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Abstract Cooperative spectrum sensing based on Dempster–Shafer (D–S) theory has

attracted a large amount of interest in cognitive wireless sensor networks. However, most

of them employ energy detection (ED) in local sensing, where the classical Gaussian

approximation of ED is accurate only with a large number of data samples. In this paper,

aiming at drastically reduce the computational cost and the sensing process duration, we

consider that a small sample size is collected at each node of the network. In this con-

figuration, to perform the D–S fusion we introduce new basic probability of assignment

functions derived from the statistics of the eigenvalues of the samples covariance matrix.

To that end, we introduce a relevant approximation of the Tracy–Widom distribution that

allows us to cope with the small sample size. Simulation results show that the proposed

method allows to improve significantly the detection performance compared to other

techniques, even with small number of samples.

Keywords Spectrum sensing � Eigenvalue � Random matrix theory � Dempster–Shafer

theory � Cognitive wireless sensor networks

1 Introduction

Nowadays, cognitive radio (CR) technology has been widely applied to wireless sensor

networks (WSNs), in order to create the promising infrastructures CWSNs. As the first step

of CR, spectrum sensing (SS) is one of the key enabling technology for preventing haz-

ardous interferences with the licensed users (Primary User, PU) and identifying the

available spectrum. A lot of SS techniques [1], which mainly include matched filtering [2],

energy detector [3], cyclostationary feature detection [4] and waveform-based sensing [5],
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have been proposed. Among all these methods, energy detection (ED) is an engaging

technique for CWSNs applications, due to its low amount of computational power

requirements and blind detection characteristics [6]. However, radio channel conditions

practically experienced by the cognitive users (or secondary users, SU), i.e. path loss,

multipath, shadowing due to obstacles and possibly non-line-of-sight between SU and PU,

make it difficult for a SU to make a decision only on its own measurement. It is thus

obvious that a stand-alone decision about the fact that a PU is emitting or not, made

independently by each SU, is not reliable enough. In that context it is much more

preferable to use a cooperative spectrum sensing (CSS) strategy.

Cooperative spectrum sensing has attracted a lot of attention [7, 8] and has been shown

to be an effective technique to improve the detection performance by exploiting spatial

diversity. Several distributed SU in an area are then cooperatively involved in the spectrum

sensing, which allows to mitigate the channel effects. A fusion center (FC) is then in

charge of merging information collected by the SU and making a final decision about the

spectrum occupancy. Unfortunately cooperative sensing can incur additional work and

cost; i.e. delay, fusion processing and overhead transmissions. In order to mitigate the

impact of these issues, and not to increase the overall computation cost of the CSS process

at an unbearable level, a part of the solution is to reduce the sample size at each SU. In

particular it reduces the sensing time and saves energy.

Recently, in order to effectively combine the information from different SU, Dempster–

Shafer (D–S) theory of evidence has been applied into cooperative spectrum sensing in

order to make a reliable decision [9–12]. In [9], the credibility of the channel condition

between PU and SU is quantified by the basic probability assignment (BPA) estimation and

D–S theory of evidence is firstly applied into FC in order to fuse the different detection

from each SU. That turns out to be better than the traditional logic fusion ‘‘And’’ and ‘‘Or’’

rules. The authors in [10] reduce the reporting bandwidth and keep the performance by

utilizing special characteristics of hypothesis and employing the Lloyd-Max quantization

method. In [11], an enhanced D–S theory cooperative spectrum sensing algorithm is

proposed against spectrum sensing data falsification attack by removing the lowest reliable

SU, which is evaluated by considering the Max-Min similarity degree between any two

SUs. Finally, [12] evaluates the trustworthiness degree from the current and historical

aspects and establishes a ‘‘soft update’’ approach for the reputation value maintenance in

order to obtain better detection performance.

