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Abstract This paper develops an empirical statistical channel occupancy model for

downlink long-term evolution (LTE) cellular systems. The model is based on statistical

distributions mixtures for the holding times of the channels. Moreover, statistical distri-

bution of the time when the channels are free is also considered. The data is obtained

through an extensive measurement campaign performed in Stockholm, Sweden. Two types

of mixtures are considered, namely, exponential and log-normal distributions to fit the

measurement findings. The log-likelihood of both mixtures is used as a quantitative

measure of the goodness of fit. Moreover, finding the optimal number of linearly combined

distributions using the Akaike information criterion is investigated. The results show that

good fitting can be obtained by using either exponential or log-normal distributions mix-

ture. Even though, the fitting is done for a representative case with a tempo-spatial con-

sideration, the model is yet applicable in general for LTE and other cellular systems in a

wider sense.
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nbl@hig.se

Slimane Ben Slimane
slimane@kth.se

1 Communication Systems Lab, The Royal Institute of Technology (KTH), 16440 Stockholm,
Sweden
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1 Introduction

A need for different data rates in mobile broadband systems has been rapidly growing in

recent years. In that regard, long term evolution (LTE) has been provided by the 3rd

generation partnership project (3GPP) as a standard for packet based adaptive data rate

systems [1]. LTE has been further developed to LTE advanced (LTE-A) to provide higher

data rates and more spectral efficiency [2]. For robust optimization for cellular systems in

general and LTE systems in particular, the traffic demand of cellular networks is needed to

be modelled.

Beside resource optimization, other several optimization problems in cellular networks

impose traffic modelling such as performance evaluation and billing. Among the statistics

used for traffic evaluation in cellular systems is the channel occupancy which is defined as

the time that a user occupies a channel in a cell while it is located in the serving area of that

cell [3]. The channel usage for a cellular system is modelled as a two states Markov chain

process [4]. The first state is the busy state when the channel is being assigned for a user

whereas the second state is the idle state when the channel is idle.

Many studies have been carried out to characterize the cellular channel occupancy

statistical distribution. In [5], it is shown that mobile telephony channel occupancy can be

approximated by exponential distribution. A great advantage of the exponential distribu-

tion is the traceability in finding analytical solutions for optimization problems. Therefore,

exponential distribution has been intensively used to model cellular channel occupancy,

see [4] as an example. Nevertheless, many research findings concluded poor similarity

between exponential distribution and empirical data [6]. One of the main disagreements

between exponential distribution and empirical data is the heavy tail behaviour for the

empirical channel occupancy which is not properly characterized by exponential distri-

butions. Therefore, some heavy tail distributions are used as alternatives to model the

cellular channel occupancy, among which, the log-normal distribution is found to better fit

the empirical data [7, 8].

Even though many studies were carried out to model the cellular channel occupancy,

non of these studies considers LTE yet. Therefore, LTE channel occupancy modelling is a

topic that needed to be studied which is the main contribution of this paper. Furthermore,

this paper contributes also in exploring fitting the empirical data for the cellular channel

occupancy into a mixture of either exponential or log-normal distributions, combined

linearly. This contribution is seen by using LTE as an example of a cellular system.

Using distribution mixture is motivated by keeping the advantageous of the ease of

exponential and log-normal distributions. Hence, we can avoid using complicated distri-

bution to model the cellular channel occupancy such as Beta and Kumaraswamy distri-

butions [9]. Moreover, distribution mixtures are more general than single distributions and

can be used to fit the data under different conditions. Consequently, the algorithms

developed based on exponential and log-normal distributions of cellular channel occu-

pancy can still be used based on their mixtures with small changes considering the linear

combination of many of them.

The rest of this paper is structured as follows: Sect. 2 handles the theoretical aspects of

the paper including the channel usage model and using distributions mixture to fit data.

Section 3 shows the measurements setup and the fitting results. Finally, Sect. 4 concludes

the paper.
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2 Theory

The theoretical aspects of the paper are handled in this section. The section starts with

presenting the Markov based model for the channel occupancy. Following that, distribution

mixture fitting mathematical framework is introduced. Furthermore, exponential and log-

normal distributions mixture fitting are studied in particular.

