gaussian statistical model based VAD method has been

achieved.
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1 Introduction

The process of finding out the speaker of a given speech utterance is referred to as Speaker

Identification, and a system performing this task is referred to as Speaker Identification

System. It is basically a Biometric system based on human voice. A speaker identification

system broadly consists of three parts: (1) feature selection and extraction, (2) training/

enrollment, and (3) testing/recognition. In feature selection and extraction, important and

reliable speech parts from the speech signal are selected, and is then transformed into

features. The features provide a compact representation of the speaker-specific informa-

tion, sufficient to distinctly identify the individual from the rest of the speakers. The

training/enrollment develops a model of each speaker using the features obtained from

their recorded speech samples (training data). In the testing/recognition, the features of a

given speech utterance from an unknown speaker is compared with each of the speaker

models developed during training. The model with the highest similarity score is decided

as the true speaker of the given utterance. A speaker identification system can be classified

as Closed or Open. When it is known in advance that the given test utterance is spoken by a

person belonging to a group/pool of N known speakers, it is called a closed system.

Otherwise, it is called an open system. In an open system, one has to first determine, if the

speaker belongs to the known group, and then the speaker is to be identified. A speaker

identification system can be further classified as Text-independent, if the training and the

test speech utterances are different; otherwise it is called as Text-dependent [1–4]. It is

easy to understand that text-independent speaker identification is more difficult than the

text-dependent.

In this paper, closed text-independent speaker identification system is studied. Here,

identification of the speaker of the given test utterance is carried out from a group of N

people (closed), and the test utterance is different from the training utterances used for

speaker modeling (text-independent). For convenience, it is simply referred to as speaker

identification system, in the rest of the paper.

Speaker identification system finds applications in surveillance, in crime scenes where

the crank caller can be identified from a list of suspects and in automatic ID tagging. A

promising usage of the proposed hybrid technique is in accessing remote devices which is

commonly shared by many users. Here, speech can be used for identification and is

provided from a distance through mobile phones. Once the device identify a given speech

utterance as belonging to the group of authorized speakers, the person gain access of the

device and a personalized service can be provided to him/her. It makes the whole process

more secure and easy compared to the password based system which can be

stolen/forgotten.

Achieving the best identification accuracy is the ultimate goal of any speaker identifi-

cation system. One of the major challenges faced by these systems is its poor performance,

when an acoustic mismatch between the training and the test conditions occur, referred to

as mismatch problem. A commonly observed mismatch scenario is that, the speaker

models are trained with clean training speech data, and the test data consists of environ-

mental noises as well. To mitigate the mismatched condition problem, several approaches

were tried in the recent past, and it is still a very active research area [5–7].

Robust methods have been developed at different levels of the speaker identification

process. Robust features such as multitaper Mel-Frequency Cepstral Coefficients (MFCC)

[8], multitaper Perceptual Linear Prediction (PLP) [9] and Mean Hilbert Envelope Coef-

ficients (MHEC) [10] were studied. Speech enhancement techniques were applied, to make
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the noisy speech test data close to the clean training data [11–13]. The effects of ‘‘mul-

ticondition training’’ was evaluated, where multiple copies of the training data were

generated by adding noises of different characteristics to the clean training data, and then

using it for modeling speakers [14–16]. Recently, i-vector speaker models were used for

compensation of channel/speaker variations [17]. Finally, robust methods at classifier’s

decision level were also explored [18].

Speech signals, being non-stationary are usually processed by first windowing it into

shorter frames, where it exhibits quasi-stationary behaviour. Typically 20–30 ms long

frame size is used with a fixed frame shift of approx. half the frame size [6, 19]. Capturing

frames at a Fixed Frame Rate (FFR) is inefficient under environmental noise conditions, as

it does not take into account the following points:

1. The speech utterance consists of both speech and non-speech regions. Generating

frames in the non-speech regions, convey negligible information about the speaker. In

addition to this, when environmental noises are present during testing and speaker

models were trained in a clean condition, the non-speech regions depicting noise may

greatly decrease the speaker identification accuracy. Therefore, it is desirable to

remove the non-speech regions from the speech signal.