However, these existing cooperative spectrum sensing algorithms based on D–S theory

of evidence, called the traditional D–S (T-DS) fusion [9], employ energy detection in their

local sensing process to construct BPA functions, where the classical Gaussian approxi-

mation of ED is accurate only when the number of samples is high [13]. As mentioned

above, however, when CSS is expected to get as energy-efficient as possible, a significant

reduction of sample size at each SU would be worthwhile. Thus in this work, we propose to

replace the traditional ED technique with a sensing principle in accordance with the small

sample size requirement. Recently some spectrum sensing techniques based on the

eigenvalue analysis of the samples convariance matrix [14–17] have exhibited appealing

performance. Among them, [14] makes use of the statistics of the largest eigenvalue of the

covariance matrix of the observation, which is a Tracy–Widom law. Since our ambition is

to massively reduce the number of samples used for the spectrum detection, we introduce

an appropriate approximation of the Tracy–Widom distribution to characterize the largest

eigenvalue in the very small sample size case [18]. Then in this paper we propose an

effective cooperative spectrum sensing scheme with small sample size in CWSNs. As will

be explained in Sect. 3, the advantage of the proposed technique compared to other
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eigenvalue-based spectrum sensing techniques [14–17] is that we form a thin observation

matrix according to a more reasonable Tracy–Widom approximation, which allows to get a

small dimension covariance matrix. That makes a big difference with the other methods in

terms of computation cost. We also propose a new BPA function based on the largest

eigenvalue of the received sample covariance matrix, which considers the credibility of

local spectrum sensing and is applied to the D–S theory of evidence. Finally, a more

reliable final decision is made. Simulation results verify the effectiveness of the proposed

method for small sample size scenarios.

The remainder of the paper is organized as follows. In Sect. 2, the local SS system

model based on the covariance matrix of received signal is proposed, and D–S theory of

evidence is presented. The proposed cooperative spectrum sensing scheme with small

sample size is presented in Sect. 3, where a suited Tracy–Widom approximation is

introduced and a thin observation matrix is formed, then new BPA functions are con-

structed at the local sensing side, and finally the D–S fusion is applied at the FC. Simu-

lations and conclusions are respectively presented in Sects. 4 and 5.

2 Local SS System Model and D–S Theory of Evidence

In our CSS scheme, we consider a centralized CSS based on D–S theory of evidence. As

shown in Fig. 1, the CSS scenario in CWSNs includes one PU, one FC and Nsu SUs where

each SU is equipped with one receive antenna. Then, each SU senses the channel and sends

the acquired information to the FC. This latter makes a final decision and returns the results

to each SU. In detail, Fig. 1 shows the CSS framework where spectrum sensing is peri-

odically executed before data transmissions [10]. Firstly SU receives the sensing request

from the FC and measures the channel, then each SU reports its sensing or processed

information to the FC, finally the FC makes a decision whether the PU is present or not,

and broadcasts the result to each SU. Therefore, in the following we will present the system

model in local sensing at SU and the D–S theory of evidence implemented at the FC.

2.1 Local SS System Model

Some notations used in this paper are listed as follows: superscript T and y stand for

transpose and Hermitian (transpose-conjugate), respectively. We use boldface lower case

letters for column vectors and boldface capital letters for matrices.

Fig. 1 Scenario and framework of cooperative spectrum sensing in CWSNs
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For presentation convenience and without loss of generality, we consider the local

spectrum sensing with a discrete model at SU. Then, spectrum sensing can be formulated

as a binary hypothesis test between the following two hypotheses:

H0 : xðnTsÞ ¼ gðnTsÞ ð1Þ

H1 : xðnTsÞ ¼ hTsðnTsÞ þ gðnTsÞ ð2Þ

where Ts is the sampling period, xðnTsÞ is the received signal at a SU, h ¼
½hð0Þ; hðTcÞ; . . .; hððNc � 1ÞTcÞ�T stands for Nc taps of the multipath discrete channel

impulse response which includes the transmission filter, the channel itself and the receiver

filter, NcTc ¼ Th being the maximum length of the impulse response. Here, we consider

that the received signal of a SU is sampled at a low rate Ts [ Th (under-sampling). For

practicality and without loss of generality, we consider the channel h as the Clarke’s

Rayleigh fading model which is a baseline filtered white Gaussian noise (FWGN) model

