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Abstract In cognitivewireless networks, spectrumowners (primary users, PUs)may lease the

unused spectrum to unlicensed users (secondary users, SUs). This spectrum is used to establish

a secondary network that serves real time connections. The size of leased spectrum influences

both the admitted traffic of SUs and the cost of spectrum. For this spectrummarket, we present

unsupervised learning paradigm as a means for extracting the optimal control policy for

spectrum trading. This policy gives spectrum owner the opportunity to maximize its profit by

adapting network resources to the changes in the network status and the market conditions. To

meet different requirements, the problem is formulated as reward maximization with penalty

for delay. The numerical results show that the proposedmachine learningmethod is able to find

an efficient trade-off between profit loss, and average delay for SUs.

Keywords Cognitive radio � Dynamic spectrum access � Spectrum resource

management � Spectrum trading � Wireless mesh networks � Markov decision

process

1 Introduction

Wireless mesh networks (WMNs) have emerged recently to provide high-bandwidth

network, extend internet access, and other networking services. Hence, WMNs are pre-

dicted to be a key technology that offer ubiquitous connectivity to the end users

[12, 13, 21]. Although WMNs provide better services in term of flexible network
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architectures, easy deployment and configuration, and fault tolerance, still the limited

available spectrum and the inefficiency in the spectrum usage degrade the network per-

formance significantly.

Nowadays, the scarcity of bandwidth is the main challenge in WMNs technology.

Indeed, beside the dramatic increase in the access to the limited bandwidth, fixed spectrum

assignment policies prevent users from dynamically utilizing the unused spectrum, which

results in very poor utilization of spectrum. To overcome spectrum scarcity problem,

Federal Communications Commission (FCC) allows SUs to access unutilized spectrum if

they do not interfere with PUs [12, 13, 21].

Dynamic spectrum access techniques enable users to choose operating spectrum on-

demand. Spectrum Management is one of the key challenges of dynamic spectrum access

techniques [10, 11, 43]. Besides utilizing the unused spectrum, we also need an efficient

mechanism that considers maximizing the spectrum owner profit while sharing spectrum.

Presently, new technologies such as cognitive radio (CR) motivate the concept of

opportunistic spectrum access using dynamic and adaptable spectrum sharing. Moreover,

the social and economic value of spectrum applications is enhanced. CR is a promising

technology for next generation wireless networks. In CR, spectrum can be shared among

several users to improve spectrum utilization. Cognitive user can select the best channel

[13, 21]. Moreover, CR encourages implementing new more flexible spectrum sharing

paradigms. These sharing paradigms include: underlay, overlay, and spectrum trading

techniques [1, 2]. In overlay technique, the spectrum can be accessed by SU if it is free.

Underlay technique allows SUs to transmit concurrently with PU if the signal power of SU

is below the interference temperature of PU. Unfortunately, SUs access the licensed

spectrum without paying any usage charge to PUs in overlay and underlay approaches.

Although these approaches solve spectrum scarcity problem, it is not likely to be accepted

in the current spectrum market since the PUs do not have any financial incentive from SUs

usage of spectrum.

In order to enhance SUs’ satisfaction and generatemore revenue, PUs lease free spectrum to

SUs.This process is referred to as spectrum trading [1, 2]where spectrum is purchased and sold.

In this paradigm, spectrum sharing among PUs is a key challenging problem.

This paper addresses when and how spectrum is shared between PUs and SUs based on

economic model and under dynamic traffic load conditions. Economic model includes cost

and reward of spectrum trading. Our design objective is to improve spectrum utilization

and maximize PUs’ profits, while meeting certain predefined constraints. In our work, PUs

coordinate among themselves to trade spectrum and maximize their profits. The rein-

forcement learning (RL) framework [8, 9, 29, 36] is used for extracting the optimal trading

policy. RL policy is used to serve spectrum requests in a given single queue using an

adaptable amount of spectrum with certain reward and cost parameters. Spectrum requests

are served based on the gained profit. In this paper, PU may borrow spectrum if its

spectrum is inadequate to serve SUs. However, a request is placed in the queue if there is

no spectrum for serving it.