2. Speech signal also consists of fast changing and steady state speech regions. Fast

changing speech regions, like plosives, appear for a very short duration of time and

more frames are required from these regions to capture its characteristics properly. In

contrast, steady state speech regions, like vowels, appear for a longer duration and

fewer frames are required from these regions to avoid the unnecessary addition of the

same type of speech characteristics.

3. Apart from these, a speech region may be unreliable, measured by the signal-to-noise

ratio. Removal of these regions shall enhance the identification accuracy.

Research studies taking into account the above referred points, either individually or in

combination, have been made. A spectral subtraction speech enhancement based Voice

Activity Detection (VAD) method [20], and a novel likelihood ratio sign test based VAD

method [21] were proposed to determine the speech and the non-speech part of a speech

utterance. Jung et al. proposed a phoneme based feature frame selection method, in which

minimum redundancy between selected frames but maximum relevance to the speaker

model was targeted [22]. A frame selection method based on the weights assigned by two

Gaussian mixture models, one from the speech and the other from the noise was presented

by Fujihara et al. [23]. A Variable Frame Rate (VFR) analysis method in which the frame

selection rate is varied depending upon the significance of the speech signal characteristics

was proposed for the speech recognition application under noise [24, 25]. It has shown

good performance. ‘‘Speech recognition’’ is different from ‘‘speaker identification’’ in the

sense that, speech recognition targets to predict the spoken words of the speech utterance,

whereas, speaker identification target to predict the speaker of the speech utterance.

Since, the joint study of all the above three referred points for the speaker identification

application has not been done, this study focuses and tries to take into account all the three

referred points during frame selection. This is expected to increase the speaker identifi-

cation accuracy of the system under environmental noises. The present study first inves-

tigates the VFR analysis method [24] for a different application of speaker identification

under environmental noises and then, the investigated VFR analysis method is utilized with

the widely used Gaussian statistical model based VAD method [26] for proposing an

effective hybrid frame selection technique.
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The rest of the paper is organized as follows. The next Section presents the proposed

frame selection method using hybrid technique. Section 3 discusses the database, the

experiments conducted in this study, and the results obtained. Section 4 presents the future

prospects of the proposed hybrid technique and finally, Sect. 5 concludes the paper with

some future research directions.

2 Frame Selection Using Hybrid Technique

This section describes the proposed frame selection method using hybrid technique with an

example.

2.1 Description

The method utilizes the same speech signal to select frames for feature extraction in two

different ways as shown in Fig. 1. It first selects the active speech part of the signal,

discarding non-speech, using the statistical model based VAD. The decision about the

presence and the absence of speech is done by comparing the noisy speech feature vector

with the estimated noise features in accordance with a decision rule based on the Likeli-

hood Ratio Tests (LRT) [26]. It is explained in more details in the Sect. 2.1.1. Frames are

then obtained from the selected active speech part, utilizing the conventional FFR analysis.

speech
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Fig. 1 Feature frame selection using hybrid technique
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A frame size of 25 with 10 ms frame shift is used. This way of frame selection ensures,

evenly capturing of the frames at a fixed rate, only from the active speech part of the signal.

Secondly, the same speech signal is processed again, using the VFR analysis for

selecting frames according to the changes in the temporal characteristics of speech. In this,

dense frames are first selected using the FFR analysis with frame size of 25 ms and frame

shift as low as 1 ms. Distances between two adjacent frames are then calculated using the

difference in energy. These distances are weighted by the signal-to noise ratio (SNR) value

for the additional measurement of the reliability of the frame. Lastly, frames with accu-

mulated SNR weighted energy distances above a particular threshold are selected and

others are discarded. This results in dense frame selection around fast changing speech

regions, sparse frame selection from the steady state regions and no frame selection from

the non-speech regions [24]. It is further described below in Sect. 2.1.2.

Finally, frames selected in these two different ways from the same speech utterance are

simply concatenated to yield the hybrid frames. The average number of frames selected per

second (frame rate) by the hybrid method can be kept near to the 100 Hz frame rate of the

conventional FFR analysis, so that more storage space may not be required. This is dis-

cussed in more details in the Sect. 3.2.