2.1 System Model

The LTE channel usage can be modelled as a two states Markov process. These two states

are the ON state representing occupied channel state and the OFF state denoting the

channel being idle. ON and OFF states temporal length are random variables (RV).

Hereafter, ON and OFF temporal length are assigned the RVs x and y respectively. Fig-

ure 1 exhibits the channel usage model. The problem tackled throughout this paper is how

to find statistical distributions that fit x and y.

The rest of this section provides the theoretical aspects of distributions mixture fitting in

general and exponential and log-normal mixtures fitting in particular.

Without lose of generality, the RV x is considered in the coming parts of this paper. The

same findings of x can be applied to y. Denote the empirical probability density function

(pdf) of x as g(x) . g(x) can be fitted with a linear combination of k pdfs as

gðxÞ �
Xk

i¼1

pif ðxjHiÞ; ð1Þ

where

0\pi\1 8i;
Xk

i¼1

pi ¼ 1;

pi is the weight of the pdf number i, f ð�Þ denotes a single pdf and Hi is the distinct

distribution parameters for the pdf number i. For the whole mixture model, X contains all

the distinct mixture parameters and defined as

X ¼ p1; . . .; pk;H
T
1 ; . . .;H

T
k

� �T
; ð2Þ

with ð�ÞT denoting the transpose.

An important notice here is that the formulation of X given in (2) assumes that the

mixture is composed of the same distribution type which is considered in this paper. The

goodness of fit is judged through the log-likelihood estimator, LðxjXÞ, found as

Fig. 1 Markov channel usage model
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LðxjXÞ ¼
Z

gðxÞ log f ðxjXÞ
gðxÞ

� �
dx: ð3Þ

2.2 Exponential Distributions Mixture Fitting

In [10] a linear combination of exponential pdfs is introduced to fit a heavy tail distributed

data. For exponential mixture distribution, the pdf number i has a form as in (4a) while the

collection of the distinct parameters, Xexp, is expressed in (4b).

f ðxjHiÞ ¼ kie
�kix; ð4aÞ

Xexp ¼

p1 k1

..

. ..
.

pk kk

0
BB@

1
CCA: ð4bÞ

The rest of this subsection shows how to findXexp as the essence of [10]. The process of

finding Xexp is a recursive procedure and starts with fitting the tail and moving backwards.

Starting from the assumption that the part of the tail where x[ c1 can be fitted exclusively

with the first exponential distribution, then

p1e
�k1c1 ¼ Fcðc1Þ; ð5aÞ

Xk

i¼2

pie
�kix ¼ 0 for x[ c1: ð5bÞ

where FcðxÞ is the empirical complementary cumulative distribution function (CCDF) of x.

Similarly, p1e
�k1bc1 ¼ Fcðbc1Þ where b[ 1. Accordingly, the first pair, ðk1; p1Þ is found as

k1 ¼
1

ðb� 1Þc1
ln

Fcðc1Þ
Fcðbc1Þ

� �
; ð6aÞ

p1 ¼ Fcðc1Þek1c1 : ð6bÞ

Following the same idea, the pairs ðki; piÞ for 2� i� k are found as

ki ¼
1

ðb� 1Þci
ln

Fc
i ðciÞ

Fc
i ðbciÞ

� �
; ð7aÞ

pi ¼ Fc
i ðciÞekici ; ð7bÞ

where

ci ¼ c1a
�ði�1Þ; a[ b;

Fc
i ðciÞ ¼ Fc

i�1ðciÞ �
Xi�1

j¼1

e�kjci ;

Fc
i ðbciÞ ¼ Fc

i�1ðbciÞ �
Xi�1

j¼1

e�kjbci
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and

Fc
1ðxÞ ¼ FcðxÞ:

Finally the last pair ðkk; pkÞ is found as

pk ¼ 1�
Xk�1

j¼1

pj; ð8aÞ

kk ¼
1

ck
ln

pk

Fc
kðckÞ

� �
: ð8bÞ

The values of c1, b, and a are user defined and the reader is referred to [10] for more

details on how to set them.