[19, 20]. In the Clarke model, isotropic scattering and linear relationship between input and

output are assumed, and it includes two branches, one for a real part and the other for an

imaginary part. The random process of Clarke’s fading model with Nm multipaths can be

described as the sum-of-sinusoid as follows:

hIðlTcÞ ¼
1
ffiffiffiffiffiffi

Nm

p
X

Nm

i¼1

cos 2pfD cos
ð2i� 1Þpþ h

4Nm

� �

lTc þ ai

� �

ð3Þ

hQðlTcÞ ¼
1
ffiffiffiffiffiffi

Nm

p
X

Nm

i¼1

sin 2pfD sin
ð2i� 1Þpþ h

4Nm

� �

lTc þ bi

� �

ð4Þ

hðlTcÞ ¼ hIðlTcÞ þ jhQðlTcÞ ð5Þ

where h; ai and bi are uniformly distributed over [0, 2p) for all l and are mutually dis-

tributed, fD is the maximum Doppler spread. sðnTsÞ ¼ ½sðnTsÞ; sðnTs � TcÞ; . . .; sðnTs �
ðNc � 1ÞTcÞ�T is the discrete model of the PU signal. The noise signal gðnTsÞ is assumed to

be complex white Gaussian with zero mean and r2
g variance. Furthermore, it is assumed

that noise and signal are uncorrelated.

In order to create a covariance matrix of observations, each SU collects Ns frames

xi¼0;1;...;Ns�1 of L consecutive samples which is a stationary random vector. As shown in the

next section, the local spectrum sensing operation can rely on the eigenvalue decompo-

sition of this matrix. Then the following matrices can be defined:

X ¼def
x0; x1; . . .; xi; . . .; xNs�1½ � ð6Þ

S ¼def
s0; s1; . . .; si; . . .; sNs�1½ � ð7Þ

g ¼def
g0; g1; . . .; gi; . . .; gNs�1

� � ð8Þ

where, xi, si, and gi respectively denote the L� 1 received random vector, the LNc � 1 PU

signal vector si ¼ ½sðiLTsÞTsððiLþ 1ÞTsÞT . . .sðððiþ 1ÞL� 1ÞTsÞT �T , and the L� 1 random

noise vector.

When there is no PU emitting
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xi ¼ gi ð9Þ

When a PU is present,

xi ¼

xðiLTsÞ
xððiLþ 1ÞTsÞ

..

.

xðððiþ 1ÞL� 1ÞTsÞ

2

6

6

6

6

4

3

7

7

7

7

5

ð10Þ

¼

hT1 sðiLTsÞ þ gðiLTsÞ
hT2 sððiLþ 1ÞTsÞ þ gððiLþ 1ÞTsÞ

..

.

hTLsðððiþ 1ÞL� 1ÞTsÞ þ gðððiþ 1ÞL� 1ÞTsÞ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð11Þ

¼ Hisi þ gi ð12Þ

where Hi is a L� LNc channel matrix defined as:

Hi ¼
def

hT1 0 � � � 0

0 hT2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � hTL

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð13Þ

Statistical covariance matrix of the received signal, the PU signal and the noise can be

respectively defined as:

RX ¼ E½xix
y
i � ð14Þ

RS ¼ E½Hisis
y
i H

y
i � ð15Þ

Rg ¼ E½gig
y
i � ð16Þ

where xi, si and gi are assumed to be zero-mean stochastic stationary processes.

Then the binary hypothesis, (1) and (2), can be rewritten in a matrix form as

H0 : RX ¼ Rg ð17Þ

H1 : RX ¼ RS þ Rg ð18Þ

However, in practice we only can get a finite number of samples. Thus, the sample

covariance matrix RX can be estimated as

R̂X ¼ 1

Ns

XXy ð19Þ

As mentioned previously, noise is a white Gaussian process. In case of the presence of a

PU, whose signal is obviously not correlated to the noise, the sampling period has been set

sufficiently large (Ts [Th) to assume that the observation samples X are independent and
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identically distributed random variables. Then in the H0 case (no PU), the mean power of

the observed signal X is given by the noise power P ¼ r2
g, and in the H1 case (a PU is

present) the theoretical mean power samples is P ¼ r2
s ? r2

g where r2
s is the received PU

signal power through the channel.