Our trading approach can be applied in a style of trading where the agent (PU) charges

the clients for serving their requests. PUs trade their services on cloud resources for money.

Our approach presents a general framework for studying, analyzing, and optimizing other

resource trading in the wireless environment.

Hence, the contribution of this paper comes in twofold. First, we describe how the

concept of RL is used to obtain a computationally feasible solution to the considered

spectrum trading problem. Second, we present an extensive numerical evaluation, based on

simulation of the RL-based method.
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The rest of the paper is organized as follows. Related works to spectrum trading is

reviewed in Sect. 2. Section 3 describes the system model and assumptions. The RL

formulation is presented in Sect. 4. Section 5 presents the performance evaluation results.

Finally, the paper is concluded in Sect. 6.

2 Related Work

WithDynamic SpectrumAccessing (DSA), spectrum trading is proposed to solve the problem

of spectrum scarcity [12, 20]. Nevertheless, the implementation of spectrum trading faces

several challengesbecause of thefluctuating nature of the available spectrumand the changes in

the spectrum demand. Some appropriate incentives for spectrum trading must be provided to

the PUs for leasing their spectrum and to compensate SUs for waiting time. Spectrum trading is

adopted in [20, 21] for spectrum management. The scheme provides PUs incentives (e.g.

money) to temporarily lease their spectrum, aswell as provides SUs opportunities to access the

unused spectrum. So, spectrum trading is used to promote PUs for sharing their unused spec-

trum. The main approaches for spectrum trading are summarized in [31]. These approaches

include game theory, auction theory, and microeconomics.

Multiple PUs sell spectrum tomultiple SUs in [32]. Non-cooperative game is used tomodel

the competition among the PUs and evolutionary game is used for modeling SUs’ behavior in

the spectrum market. New system for spectrum trading is proposed in [27]. In order to react

dynamically and locally to the secondary spectrummarket, the proposed system [27] combines

pricing, spectrum allocation, and billing. A joint power/channel allocation scheme is proposed

in [37] for trading free channels. The proposed trading scheme uses a pricing strategy to

improve the network’s performance. A non-cooperative game based on pricing scheme is

proposed in [41] to control the uplink power of the cognitive network. Auction theory is used in

[41] for the problem of dynamic spectrum sharing.

An auction mechanism is applied in [39] for spectrum sharing among SUs using spread

spectrum signaling. In order to generate additional revenue, multiple auctioneers sell idle

spectrum bands for SUs in [23]. A Multiauctioneer Progressive auction mechanism (MAP) is

proposed where each auctioneer (PU) raises trading price and each bidder (SU) subsequently

chooses one auctioneer for bidding. The problem of maximizing PU’s average profit is tackled

in [30]. The problem of spectrum pricing is investigated in the presence of PUs and SUs [24].

Stochastic dynamic programming is used to find the optimal spectrum price.

Markov approach is used in [38] for spectrum trading. The interactions between PUs and

SUs are modeled using continuous time Markov chains. The spectrum resources can be effi-

ciently and fairly shared among SUs in an opportunistic way without interrupting the spectrum

usage of the PUs by studying the optimal spectrum access probabilities of SUs. Authors in [15]

present a cross-layer design for reliable data transmission over a cognitive radio network. The

new design combines adaptive modulation at the physical layer and hybrid automatic repeat

request at the data link layer. The proposed scheme follows the principles of opportunistic

spectrum access that utilizes an optimal power adaptation policy for channel allocation. Three-

dimensional trafficmodel is proposed in [42]. Thismodel is used to identify and to utilize those

under-utilizedchannel opportunities efficiently. Furthermore, a newscheme for scheduling free

channel is proposed. The scheme provides SUs with Quality of Service (QoS) support.