2.1.1 Statistical Model Based VAD

The widely used Gaussian statistical model based VAD is used in this study. It utilizes a

generalized Likelihood Ratio Test (LRT) for decision making, which employs a decision-

directed method to estimate the a priori SNR in signal [26].

1. Assuming additive noise, a binary hypothesis may be formulated as:

H0 : YðtÞ ¼ NðtÞ ðSpeech absenceÞ
H1 : YðtÞ ¼ SðtÞ þ NðtÞ ðSpeech presenceÞ

ð1Þ

where, Y(t), N(t) and S(t) represents the noisy speech, noise, and speech, respectively at

frame t, given by the k-dimensional Discrete Fourier Transform (DFT) coefficients :

YðtÞ ¼ ½Y0ðtÞ; Y1ðtÞ; . . .; Yk�1ðtÞ�T

NðtÞ ¼ ½N0ðtÞ;N1ðtÞ; . . .;Nk�1ðtÞ�Tand
SðtÞ ¼ ½S0ðtÞ; S1ðtÞ; . . .; Sk�1ðtÞ�T

ð2Þ

2. Considering Y(t), N(t), and S(t) as asymptotically independent Gaussian random

variables, the probability density functions conditioned on H0 and H1 are given by:

pðYðtÞ j H0Þ ¼
Yk�1

j¼0

1

pkn;j
exp

 
� j YjðtÞ j2

kn;j

!
ð3Þ

pðYðtÞ j H1Þ ¼
Yk�1

j¼0

1

pðkn;j þ ks;jÞ
exp

 
� j YjðtÞ j2
ðkn;j þ ks;jÞ

!
ð4Þ

where, kn;j and ks;j represents the variances of Nj and Sj, respectively.

3. The likelihood ratio for the jth frequency bin is defined as:
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^j �
pðYjðtÞ j H1Þ
pðYjðtÞ j H0Þ ¼

1

1þ nj
exp

 
cjnj

1þ nj

!
ð5Þ

where, nj � ks;j
kn;j
, and cj �

jYjðtÞj2
kn;j

represent the a priori and a posteriori signal-to-noise

ratio, respectively. nj is estimated by the decision directed method [26].

4. The final decision rule is given by the geometric mean of the individual frequency

bands,

log^ ¼ 1

k

Xk�1

j¼0

log^j?
H1
H0g ð6Þ

where, g represents a preset threshold.

2.1.2 VFR Analysis Method

The VFR analysis method used is based on the ‘‘a posteriori’’ SNR weighted energy

distance’’ [24].

1. Dense frames of the speech utterance are selected at a fixed rate with 25 ms frame size

and frame shift as low as 1 ms.

2. A posteriori SNR weighted energy distance between two adjacent frames is calculated

as:

DSNRðtÞ ¼ j logEðtÞ � logEðt � 1Þj � SNRpostðtÞ ð7Þ

where, E(t) is the energy of frame t, and SNRpostðtÞ is the estimated a posteriori SNR

value of frame t.

3. For the calculation of the threshold T for frame selection, a variant sigmoid function of

logEnoise is used. This function is used to set a smaller threshold for clean speech, so

that more frames may be generated from it. The variant sigmoid function is expressed

as:

f ðlogEnoiseÞ ¼ Aþ B

1� e�2ðlogEnoise�13Þ ð8Þ

Here, Enoise is the estimated noise energy of the utterance, parameters A and B decide

the average frame rate (number of frames per second) and is discussed again in

Sect. 3.2. The value 13 is chosen to make the turning point of the sigmoid at an a

posteriori SNR between 15 and 20 dB.

Finally, threshold T is given by:

T ¼ DSNRðtÞ � f ðlogEnoiseÞ ð9Þ

where, DSNRðtÞ is the average of the distances DSNRðtÞ taken over the entire utterance.

4. Frame selection is performed in this step. The weighted distances DSNRðiÞ are

accumulated as: AccðiÞ ¼ Accði� 1Þ þ DSNRðiÞ from frame i ¼ 1; 2; 3; . . . and

Accð0Þ ¼ 0.