2.2 D–S Theory of Evidence

The Dempster–Shafer theory of evidence, which was first introduced by Dempster and was

later extended by Shafer [21], is a mathematical theory of evidence which allows to

combine evidence from different sources and evaluate the credibility of a system state.

According to the D–S theory of evidence, in our spectrum sensing context let X ¼
fH0;H1g be the set representing all possible states of the system under consideration,

called the frame of discernment. Then 2X is the set of all subsets of X, including the empty

set ;. In our framework, 2X ¼ f;; fH0g; fH1g;Xg. Each SUi is a source of information and

will provide a set of elementary evidences. For each SUi, due to stochastic characteristics

of communication channel, there is uncertainty in local spectrum sensing results. Thus, the

theory of evidence allows to assign a belief mass to each element of the set 2X for

managing uncertainty. This mass is also defined as a basic probability assignment function

(BPA) mi from 2X to [0, 1]. It has two properties:

mið;Þ ¼ 0; and
X

Bj�2X

miðBjÞ ¼ 1 ð20Þ

where the mass miðBjÞ represents the belief that ‘‘ the CUi is estimating that the event Bj is

true ’’, and Bj � 2X.

After evaluating the reliability of each SUi detection, we need to make a final decision

whether PU is present or not based on each SUi information. Then, according to D–S rule

of combination [21], the mass functions from different SUi miði ¼ 1; . . .;NsuÞ are com-

bined and a new mass function mðBdÞ is obtained as:

mðBjÞ ¼ ðm1 � m2 � � � � � mNsu
ÞðBjÞ

¼ 1

1 � j

X

B1\B2;...;BNsu¼Bj

Y

Nsu

i¼1

miðBiÞ
ð21Þ

j ¼
X

B1\B2;...;BNsu¼;

Y

Nsu

i¼1

miðBiÞ: ð22Þ

where j is interpreted as a measure of conflict among the different SU and is introduced as

a normalization factor.

3 Proposed Small-Sample-Size D–S Theory CSS

The proposed CSS strategy relies on a fusion process using the D–S theory and a new set of

basic probability assignments (BPA, given in the next section). BPA definition and eval-

uation is the key point of the D–S fusion. In most applications, it is generally assumed that

a sufficiently large number of samples is available in order to correctly estimate BPAs and

perform a reliable fusion. But in this work, we consider that the SU are very limited in
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terms of sample size. Following the success of the utilization of the D–S fusion [21] in

CSS, we propose to define a new reliable BPA by using eigenvalues of the covariance

matrix of the observation enabling to have a small number of collected samples.

3.1 Largest Eigenvalue Analysis

Whether a PU signal is present or not in the collected samples at a SU, according to the

statistical properties of the samples, the observation covariance matrix R̂X in (19) can be

considered as a Whishart matrix [22]. In such a case, according to [23] when the number of

samples is high enough, the largest eigenvalue of the matrix RX is ruled by the Tracy–

Widom distribution. Parameters of the distribution can be defined as functions of Ns and L,

the dimensions of the observation matrix X. The following theorem allows to establish the

parameters of the Tracy–Widom distribution in the asymptotical case (or when the number

of samples is large).

Theorem 1 Assume that the received signal is real. Let A ¼ Ns

P R̂X,

/ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ns � 1
p

þ
ffiffiffi

L
p

Þ2
, and t ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ns � 1
p

þ
ffiffiffi

L
p

Þð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ns � 1
p

þ 1=
ffiffiffi

L
p

Þ1=3
. Then,

k1ðAÞ�/t

converges to the Tracy–Widom distribution of order 1 (W1) [23].