Learning-based schemes are proposed in [7] to sense multiple access (CSMA) for SUs

when the PU operates with the conventional CSMA/CA scheme. The learning algorithms

are applied to tune the value of transmission probability to balance the channel idle time
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and collision costs due to the fact that both the PU and the SUs are sharing the same

wireless channel. The authors in Alsarhan et al. [3, 4] propose a new approach for utilizing

the unused spectrum. The new scheme merges three techniques for accessing the spectrum

as one combined system. The new combined scheme utilizes the spectrum in an efficient

way in the cognitive network. Simulation results show the ability of the new scheme to

serve extra traffic. In [19], transmission opportunity-based spectrum access control pro-

tocol is proposed with the aim to improve spectrum access fairness and to ensure safe

coexistence of multiple heterogeneous unlicensed radio systems. In the proposed scheme,

multiple radio systems coexist and they dynamically use the available free spectrum

without interfering with PUs.

The concept of CR is proposed in [34] for large-scale wireless systems, which oppor-

tunistically utilize network resources including both spectrum bandwidth and radio

availability. Free resources cannot be predetermined in large-scale wireless systems, due to

various reasons such as interference and dynamic traffic load. The proposed CR not only

establishes dynamic wireless networks, but also provides reliable network QoS. A MAC-

layer QoS provisioning protocol is proposed for CR in [22]. The proposed protocol

combines adaptive modulation and coding with dynamic spectrum access.

A novel spectrum trading system is proposed in [33] and a theoretical study on the optimal

session based spectrum trading problem is presented under multiple cross-layer constraints in

multi-hop CRs. A general secondary spectrum trading framework is presented in [25]. Using

this framework a PU can sell access to its unused or under-utilized spectrum resources in the

form of certain fine-grained spectrum-space–time unit. PUs lease free spectrum for SUs with

QoS guarantees in [3, 4]. Free spectrum is used to establish the links of secondary network. The

Markov decision process is used to derive the spectrum adaption scheme. Free spectrum is used

to establish the links of secondary network for SUs. Generally, the leased spectrum for SUs

influences the QoS for the PU and the gained rewards. The main concern of the proposed

spectrum sharing scheme in [1] is maximizing a PU’s reward andmaintaining QoS for the PUs

and for the different classes of SUs. Authors propose cooperative scheme for spectrum sharing

amongPUs in [2]. In this scheme, PUs exchangechannels dynamically based on the availability

of neighbor’s idle channels. Simulation results show the ability of this cooperative scheme to

maximize the profit of PUs and utilize the spectrum efficiently. Authors in [5] design new

dynamic auction where spectrum is periodically auctioned off tomeet SUs demands over time.

The proposed auction scheme determines the size of spectrum to be auctioned for each session.

Each PU attracts SUs to lease spectrum by setting a lower price than the other PUs in [26].

Game theory is used to analyze the price competition scenario and seek a Nash Equilibrium

(NE).Novelmatching-basedmulti-radiomulti-channel spectrum trading (M3-STEP) scheme is

proposed in [40]. Authors employ conflict graphs to characterize the interference relationship

among SUs with PUs. M3 -STEP algorithm is suggested to maximize the revenue of PUs.

Authors [18] study spectrum trading problem in a self-organized and two-tier heterogeneous

cellular network. The problem is formulated as a Stackelberg game. Themain objectives of the

proposed scheme are:maximizing the revenue ofmacro eNodeB (MeNB), affordingminimum

required bandwidth for each home eNodeB (HeNB), enhancing per femto-user throughput, and

providing better quality of service for macro-users nearby each femto-cell. The designed

discounting strategy is applied for the extra bandwidth request of HeNBs to encourage them in

supporting nearby macro-users.

Authors propose new scheme for SUs in [28] to access the unused spectrum of PUs. SUs

act autonomously and fast in order to detect vacant communication channels. Reinforce-

ment learning scheme is proposed to determine the sensing order of the available channels

employing two alternative update rules. Authors propose new scheme for spectrum trading
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in [6]. Trading scheme allows PU’s to be efficiently shared with the SUs in exchange for a

monetary cost. The scheme is based on demand and supply economics wherein the highest

bidder for spectrum is awarded with getting access to the offered spectrum. Authors

consider a three-layered spectrum trading market consisting of the PU, service providers,

and SUs in [14]. They jointly study the strategies of the three parties. PU determines the

auction scheme and spectrum supplies to maximize its revenue. However, most of these

studies focused only on optimizing the pricing policy without considering admission of

worthy spectrum requests which could further increase the PU’s profit. Moreover, they

neglect the waiting time for SUs’ requests.