Whenever, AccðiÞ[T at i = n, frame n is selected and the Acc value is reset. The

accumulation process is restarted from i = n?1. This is continued till the end of the

frames.

The SNRpostðtÞ in (7) is calculated as:
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SNRpostðtÞ ¼ log
EðtÞ
Enoise

ð10Þ

Enoise in (8) and (10) is estimated by taking the average energy of the initial 10 frames

that are assumed to be non-speech only, corresponding to approximately 34 ms long

signal.

2.2 An Example

Figures 2 to 4 illustrates how frames are selected using the VAD, VFR and the proposed

hybrid technique for the speech utterance ‘‘73’’ i.e. Seventy Three. For comparison, frames

selected using the FFR analysis has also been shown. In these Figs., Panel-1 shows the

time-domain waveform of the speech utterance together with the VAD decision (pulsed

waveform, in which speech part is shown above 0 level and the non-speech part is shown

as the 0 level). Panel-2 shows the wideband spectrogram of the utterance. Panel-3 shows

the frame selection by the conventional FFR analysis with 25 ms frame size and 10 ms

frame shift. Each bar indicates that a frame has been selected. Panel-4 shows the frame

selection using FFR analysis as in Panel-3, but only from the active speech part selected by

the VAD (indicated in Panel-1). Panel-5 shows the VFR frame selection, and Panel-6

shows the proposed frame selection using the hybrid technique, referred to as Proposed.
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Fig. 2 Frame selection for the clean speech utterance
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Figure 2 presents the frame selection by the above mentioned methods for the clean

utterance. Figure 3 depicts the frame selection for the Babble noise corrupted speech

utterance at an SNR of 15 dB (Fig. 3a) and 5 dB (Fig. 3b), respectively. Similarly, Fig. 4

shows the frame selection for the Car noise corrupted speech utterance at an SNR of 15 dB

(Fig. 4a) and 5 dB (Fig. 4b), respectively.

From Figs. 2 to 4, the followings can be observed:

– Compared to the FFR analysis, VAD tries to captures frames at a fixed rate only from

the active speech part. VFR analysis method selects more frames at the transient

regions, fewer frames at steady state regions and no frames from the non-speech

regions.

– In the presence of Babble noise (Fig. 3), VFR performed better, compared to the VAD

in rejecting the non-speech part, which is before the start of the utterance.

– But in the presence of Car noise (Fig. 4), the VAD method captured the speech part

more efficiently than the VFR.

This gives an indication that the use of the hybrid technique for frame selection may prove

beneficial as it will be adding up the different and complementary characteristics of the

individual methods used for the hybrid.

3 Experiments and Results

This section is organized as follows. Section 3.1 describes the speech database used for the

experiments. Section 3.2 investigates the different parameter values for the threshold

function of the VFR method for selecting the average frame rate, and its effect on the

identification accuracy is studied. Section 3.3 describes the different speaker identification

experiments conducted for evaluating the performance of the proposed frame selection

method using hybrid technique. Finally, Sect. 3.4 presents the results obtained and

discussions.

3.1 Database

Noisy YOHO database were used for conducting the experiments. For this, eight different

types of noise signals from the Aurora II database [27], representing environmental noises

were taken. These noise signals were artificially added to the clean YOHO speech [28] to

generate the noisy YOHO database. YOHO database consists of 138 speakers (106 males

and 32 females) with connected number utterances like ‘‘76-39-57’’. It was recorded in a

three months time period from a quite office environment. Although some office noise was

present, in this work, it was considered as clean speech. The training data were collected

separately from the testing data from 4 recording sessions collecting 24 utterances (ap-

proximately 5s long) from each. Therefore, a total of 96 utterances (480s of speech) per

speaker were used for training. For testing, 10 recording sessions were conducted col-

lecting 4 utterances (approximately 5s long) from each. Therefore, a total of 40 utterances

per speaker were used, resulting in 5520 tests to evaluate the system. To generate the noisy

YOHO speech database, eight different noises, namely, Babble, Exhibition, Restaurant,