Reducing the number of samples (small Ns � L product) means that definitions of

/ðNs; LÞ and tðNs; LÞ in Theorem 1 are no longer correct. Recently in [18] it has been

found that when facing with thin observation matrix X, namely when L is as small as 2,

more appropriate parameters of the Tracy–Widom distribution should be chosen. Then,

according to [18] when L is very small, and referring to the theorem, the largest eigenvalue

k1 is considered to be ruled by the Tracy–Widom distribution of order 1, with the following

mean and variance parameters :

l ¼ P

Ns

ffiffiffiffiffiffiffiffi

Ns�
p

þ
ffiffiffiffiffiffi

L�
p	 
2

ð23Þ

r2 ¼ P

Ns

� �2
ffiffiffiffiffiffiffiffi

Ns�
p

þ
ffiffiffiffiffiffi

L�
p	 
2 1

ffiffiffiffiffiffiffiffi

Ns�
p þ 1

ffiffiffiffiffiffi

L�
p

� �2=3

ð24Þ

where Ns� ¼ Ns � 1
2

and L� ¼ L� 1
2
. In (23) and (24) the mean power P is respectively

equal to r2
g or r2

s ? r2
g if the PU is present or not. We assume that in both cases, the value

of P is known at each SU. When L is small, the matrix X of collected samples is what we

can call a thin observation matrix and the inherited small size of the covariance matrix R̂X

eigenvalue calculation requires very few complexity. This last feature is of great impor-

tance in the framework of our application.

According to the local spectrum sensing system model, it is obvious that each SU

acquires the sensing information through stochastic channel condition, thus each SU

indicates its own credibility, and small sample size at each SU increases the uncertainty of

observing and reduces the credibility of its sensing. Hence, in order to improve the

detection performance and reduce the uncertainty, we propose a new BPA function for

evaluating the reliability of each SU in Sect. 3.2. Relying on the new BPA function, D–S

fusion rule is used in order to make a final decision in Sect. 3.3.
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3.2 Basic Probability Assignment Evaluation

In order to make a final decision by applying D–S theory which allows to combine

evidence from different sources and evaluate the credibility of each source with small

sample size, we propose a new basic probability assignment function of each SU based on

the largest eigenvalue k1 of the received sample covariance matrix R̂X analysed in

Sect. 3.1, which estimates SUs’ self-assessed decision credibility. The proposed BPA

functions at the ith SU (i = 1, 2, ..., Nsu) are based on the integral of the probability density

function of the Tracy–Widom distribution of order 1, and are defined as

miðH0Þ ¼
Z

þ1

k1i

W1

x� l0i

r0i

� �

dx

¼ 1 � F1

k1i � l0i

r0i

� �

ð25Þ

miðH1Þ ¼
Z

k1i

�1

W1

x� l1i

r1i

� �

dx

¼ F1

k1i � l1i

r1i

� �

ð26Þ

where miðH0Þ, miðH1Þ are the BPA of hypotheses H0 and H1 of the ith SU, which presents

respectively credibility for hypotheses H0 and H1 to be true. W1 and F1 denote the

probability density function and the cumulative distribution function for the distribution of

Tracy–Widom of order 1 [24, 25]. k1i is the largest eigenvalue of the received sample

covariance matrix R̂X of the ith SU. l0i and r0i are respectively equal to l and r in (23)

and (24) with P ¼ r2
g. l1i and r1i are respectively equal to l and r in (23) and (24) with

P ¼ r2
s ? r2

g. The third BPA function is

miðXÞ ¼ 1 � miðH0Þ � miðH1Þ ð27Þ

where X ¼ fH1;H0g denotes that either hypothesis could be true, and miðXÞ is the total

uncertainty of the ith SU.

Roughly speaking, if the calculated k1i turns out to be small, the BPA function miðH0Þ
will get a larger value than miðH1Þ, which will give more credit to the H0 hypothesis than

H1. Conversely if k1i is large, the H1 hypothesis will get a much higher probability than the

H0 hypothesis.

After having evaluated their own BPA and sending them to the FC, this latter will make

a final decision by running the D–S based fusion process.