3 Network Overview

In this section, we present our assumptions. As seen in Fig. 1, a wireless mesh network has

several mesh routers (MRs) and eachMR serves several mesh clients (MCs) that jointly form a

cluster. The WMN structure consists of several clusters, and all uplink/downlink flows are

directed from theMCs towardsMRs. Each cluster can be imagined as a singleWLAN system.

In this secondary network, a MR plays the role of access point to serve the MCs. While MRs

have fixed locations, MCs move and change their places arbitrarily.

Each router and client is equipped with a single IEEE 802.11b based transceiver. The spec-

trum is divided into non-overlapping channels which is the basic unit of allocation. We define a

PUas a spectrumowner that leases free spectrum toMRs. PUoffersK channels for the secondary

network. MRs use this spectrum to serve MCs. The jth class of SUs is characterized by:

• Required number of channels.

• Request arrival rate kj
• Exponentially distributed service time with mean 1

�
lj.

• Price parameter pm that SU of jth class pays for PU to lease a channel m.

The price parameter pm is a control parameter specified by PU and it can be used to

achieve different conflicting objectives for the PU. It can be used to maximize the PU’s

reward and to enforce fairness among different classes of users. In this work, the price

parameter is used for maximizing the PUs’ reward.

Each PU has one finite FIFO queue for SUs requests. PU receives spectrum requests

from SUs (MRs) and serves them either using its own spectrum or using the borrowed one.

The PU borrows spectrum for SUs if their requests are worthy. The signaling protocol

which was suggested for spectrum borrowing in [1] is used in our scheme. Spectrum

request is added to the queue if the available spectrum is insufficient to accommodate it

and the PU fails to borrow spectrum from other PUs.

The request is served when the PU has sufficient bandwidth and SU accepts to pay for

the spectrum. The request is rejected if the SU refuses the offered price of spectrum.

Moreover, if the queue is full the request is rejected. The network is assumed to consist of

N PUs. In our model, we define the following components:

• Spectrum status pool S at PU i:

S ¼ si;mjsi;m 2 0; 1f g
� �

is a binary matrix of spectrum status. If si;m ¼ 1 then channel

m is occupied by PU i.

• Interference constraint among PUs:

let I ¼ li;jjli;j 2 0; 1f g
� �

is N 9 N binary matrix that represents the interference among
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PUs; if li;j ¼ 1 then PUs i and j cannot use the same channel at the same time because

they would interfere with each other.

• Channel reward R:

let R ¼ rj;m
� �

describes the reward that a PU gets successfully by leasing channel m to

the SU of class j. Assume the price of leasing channel m is pm per time slot, t is the

holding time of channel m; the reward that a PU gets from leasing channel m to the SU

of jth class is computed as follows:

rj;m ¼ tpm ð1Þ

Each PU specifies pm to maximize its reward. Let Ti represent the current reward of PU

i. Ti is computed as follows:

Ti ¼
X

8j2J;8m2K
rj;m � si;m ð2Þ

• Borrowable channel set B:

our scheme allows two neighbors to exchange channels to maximize their reward while

complying with the conflict constraint from the other neighbors. The set of channels

that PU i can borrow from PU j are expressed as:

B i; jð Þ ¼ L jð ÞnUw2NG ið ÞL wð Þ ð3Þ

where L(j) represent the list of channel of PU j, NG( i) is a list of neighbors of a PU i.

The symbols used in this paper are listed in Table 1.