Airport, Car, Street, Subway and Train from the Aurora II database were artificially added

to the clean YOHO speech at four different SNRs of 5, 10, 15 and 20 dB. For noise

addition, an equal speech length noise signal is randomly cut from the noise signal (as-

sumed to be very long compared to the speech utterances) and is then added to the speech
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Fig. 3 Frame selection for the Babble noise corrupted utterance at SNR of 15 and 5 dB. a 15 dB SNR.
b 5 dB SNR
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Fig. 4 Frame selection for the car noise corrupted utterance at SNR of 15 and 5 dB. a 15 dB SNR. b 5 dB
SNR
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at the desired SNR. To train the speaker models, only clean YOHO train data were utilized,

and for testing, both clean and noisy YOHO test data were used.

3.2 Average Frame Rate and Speaker Identification Accuracy

The average frame rate i.e., the number of frames selected per second by the VFR analysis

method varies with the values of the parameter A and B of the sigmoid function (8), used in

the calculation of the threshold (9) for frame selection. For the speech recognition appli-

cation [24], in which, what is spoken i.e., the content, plays an important role, it is found

that, using the parameter values of A = 9 and B = 2.5, gave an average frame rate of

100 Hz and it showed good speech recognition performance. Here, choosing a frame rate

which was not near to the frame rate value of 100 Hz, resulted in a mismatch with the

front-end processing and significant decrease in recognition accuracy was observed.

The present study deals with the speaker identification, where what is spoken is not

important, instead who is speaking i.e., the person plays an important role. Therefore, the

effect of different values of parameters A and B on the speaker identification accuracy is

investigated in this Subsection. Different A and B values were chosen to select the average

frame rate in the range between 50 and 100 Hz, and the same is tabulated in Table 1.

Speaker identification experiments with VFR analysis method were carried out by using

these values of A and B corresponding to frame rates between 50 and 100 Hz. These

experiments were conducted on a smaller YOHO database, consisting of initial 21

speakers, and the noisy test data corrupted with only Babble and Car noises were included.

The results obtained were tabulated in Table 2.

From Table 2, it can be observed that changing the parameters A and B that results in

different frame selection rate did not result in any significant change in the average speaker

identification accuracy. An improvement in average speaker identification accuracy is

seen, when the value of the parameters were A = 9 and B = 2.5 corresponding to a frame

selection rate of 60 Hz. As the present study aimed for obtaining the highest identification

accuracy, the average frame rate of 60 Hz with the parameter values of A = 9, and B = 2.5

were chosen for all further experiments involving VFR analysis method, either individually

or in hybrid.

The proposed frame selection method using hybrid technique simply concatenates the

frames selected by the VAD and the VFR method. Using the values A = 9 and B = 2.5 in

the threshold function, corresponding to 60 Hz average frame rate of VFR analysis

method, the average frame rate of the proposed frame selection using the hybrid technique

is found to be 110 Hz. This is considered optimal as it will use almost the same storage

space, which is used in the conventional FFR analysis with 100 Hz frame rate.

Table 1 Parameters A, B and
average frame rate

Parameters Average frame rate (Hz)

A B

12 2.5 50

9 2.5 60

7 2 70

5 2 80

4 1.5 90

3 1.5 100
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3.3 Speaker Identification Experiments

A comparison of the main methods used in the VFR analysis has been carried out by

Guarasa et al. [29] for speech recognition application. The energy weighting and the

distance accumulation approach [30] showed better performance over the other methods.

Recently, ‘‘a posteriori’’ SNR weighted energy distance based VFR analysis method has

shown good performance for the speech recognition over these and other methods [24, 25].

Therefore, in the present study for speaker identification under various noise conditions, ‘‘a

posteriori’’ SNR weighted energy distance based VFR analysis method has been selected

for investigation and as one of the baseline. Let us call this method as Bsln-VFR.

The standard Gaussian statistical model based VAD has been selected as the second

baseline for the study. Let us call this method as Bsln-VAD. In addition to these two, the

conventional FFR approach, employing no robustness method has also been included for

performance comparison. Let us call this method as Bsln-no robustness. Speaker identi-

fication experiments using the complete YOHO database consisting of 138 speakers were

conducted for the Bsln-no robustness, Bsln-VAD, Bsln-VFR and the proposed frame

selection method using hybrid technique, referred to as Proposed HVV (Hybrid VAD and

VFR).