3.3 D–S Fusion and Final Decision

According to D–S theory of evidence and the above new BPA functions (Eqs. (25), (26)

and (27)), a new BPA function can be obtained at the FC as follows:
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mðH0Þ ¼ ðm1 � m2 � � � � � mNsu
ÞðH0Þ

¼ 1

1 � j

X

\Ai ¼ H0;Ai � 2X

i 2 f1; . . .;Nsug

Y

Nsu

i¼1

miðAiÞ ð28Þ

mðH1Þ ¼ ðm1 � m2 � � � � � mNsu
ÞðH1Þ

¼ 1

1 � j

X

\Ai ¼ H1;Ai � 2X

i 2 f1; . . .;Nsug

Y

Nsu

i¼1

miðAiÞ ð29Þ

where, in our framework, 2X ¼ f;; fH0g; fH1g;Xg, and j is a measure of the amount of

conflict among the mass sets defined as:

j ¼
X

\Ai ¼ ;;Ai � 2X

i 2 f1; . . .;Nsug

Y

Nsu

i¼1

miðAiÞ
ð30Þ

Finally, the decision is made at the FC by simply comparing mðH0Þ and mðH1Þ as

follows:

H1is true if mðH1Þ[mðH0Þ ð31Þ

H0is true otherwise ð32Þ

4 Simulation Results and Analysis

In the following simulations a captured DTV signal in [26] is considered as the PU signal,

with a 0.5 probability of being present. Its center frequency is 545 MHz with a 6 MHz

bandwidth. The observed passband signal is frequency-shifted and turned into a baseband

signal. It is then sampled at 1=Ts ¼ 100 KHz rate. This sampling rate is much lower than

the 6 MHz bandwidth of the potential PU signal. The channel impulse response duration is

set to Th ¼ 1ls. In this condition (Ts [ Th), collected samples whether a PU is present or

not, are totally uncorrelated. With this setting, 0.5 ms is required to collect 50 samples.

Channels between the potential PU and the SUs are generated according to the Clark

Rayleigh fading model in (5), where the maximum Doppler spread fD is set to 1000 Hz.

The DTV signal parameters and the simulation setup are shown in Table 1. In addition, the

additive, white and Gaussian noise (AWGN) channel is considered and it exists a FC which

combines evidences from each SU and makes the final decision.

As the first part of simulation, we show the mean behavior of the BPA functions when

SNR is varying in Figs. 2 and 3 where the number of sampling is respectively 200 and 50.

Since the BPA function of T-DS in [9] is based on the central limit theorem, it is a good

estimate of SUs’ self-assessed decision credibility only when the number of samples is

sufficiently high [13]. Therefore, it is not suitable for the small sample size. According to

the Eqs. (25) and (26), we know that miðH0Þ decreases and miðH1Þ increases with the
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increasing of the largest eigenvalue k1i when a PU is present. Then after D–S fusion in (28)

and (29), the BPA functions mðH0Þ and mðH1Þ also should have a declining and increasing

trends, respectively. As shown in Fig. 2, when the number of sample is large, i.e. 200

samples, for the proposed method, that is ðNs; LÞ ¼ ð100; 2Þ, the BPA functions in (25) and

(26) of the proposed method are very similar to the BPA functions in T-DS [9]. Con-

versely, when the number of samples is small, the BPA function of the proposed method is

still suitable. Figure 3 shows that the BPA functions of the proposed method with small

sample size, with 50 samples that is ðNs; LÞ ¼ ð25; 2Þ, has a similar tendency compared to

the large sample size, which is not true for T-DS. We can see that the proposed DS (Prop-

DS) method has about 5% improvement over T-DS with small sample size. In detail, as

shown in Table 2, the improvement of the Prop-DS method is declining with the increasing

of the SNR. For example, when the SNR is -14 dB, the mean BPA function mðH1Þ of the

Prop-DS method and the T-DS method are respectively 0.6534 and 0.5760. Thus, the

improvement is 7.74%. While for SNR = -8 dB, the improvement is 4.83%.