Fig. 1 Cognitive network architecture
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4 Description of Reinforcement Learning Based Model

RL is a sub-area of machine learning that is concerned with the way a system administrator

takes actions at different circumstances in work environment to maximize some notions of

long-term reward [8, 9, 29, 36]. In order to maximize the reward, RL is used to extract an

optimal control policy that maps states of the system to the actions that should be taken by

Table 1 List of symbols used in
this paper

Parameter Symbol

Number of pus N

Service time for SUs of the jth class lj

Reward parameter for jth class of SUs rj;m

Number of channels per a PU K

Request arrival rate for jth class of SUs kj

Spectrum status pool S

Interference matrix among pus I

Reward vector R

Price of leasing channel m pm

The total reward of PU i Ti

Borrowable channel set B

The list of channels for jth PU L (j)

A list of neighbors for ith PU NG (i)

State space Z

The number of jth class requests Zj

The length of queue l

The maximum queue size Q

Action space A

Spectrum size at state Z f Zð Þ
Leasing policy p

The reward of leasing channel m for the SU of class j rj;m

The mean value of reward R

The action that is taken at time t at

The size of the leased spectrum Df Zð Þ
The cost of leasing spectrum C

The cost of one spectrum unit b

The average delay of SUs’ requests D

The cost of delay for each second a

The mean value of reward with penalty of delay Rt

The average length of the transition time s

The expected reward at state Zj under policy p R Zj tð Þ;p;T
� �

The approximation of the average reward Rm

The value function at stat Zj under policy p V Zj tð Þ;p
� �

The rate of reward at state Z q zð Þ
The required accuracy �

The discount reward c

Likelihood of reward loss Lr
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the manager. The work environment is typically represented as a finite-state Markov decision

process (MDP). In this section, we introduce the elements of the RL model.

4.1 Basic Formulation of Markov Decision Process

For the basic formulation, we describe the elements of RL that include the objective func-

tion, events, and states of the system. In our model, we have an adaptable free spectrum size

f Zð Þ that is dynamically increased according to the queue length and the gained reward.

The state of the considered system can be described by a matrix Z ¼ Zj
� �

where Zj
denote the number of jth class requests. For state Z, f Zð Þ is the spectrum size that is used to

serve the requests with a service rate f Zð Þl. State transition takes place when a new request

is arrived or a request is served. All possible states are limited by the following constraints:

•
P

j2J
Zj\NK.

• l\Q.

where l is length of queue that represents spectrum demand and Q is the maximum queue

size. At each decision epoch, the system administrator has to take an action among all the

possible actions. When a new request is arrived, the PU should choose one of the following

actions:

• Add the request to the queue and adapt spectrum size by borrowing spectrum from

neighbors.

• Serve the request using the borrowed spectrum.

• Add the request to the queue without borrowing spectrum.

• Serve the request using PU’s spectrum without borrowing.

The set of the possible actions available to PU in state Z is denoted by A.

4.2 RL for Extracting the Optimal Policy

Optimal policy is a policy that gives the maximum reward when the PU adopts it. It

specifies for each state the optimal spectrum size for each class. Basically, in our model the

optimal policy is specified according to the average reward value obtained for each

transition with the offered spectrum size.

For each state, the gained reward depends on the following three parameters: action

reward, cost of spectrum, and cost of waiting time (delay). The PU borrows spectrum for a

new request if it is worthy otherwise the request is queued.

The PU may decrease the offered spectrum (based on reward) when SU departs the

system. Although reducing the size of the spectrum decreases customers’ satisfaction

(since their waiting time increases accordingly), with certain constraints, the PU takes the

action that maximizes its reward. The main focus of this work is to study the long term

average behavior of PU that evolves in time. In our work, spectrum trading problem is

solved within the framework of the theory of continuous-time Markov Decision Processes

(MDP). From MDP theory [36], our system is ergodic, the optimal policy is deterministic

and can be found by applying policy iteration algorithm.