Speech features for speaker modeling were extracted from each of the selected frames.

Twelve Mel-Frequency Cepstral Coefficients (MFCC) excluding the 0th coefficient were

used for feature extraction. Speakers were modeled by a 64 component Gaussian mixture

model utilizing the expectation-maximization algorithm. The speaker whose model max-

imizes the likelihood of the test utterance was decided as the correct speaker.

3.4 Results and Discussions

The identification accuracies (no. of correctly identified utterances/total no. of utterances

tested � 100 %) for the different speaker identification experiments conducted in this study

under clean and noisy test data are shown in Table 3. It can be observed that, the Proposed

Table 2 Identification accuracies (%) for different average frame rates in VFR method

Noise SNR
(dB)

Average frame rate (Hz)

100Hz A =
3, B = 1.5

90 Hz A =
4, B = 1.5

80 Hz A =
5, B = 2

70 Hz A =
7, B = 2

60 Hz A =
9, B = 2.5

50 Hz A =
12, B = 2.5

Clean — 97.98 98.21 98.33 97.86 97.98 98.33

Babble 20 96.31 95.83 96.31 96.55 96.67 95.95

15 92.86 92.74 93.21 93.21 93.45 92.98

10 80.36 81.55 81.79 82.86 81.43 82.50

5 55.36 56.19 52.62 57.98 59.40 56.55

Car 20 94.52 94.17 94.52 94.17 93.69 93.81

15 84.88 85.60 85.83 85.24 85.95 84.17

10 63.69 64.05 63.45 63.93 65.36 64.88

5 40.95 41.43 37.36 41.07 41.79 38.10

Average 78.55 78.86 78.14 79.20 79.52 78.59
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Table 3 Identification accuracies (%) for the different methods across various noise scenarios

Noise SNR (dB) Bsln-no robustness Bsln-VAD Bsln-VFR Proposed HVV

Babble 20 67.71 88.81 88.25 91.91

15 46.63 73.51 81.91 86

10 22.79 46.86 65.05 70.61

5 6.35 16.13 36.82 36.66

Average 35.87 56.33 68.01 71.29

Exhibition 20 37.13 78.25 75.91 84.16

15 17.71 54.19 55.64 65.25

10 7.78 26.65 26.63 32.72

5 3.05 9.48 7.81 10.71

Average 16.41 42.14 41.5 48.26

Restaurant 20 70.59 88.74 88.51 91.79

15 50.38 72.34 82.12 85.97

10 24.6 45.45 63.67 69.76

5 6.76 16.35 29.35 33.14

Average 38.08 55.72 65.93 70.17

Airport 20 60.66 88.74 88.67 91.82

15 39.49 75.69 82.04 86.64

10 18.91 52.79 67.31 72.44

5 6.64 22.68 37.13 41.13

Average 31.43 59.98 68.88 73.01

Car 20 44.53 87.27 84.3 89.14

15 26.11 73.06 70.07 78.57

10 11.71 49.77 46.37 56.11

5 3.44 22.62 21.08 26.76

Average 21.45 58.18 55.46 62.65

Street 20 46.12 82.23 79.08 86.46

15 27.5 63.71 64.96 73.93

10 12.78 39.99 40.48 51.16

5 5.02 18.33 16.01 22.46

Average 22.86 51.07 50.13 58.5

Subway 20 29.15 74.6 73.77 80.98

15 11.86 48.95 53.77 60.77

10 4.21 20.74 26.63 30.82

5 1.12 7.32 8.56 9.92

Average 11.78 37.9 40.69 45.63

Train 20 52.96 86.55 86.68 90.52

15 30.75 73.48 77.27 82.81

10 12.69 52.62 57.43 64.3

5 3.83 26.42 27.36 32.83

Average 25.07 59.77 62.19 67.62

Total average 25.34 52.64 56.6 62.14

Clean 91.32 96.74 91.78 94.98
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HVV method has shown the highest identification accuracies compared to the baseline

methods for all noise scenarios at all SNRs considered, except for the Babble noise cor-

rupted speech at 5 dB SNR in which Bsln-VFR performed better. When an average of the

identification accuracies of different noise scenarios has been considered, Proposed HVV

method achieved an absolute improvement of 36.80% and a relative improvement of

145.22% from the Bsln-no robustness method. From the Bsln-VAD, it achieved an

absolute improvement of 9.50% and a relative improvement of 18.05%. It has also shown

an absolute improvement of 5.54% and a relative improvement of 9.79% from the Bsln-

VFR method.