2.3 Log-Normal Distributions Mixture Fitting

In this paper, log-normal distributions mixture is used to improve the goodness of fit for

cellular channel occupancy compared to a single log-normal distribution. In [11] a mixture

of normal distribution is used to fit a specific data. To deal with the monotonicity behaviour

of the measured cellular channel occupancy, log-normal mixture can be used instead of

normal mixture. The pdf number i and the collection of distribution distinct parameters,

Xlgn, in a log-normal mixture are shown in (9a) and (9b) respectively.

f ðxjHiÞ ¼
1ffiffiffiffiffiffi
2p

p
rx

e
�
ðlnðxÞ � lÞ2

2r2 ;
ð9aÞ

Xlgn ¼

p1 l1 r1

..

. ..
. ..

.

pk lk rk

0
BB@

1
CCA: ð9bÞ

Xlgn can be found using Newton Raphson optimization method by solving the equation

LðxjXÞ ¼ 0: ð10Þ

Starting from an initial guess of Xð1Þ
lgn, then Xðiþ1Þ

lgn is updated as

Xðiþ1Þ
lgn ¼ XðiÞ

lgn �H�1 Xi
lgh

� �
L xjXðiÞ

lgn

� �
; ð11Þ

where Hð�Þ denotes the Hessian matrix. As the Hessian matrix is needed to be updated

every iteration, then the stopping criterion is the convergence of H.

2.4 Optimizing the Number of Distributions

To optimize the value of k, Akaike information criterion [12] is used. AIC is a statistical

model identification used to optimize the model order [12]. AIC is calculated considering

the log-likelihood penalized by the number of independent model parameters. AIC is

obtained using

Empirical Statistical Model for LTE Downlink Channel Occupancy 859

123



AICðx;X;NÞ ¼ �2LðxjXÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
log likelihood

þ 2N|{z}
Parameters penalty

;
ð12Þ

where N is the model order defined as the number of independent model parameters. The

optimal model order is found by minimizing the value of AIC in (12). For the exponential

mixture distribution, each pair i where 1� i�ðk � 1Þ represents a single independent

parameter while the last pair ðkk; pkÞ is fully dependant on the other pairs. Hence, the

exponential distributions mixture has ðN ¼ k � 1Þ independent parameters. Accordingly,

the optimal model order for exponential mixture distribution, k
exp
AIC, is found as

k
exp
AIC ¼ argmin

k

�2LðxjXexpÞ þ 2ðk � 1Þ

 �

: ð13Þ

For the log-normal distribution mixture, with Newton Raphson method, there are N ¼ 3k

independent parameters as all the components of Xlgn are independent. Therefore, the

optimal model order for log-normal distributions mixture, k
lgn
AIC is determined as

k
lgn
AIC ¼ argmin

k

�
� 2LðxjXlgnÞ þ 6k

�
: ð14Þ

3 Measurements

3.1 Measurements Setup

The empirical downlink LTE traffic is obtained through a measurement campaign per-

formed in an indoor location in Kista, Stockholm, Sweden. The measurements location has

a GPS coordinates of 59�24019:1300N , 17�560056:120E . The measurement area is densely

occupied by offices with a shopping mall and residential buildings in the surroundings. A

google map of the measurement location is shown in Fig. 2.

For robust measurements, a real time spectrum analyser (RTSA) is used to collect the

data. The data is fed to the RTSA through a wideband tunable antenna. Figure 3 exhibits

the measurements setup. Since different channels experience different loads at different

times, the measurements are treated in time spans of 2 h. Hereafter, the findings for an LTE

downlink traffic channel will be discussed as a representative case. The results for the other

channels and systems are similar with different parameters. The presented results are for

the measurements carried out for a 1.4 MHz channel lies between 2650.6 and 2652.0 MHz

during the period: Wednesday, 2013/10/02 09:00 am to 11:00 am.

3.2 Fitting Results

Before diving into the fitting results, it is important to note that the LTE load on the

measurements area changes with time, This changes are depicted by the obtained values of

the duty cycle through a week of measurements shown in Fig. 4. Even-though, different

loads are experienced at different times, yet the fitting procedure is the same and the

findings are similar with different values. Hereafter, the results for the period Wednesday,

2013/10/02 09:00 am to 11:00 am are shown as an example of the results.