In our work, RL is used to extract the policy, p : Z ! A, for choosing next action at
based on the current stat Z. For each new event in the system, PU senses current state Z and

selects next action. The policy p specifies the set of actions that the PU can take. In our

leasing system, the value f Zð Þl indicates the optimal service rate provided by the allocated
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spectrum f Zð Þ at state Z that maximizes the mean value of reward. The mean value of

reward for policy p� is defined as:

R ¼
X

8j2J;8m2K
rj;m � f Zð Þ � lj ð4Þ

The PU borrows spectrum from its neighbors if its spectrum is inadequate to accom-

modate SUs requests and it is profitable to serve new SUs in terms of profit. Let Df Zð Þ
denote the size of the borrowed spectrum. The mean value of reward for policy p� after
borrowing Df Zð Þ is computed as follows:

R ¼
X

8j2J;8m2K
rj;m � f Zð Þ þ Df Zð Þð Þ � lj ð5Þ

To satisfy its clients, the PU tries to minimize the average delay of requests D. Our

system can be modeled as an M\M\c\k queuing system. Hence, D is computed as in

[17, 35]. The cost of leasing spectrum is denoted by C and it is computed as follows:

C ¼ f Zð Þ � b ð6Þ

where b is the cost of one spectrum unit. In general the delay and the reward are conflicting

objectives, that is when the delay increases the reward also increases since PU can lease

more spectrum for the clients in the queue. On the other hand, the likelihood of losing the

reward increases for large values of D because more SUs may wish to leave the queue. For

the objective function, we select a linear combination of these objectives, which can be

also interpreted as reward maximization with penalty of waiting time and spectrum cost.

The objective function is expressed as follows:

Rt ¼ R� C þ aD
� �

ð7Þ

where a is the delay cost for each time slot which determines the trade-off value between

the reward and average delay. The rate of reward at state Z is given by:

q zð Þ ¼
X

8j2J;8m2K
rj;m � Zj � lj � C þ aD

� �
ð8Þ

4.3 Using the Policy Iteration Algorithm for Extracting Optimal Policy

In ourwork,we apply policy iteration algorithm to extract the optimal policy for spectrum leasing.

Since this algorithm is applied only for discrete Markov processes, we use a uniformization

technique with certain average length of the transition time s [36] to convert continuous-time

Markov into discreteMarkov chainwhere all states have identical sojourn timewithout losing

the information of state sojourn time. Discrete Markov is easy to analyze and setup.

Policy iteration algorithm is a recursive method and it is used to calculate the expected

reward at state until the calculated reward in two successive steps are close enough [8]. Let

us define the expected reward, R Zj t0ð Þ; p; T
� �

, obtained in interval t0; t0 þ Tð Þ of length T:

R Zj 0ð Þ; p; T
� �

¼ E

Zt0þT

t0

q Zj 0ð Þ
� �

dt

2

4

3

5 ð9Þ

The mean value of the reward can be calculated mathematically as follows:
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R pð Þ ¼
lim
T!1

PT
t¼1;8j2J R Zj tð Þ; p; T

� �

T
ð10Þ

The relative value is expressed as follows:

V Zj 0ð Þ; p
� �

¼ lim
T!1

R Zj tð Þ; p; T
� �

� R Zj 0ð Þ; p; T
� �� �

ð11Þ

The relative value in state Zj 0ð Þ is defined as the difference in the future gained reward

when starting at state Zj 0ð Þ compared to reference state Zj tð Þ. To apply the iteration policy,

we apply the following algorithm:

Here, Zj þ Dj Zj; p
� �

denotes the state after accepting the jth class requests, recom-

mended by policy p, in state Zj. In cases where the queue is full, the decision is to reject

new requests and this is defined by Dj Zj; p
� �

¼ 0. So, if new requests arrive, the state

transition is described as Zj þ Dj Zj; p
� �

. In the case of requests departure the state tran-

sition is described as Zj ! Zj � dj; where Zj � dj denotes new state after the departure of

jth class requests in state Zj. The rates of the transitions are kj and Zj � lj, respectively.
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Initially, the system starts at state Zj t0ð Þ where queue is empty and all spectrum is

available. Upon request arrival, the extracted policy p selects an action a0 to maximize rate

reward qðZj t0ð ÞÞ in Eq. (8). As a result of taking action a0, the state of the system transits to

new state Zj t1ð Þ. Then, policy p picks another action a1. As a result of this action, the

system transits to new state Zj t2ð Þ, Policy p pick a2, and so on and so forth. This process

can be represented as follows:

Zj t0ð Þ�!
a0

Zj t1ð Þ�!
a1

Zj t2ð Þ�!
a3

Zj t3ð Þ. . .