Table 1 DTV signal parameters
in [26] and simulation setup

Center frequency 545 MHz

Bandwidth 6 MHz

Sampling period 10 ls

Channel model Clark model

Channel impulse response duration 1 ls

Maximum doppler spread 1000 Hz

Number of SU 6

Number of PU 1

Number of FC 1

SNR (dB)
-18 -16 -14 -12 -10 -8 -6 -4 -2

m
ea

n 
B

P
A

 fu
nc

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prop-DS method m(H
1
)

Prop-DS method m(H
0
)

T-DS method in [9] m(H
1
)

T-DS method in [9] m(H
0
)

Fig. 2 The variation trend of the BPA functions with the increasing of SNR when PU is present using 200
samples
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Therefore, in order to show the behaviour of the compared methods in a more general

scenario, we assume now that each of the six SUs experiences different channel conditions.

100,000 Monte Carlo simulations have been run where SNR at each SU is a random

variable with a uniform distribution on the interval [-2, 0 dB]. Based on this setting,

Figs. 4 and 5 present the ROC curves of the proposed method and the other methods in

[9, 14] and [17]. When the sample number is 200, as shown in Fig. 4, the proposed method

(the circular curve) has a litter bit lower detection probability than the maximum-minimum

eigenvalue (MME) method in [14] and the eigenvalue-moment-ratio (EMR) method in

[17]. As expected when the number of samples is large, the approximated Tracy–Widom

distribution is no longer well adapted to characterize the BPA function. This is why the

proposed method shows little less attractive performance in that case. Besides with 200

samples, it can be observed that the two eigenvalue-based methods perform much better

than the T-DS one. Most importantly, when the sample number is 50, as shown in Fig. 5, it

is very obvious that the probability of detection of all methods decline compared with 200

samples. However, the proposed method shows better performance than its counterparts. It

can be observed that the ROC curve of the proposed method with 50 samples is even partly

above the one of the T-DS method in [9] with 200 samples.
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Fig. 3 The variation trend of the BPA functions with the increasing of SNR when PU is present using 50
samples

Table 2 The improvement of the Prop-DS method referring to the mean BPA function

SNR (dB) �16 �14 �12 �10 �8 �6 �4

Prop-DS (mðH1Þ) 0.6303 0.6534 0.6973 0.7436 0.8111 0.8908 0.9483

T-DS (mðH1Þ) 0.5507 0.5760 0.6216 0.6819 0.7628 0.8639 0.9349

Improvement (%) 7.96 7.74 7.57 6.17 4.83 2.69 1.34
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In addition, for evaluating the performance of the proposed method with small sample

size according to the number of SUs engaged in the process, we show in Fig. 6 the ROC

curves of the proposed method when the number of SUs is 10, 8, 6 and 4. The sample size

at each SU is 50, and Monte Carlo simulations have been run where the SNR at each SU is

randomly chosen in the interval [-20, 0 dB], exactly in the same way as for the Fig. 5. As

shown in Fig. 6, the detection performance brings up with the increasing number of SU.

When the number of SU is 10, the proposed method can obtain about 0.9 probability of
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detection with 0.1 probability of false alarm. And due to the small sample size 50, with

L ¼ 2, the proposed method keep on exhibiting a very low computational cost, mainly

because of the eigenvalue decomposition. It is very suitable in practical CWSNs appli-

cations when dealing with constrained power devices.

5 Conclusion

In this paper, cooperative spectrum sensing with small sample size is presented. The

advantage of the proposed technique compared to other eigenvalue-based spectrum sensing

techniques is that we form a thin observation matrix, which allows to get a small dimension

covariance matrix. In that case the eigenvalue decomposition has a negligible cost. Then, a

new BPA function is constructed and used in D–S fusion rule, which reduces the conflict of

evidence from different SUs. Simulation results have shown that our method can achieve a

higher probability of detection than other methods in small sample size situation. In addition,

the low computational complexity and the high power efficiency are able to be obtained in our

method, which mainly benefits from the small sample size. In the future work, the algorithm

in this paper is going to be verified on a hardware platform. Universal Software Radio

Peripheral (USRP) and GNU Radio are chosen to implement the evaluation testbed. Besides,

taking into consideration more realistic channel model in specific environment, e.g. hotspot,

indoor, urban and suburban area, we will explore further robust spectrum sensing algorithm.
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