It can also be observed that, the Proposed HVV has achieved a good performance for

the Babble, Restaurant and Airport noise scenarios at SNR of 5 dB compared to the Bsln-

VAD. It has achieved an absolute improvement of 20.53% and a relative improvement of

127.28% for the Babble noise, an absolute improvement of 16.79% and a relative

improvement of 102.69% for the Restaurant noise and an absolute improvement of 18.45%

and a relative improvement of 81.35% for the Airport noise over the Bsln-VAD method.

Compared with the Bsln-VFR, it has achieved an absolute improvement of 6.45% and a

relative improvement of 40.29% for the Street noise and an absolute improvement of

5.47% and a relative improvement of 20% for the Train noise at SNR of 5 dB. It is seen

that the performance of the Bsln-VAD method is better than the Proposed HVV method for

clean speech. It is also seen that the performance of the Proposed HVV method is better

than the Bsln-VFR for clean speech. As Proposed HVV combines VAD and VFR method,

it is concluded that for clean speech, the effects of VFR is more on the Proposed HVV

method. However in case of noisy conditions, Proposed HVV provides better results in

comparison to both VAD and VFR methods.

Figure 5 also shows the comparison of the Proposed HVV method with the different

baseline methods for various noise scenarios. The graph shows the identification accuracies

calculated by averaging the accuracy values at the four SNR values of a noise scenario. It
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also confirms the better performance of the Proposed HVV method over the baseline

methods.

Figure 6 compares the average identification accuracies of the proposed and the base-

line methods at four SNR values and is also summarized in Table 4. The average iden-

tification accuracy is calculated by averaging the identification accuracies of the eight

noise scenarios at a particular SNR value. It also shows the better performance of the

Proposed HVV over other baseline methods.

4 Future Prospectus

A promising usage of the proposed hybrid method is in person identification through voice

from a distance. It is used for gaining access to a shared application from a distance. Since,

telephony system is already in use, the voice of the person for identification can be easily

provided from a distance through a mobile phone. Once the person is identified as an

authorized person from a group of N people, the person gain access to the application and a

customized service can also be provided to the person. Another usage of this technique is

in smart television. Imagine an old person giving command to the smart TV through voice,

the smart TV, on the other hand, will first recognize the voice as one of the authorized

person from a group, say, one of the family members, and then play the channels according

to the person preferences. Smart TV is one such example, others can be smart air condi-

tioner, smart door lock and smart washing machine. The success of the speaker identifi-

cation has the power to completely revolutionize the consumer electronics market.

Through this, more secure, compared to the password based method, which can be for-

gotten or stolen, and easy interaction with the electronic device can be achieved. This will

be particularly liked by the elderly members of the society.
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5 Conclusions

This paper presents a frame selection method using hybrid technique which combines

Voice Activity Detection (VAD) and Variable Frame Rate (VFR) analysis for robust

speaker identification. The method efficiently captures the speaker specific information

from the time-domain speech signal, under various noise scenarios compared to the con-

ventional fixed frame rate analysis method. It also provides the flexibility to adjust the

average frame rate of the method, so that an optimum performance according to the

application may be attained.

Experimental results on noisy YOHO database has shown that, the proposed feature

frame selection method using hybrid technique outperforms the ‘‘a posteriori’’ SNR

weighted energy distance based VFR analysis method and the widely used Gaussian

statistical model based VAD method for all eight noise scenarios. Future studies will

involve the use of speech enhancement techniques together with the hybrid technique to

further improve the identification accuracy of the system.
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