Upon taking these actions under policy p, we can define the reward as follows

R Zj t0ð Þ; p
� �

þ R Zj t1ð Þ; p
� �

þ R Zj t2ð Þ; p
� �

. . .

The complexity of our algorithm is measured using the size of the search space Z � A. It

is clear that Z � Aj j  increases exponentially as N � Kw or J increases, because Zj j  
¼ 2N�Kw and Aj j  ¼ 2Jw in the worst case. Note that the optimal policy can be extracted

off-line before a PU starts spectrum leasing, so the extracted policy is stored in a table.

Using the policies table, the PU can trade its spectrum in real time by looking up the table.

In order to determine how PU should determine the price parameter pm for leasing

channel m, we must specify how SUs in a spectrum market react to various values of price.

The most common method of characterizing SUs behavior is by specifying a demand

function that determines the quantity of demanded spectrum for each price offered by the

PU. We assume that the demand function for spectrum is downward sloping where the

quantity of the spectrum demanded decreases as the price for leasing spectrum increases.

The demand function of spectrum in our model is defined as follows:

Q pmð Þ ¼ ap�xm ð17Þ

where waw is a market scaling parameter and x is the price elasticity of spectrum demand.

We assume both parameters are positive.

Definition 1 Price elasticity of spectrum demand (x) is the percentage change in the

quantity of demanded spectrum divided by the percentage change in the price for leasing

spectrum.

The price elasticity of spectrum demand is negative since the demand function is

downward-sloping. The quantity of spectrum demanded and price are inversely propor-

tional. The price elasticity of spectrum demand (x) is computed as follows [16]:

x ¼ � oQ pmð Þ
opm

pm

Q pmð Þ
ð18Þ

In order to maximize its reward, the PU has to select the optimal price for leasing

channel m. The optimal price for leasing channel m is computed as follows:

p�m ¼ argmax pmQ pmð Þ � C þ aD
� �� �

ð19Þ

Theorem 1 The price elasticity of spectrum demand ( x) for the optimal price p�m is

computed as follows:
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x ¼ p�m
p�mQ p�m

� �
� �C þ aD
� � ð20Þ

5 Performance Evaluation

In this section, we present the simulation results that demonstrate the ability of our

spectrum scheme to adapt to different network conditions. The system of PUs and SUs is

implemented as a discrete event simulation. The simulation is written using MATLAB. We

uniformly distribute 4 PUs and each PU is randomly assigned 20 channels. For the mesh

network, 100 MCs are distributed uniformly in the transmission region of the MRs. The

results are presented for several system settings scenarios in order to show the effect of

changing some of the control parameters. Both analytical and experimental results are

presented in this section to illustrate the performance of the proposed leasing scheme. The

network parameters chosen for evaluating the algorithm and the methodology of the

simulation are shown in Table 2.

Note that some of these parameters are varied according to the evaluation scenarios. The

key performance measures of interest in the simulations are::

• Mean value of reward for the PU which is computed using Eq. (7). It is worth

mentioning that simulation results for the mean value of reward are found to closely

match the analytical results for the approximation of the average reward that is

computed using Eq. (10).

• Likelihood of reward loss Lr for a PU i which computed as follows:

Lr ¼ 1� Rt

Ti
ð21Þ

• Average request delay which is the time a request waits in the queue until it can be

served.

Table 2 Simulation parameters
Parameter Value

Number of mesh routers 10

Number of clients 100

Number of primary users 4

Number of channels per a PU 20

Total number of channels 80

Number of messages per client Random

Type of interface per node 802.11 b

MAC layer IEEE 802.11 b

Transmission power 0.1 W

Packet size 512

k1 (arrival rate of SUs class 1) 1

k2 (arrival rate of SUs class 2) 1

k3 (arrival rate of SUs class 3) 1

k4 (arrival rate of SUs class 4) 1

Blocking probably constraint for a PU 0.015

a 0.4

b 4
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5.1 The Impact of Delay Penalty on the Likehood of Reward Loss

Simulations are done to explore the effect of delay penalty on the likelihood of reward loss.