Figures 5 and 6 show the empirical distribution and the fitted exponential and log-

normal mixtures respectively. Both Figs. 5 and 6 illustrate how the fitted mixtures of
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exponential or log-normal distributions approach towards the empirical distribution with

the change of k. A quantitative evaluation is obtained by means of the log likelihood

estimation which is provided in Fig. 7.

As it is shown in Fig. 5, the lower values of k make the exponential mixture to fit the tail

with poor fitting for the lower values of x. In contrast, increasing k improves fitting the

lower region of x. This is explained as follows; as the first pair ðk1; p1Þ always charac-

terizes the tail beyond c1, then there is always a guarantee that all the values greater than c1
are well fitted, depending on the obtained values of ðk1; p1Þ and the value of k, rest pairs

ðki; piÞ are obtained and the last pair ðkk; pkÞ is fully dependant on the previous obtained

pairs. Therefore, when k increases the part that is characterized by ðkk; pkÞ decreases.

However for very large values of k a point where the property expressed in (5) is not held

which makes the recursive fitting procedure for the remaining pairs inapplicable any

longer. Therefore, there is a crossover point when the log-likelihood estimation starts to

Fig. 2 The measurements location

Fig. 3 The measurements setup

Empirical Statistical Model for LTE Downlink Channel Occupancy 861

123



degrade with the increase of k as shown in Fig. 7. For the lognormal mixture the higher the

k, the better the fitting as the log-likelihood curve exhibited in Fig. 7.

Figure 7 depicts the obtained AIC for both exponential and log-normal distributions

mixtures when k changes. According to the figure, for the exponential distributions mixture

the optimal model order is 7 while for log-normal distribution mixture the optimal model

order is 4. The difference in the model order between the two mixtures is explained by the

influence of the parameters penalty function. As shown in (13) and (14) the log-normal

mixture AIC is penalized more than the exponential mixture AIC. Moreover, for the same

reason in the case of exponential distributions mixture, the AIC curves follow the log-

likelihood curve. On the other side, for the log-normal distributions mixture, the AIC and

Fig. 4 Duty cycle through a week of measurements, from Monday, 2013/09/30 to Sunday, 2013/10/06

Fig. 5 The empirical and fitted CDF for exponential distributions mixture with different values of k
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the log-likelihood curves have different tendencies as the parameters penalty function

impacts more in the AIC values.

The obtained distinct mixture parameters matrices for the optimal exponential and log-

normal mixtures, Xexp and Xlgn are shown respectively below.

Fig. 6 The empirical and fitted CDF for log-normal distributions mixture with different values of k

Fig. 7 Distribution log-likelihood and the AIC for exponential and log-normal distribution mixtures
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Xexp ¼

0:04 0:04

0:08 0:11

0:20 0:47

0:16 1:75

0:23 8:71

0:12 54:24

0:17 103:85

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

Xlgn ¼

0:33 0:67 1:53

0:21 � 6:38 2:59

0:40 � 2:32 1:64

0:06 � 9:84 5:05

0
BBB@

1
CCCA:

As explained by (4b), the first column of Xexp is the probabilities of the different expo-

nential distributions with their corresponding values of k in the second column. Similarly,

as in (9b) the probabilities of the log-normal distributions are placed in the first column of

Xlog with the corresponding values of the means and the standard deviations in the second

and third columns respectively.

4 Conclusions

An empirical statistical model for the downlink LTE channel occupancy is introduced in

this paper. The introduced model is based on using a linear mixture of exponential or log-

normal distributions. The exponential and log-normal distributions mixture can better

characterize the downlink LTE channels occupancy compared to the single exponential

and log-normal distributions. Akaike information criterion is used to optimize the number

of the exponential or log-normal distributions composing the mixture. Log-normal mixture

Akaike information criterion is affected more by the model order compared to the expo-

nential mixture. The model is a general statistical model and can be used for other cellular

systems.
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