Figure 2 shows the proposed leasing scheme performance (reward loss) as a function of the

delay penalty weight a. We assume the maximum size of queue is Q = 5 and all SUs

classes have the same arrival rates (spectrum demand). It is clear from the figure that the

reward loss increases with the delay penalty weight a. The figure shows that the likelihood
of losing the reward increases as the delay penalty increase, resulting in more reward loss.

PUs compete with each other on the basis of the QoS their clients experience. PUs realize

that time is money for the SUs.

The likelihood of reward loss increases as the traffic load increases in the secondary

network. As time elapses, more requests arrive to the system. To reduce the risk of reward

loss, the leasing scheme should allocate as much possible spectrum as it can for SUs to

decrease their waiting time. Figure 3 shows the reported delay for different spectrum sizes.

It is clear that the delay decreases as the number of offered spectrum increases. PUs may

increase the size of the offered spectrum by borrowing spectrum from other PUs. High

demand means consumers would simply line up to get service regardless of waiting time.

The chance of losing the reward decreases as the demand increases.

5.2 The Likelihood of Reward Loss as a Function of the Spectrum Cost
and Service Demand

The aim of this experiment is to simulate the behavior of our RL leasing scheme under

different rates of service cost. Figure 4 shows the likelihood of reward loss for each service

cost. It is clear that there is a direct correlation between the service cost and the likelihood

of reward loss. PUs increase the price of service as the service cost increases. Clearly, SUs

are not interested in leasing the spectrum for higher prices of service. For higher spectrum

demand, SUs become more and more interested in the service and the likelihood of reward
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Fig. 2 Likelihood of reward loss for different delay penalties
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loss decreases significantly. We assume the average arrival and service rates are the same

for all of the classes. Figure 5 shows the likelihood for reward loss for different spectrum

demand. Clearly, the likelihood for losing reward decreases for higher spectrum demand.

The PU generates more reward for high spectrum demand and this is clearly shown in

Fig. 6.
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Fig. 4 The likelihood of reward loss for different spectrum cost
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Figure 7 shows the performance of RL scheme (likelihood of reward loss) as a function

of the queue size. The results show that the chance of losing reward decreases as the queue

size increases. However, increasing queue size leads to large queuing delay.
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Fig. 5 The likelihood of reward loss for different spectrum demand
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Fig. 6 The mean value of reward for PUs under different spectrum demand
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6 Conclusion

In this paper, we formulated the spectrum leasing problem as a reward maximization

problem with penalty for request delay and spectrum cost. In this formulation, each request

class is characterized by its reward parameter defining the expected reward for serving a

request from this class. Such a formulation allows for applying RL to solve the problem.

We have presented the RL scheme to extract the optimal leasing policy for dynamic

spectrum sharing in cognitive radio networks. We have considered an environment in

which multiple SUs lease spare spectrum from PUs. There are two conflicting objectives to

be satisfied: the first is how to select the requests that give the maximum reward; the

second is how to reduce the likelihood of reward loss because of the QoS performance

degradation (delay). This complex contradicting requirements is embedded in our RL

model that is developed and implemented as shown in this paper. The numerical results

show that our scheme is able to find an efficient trade-off between PU reward and average

request delay.

The proposed model has two contributions for solving spectrum scarcity problem. From

the application side, the main contribution is developing a spectrum sharing paradigm that

considers different requirements such as reward for PUs, the leasing cost, and SUs

requirements. All basic functions are integrated and optimized into one homogenous,

theoretically based model. From the modeling side, we formulate a spectrum sharing

problem as a reward maximization problem. Such a formulation allows RL to optimize the

spectrum shortage problem. We are in the process of carrying similar analysis taking into

account the competition among PUs of leasing the spectrum. We wish to derive the optimal

solutions for PUs in an uncertain market. Furthermore, we wish to carry similar analysis on

a real system.
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