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Abstract In this work, we studied the resource allocation problem in a spectrum leasing

scenario in MIMO cooperative cognitive radio networks (MIMO-CCRN) with multi

channels using a coalitional game based approach. It is proved that the best case is to group

all primary users (PUs) and secondary users (SUs) in a set, where each PU is able to lease

its unused spectrum to all SUs using a time-division based strategy and the SUs relay the

primary signals, in return. As a result of such grouping, the grand coalition is formed.

Then, the stability of the proposed coalitional game based approach is analyzed using the

core concept. Afterwards, using the achievements of the first part, we investigate a prac-

tical scenario where the data rate of the primary system, falls below a minimum data rate

requirement, and alternatively, the PU resorts to the leasing of its unused spectrum to SUs.

However, it is guaranteed that the SUs perform as cooperatively as to meet the rate

requirement of the primary system. Moreover, the benefits of cooperating with the primary

system may not be exploited by the secondary system efficiently, if the SUs compete over

the resources. We propose a two-level game based on the bargaining games to tackle the

aforementioned problems. More specifically, we model the interactions between the pri-

mary and the secondary systems as the first level cooperative game and we utilize the

bargaining games as the second level of the proposed framework to share the benefits of

spectrum leasing among the cooperating SUs in a fair and efficient manner. The simulation

results confirm the theoretical achievements.
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1 Introduction

Cognitive radio (CR) and multi-input multi-output (MIMO) communications have been

proposed as promising solutions to improve spectrum utilization and efficiency in wireless

networks. Dynamic and opportunistic spectrum access allows secondary users (SUs) to

communicate on temporarily idle or underutilized frequencies. Moreover, MIMO systems

enhance spectral efficiency by having a multi-antenna node simultaneously transmit

multiple data streams. In newly emerging systems and standards (e.g., WiMAX, 4G

Advanced-LTE, IEEE 802.16e) MIMO communications has been as a core feature. TV

white bands have also been approved by the FCC for opportunistic, secondary use [1]. As a

result, the current trend followed by the research society incorporates recent innovations of

the two technologies into a single system.

The non-participation of primary users (PUs), as assumed in the traditional dynamic

spectrum access schemes, is inefficient in terms of utilizing the spectrum. As a remedy, we

can allow PUs to proactively manage the amount of secondary activity in their licensed

band [2]. In [2, 3], a framework for dynamic spectrum leasing was proposed, where the

PUs are rewarded for allowing SUs to operate in their licensed spectrum. Thus, the PUs

have an incentive to allow SUs to access the spectrum whenever possible to the maximum

extent. The spectrum leasing problem in a decentralized cognitive radio model was studied

in [4], whereby a PU leases its bandwidth for a fraction of time to a network of independent

SUs in exchange for cooperation.

The issue of resource allocation in MIMO CR networks was explored in [5–8]. The

authors in [5] presented a low complexity semi-distributed algorithm for resource allo-

cation in MIMO-OFDM based CR networks, using game theory approach, the strong

duality in convex optimization and the primal decomposition method. In [6], the authors

extended the pricing concept to MIMO-OFDM based CR networks and presented two

iterative algorithms for resource allocation in such systems. In order to obtain an optimal

subcarrier pairing, relay assignment and power allocation in MIMO-OFDM based CCRNs,

the dual decomposition technique was recruited in [7] to maximize the sum-rate subject to

the interference temperature limit of the PUs. Moreover, because of high computational

complexity of the optimal approach, a suboptimal algorithm was further proposed in [7]

and [8].

The optimal resource allocation in MIMO cognitive radio networks with heterogeneous

secondary users, centralized and distributed users, was investigated in [9]. The authors in

[10] modeled the problem of joint relay selection and power allocation in MIMO-OFDM

based CCRNs as a two-level cooperative game problem with two objectives. The first

objective is to assign each weak SU to one of the relays (rich SUs) through solving a

problem achieved by a non-transferable utility coalition graph game, and the second one is

to jointly allocating available channels to the SUs such that no subchannel is allocated to

more than one SU and simultaneously optimize the transmit covariance matrices of nodes

based on the Nash bargaining solution, which is the second level of the game.

The resource allocation problem in a spectrum leasing scenario in cooperative cognitive

radio networks (CCRN) was addressed from various aspects, such as channel allocation for

secondary system, relay selection, and power allocation [11, 14]. In [11], the joint prob-

lems of subchannel allocation, relay selection, and relay strategy in a multi-channel CCRN

were considered and a unified framework based on Nash Bargaining Solutions was further

proposed. When there exist one PU and multiple SUs in a single-channel system, the

resource allocation problem for spectrum leasing was formulated as a Stackelberg game in
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[12, 13]. One of contributions of this work is to consider the existence of multiple channel

and multiple PUs in the system which complicates the analysis and we further utilize the

coalitional game theory to study the behavior of the various users in the system. The

authors solved the problem of resource allocation in a spectrum leasing scenario in CCRN

in [14], where the CR users allocate the whole their transmission power in a portion of

transmission frame to relay the primary signals. In return, the PU pairs lease their unused

portion of transmission frame to the SUs.

In this work, we firstly study a coalitional game-based approach for resource allocation

in a multi-channel cooperative cognitive radio network with multiple PUs and SUs. We

form the grand coalition through grouping all PUs and SUs in a set, where each PU can

lease its spectrum to all SUs in a time-division manner. Meanwhile, the SUs help the data

transmission of PUs by relaying, in return. Through validating that the solution concept of

the coalitional game (the core) is nonempty, we prove that the grand coalition is stable in

the proposed scenario. Therefore, we conclude that from the coalitional game- based point

of view, the optimal case for the spectrum leasing scenario in MIMO cooperative cognitive

radio networks (MIMO-CCRN) is to put all the PUs and the SUs in a coalition.

Afterwards, we study a MIMO-CCRN system with practical assumptions like the

minimum rate demand of the PUs. We aim at maximizing simultaneously the data rate of

the PUs and the SUs. Meanwhile, the interactions among the SUs to access the leased

channels is modeled using the bargaining games to allocate the spectrum in a fair and

optimal manner. In a brief, we propose a two-level cooperative game based approach to

tackle the aforementioned problems. To provide more clarification, in the proposed

framework, the interactions between the PU and the SUs are modeled as the first level

bargain game while the second level bargain game is used to formulate the SUs decision

making process on spectrum sharing. We analyze the optimal actions of the PU and the SU

and derive the theoretic results for the one-PU one-SU scenario. We further extend the

achievements for the one-PU multi-SU scenario using a revised numerical searching

algorithm and then, we prove its convergence.

2 System Model and Basic Assumptions

2.1 System Setup

We consider a single-cell network where the NPU primary users (PUs) communicate with

the primary base station (PBS), while NSU pairs of SUs are seeking vacant channels for

transmitting data to their respective secondary receivers (SRs). It is assumed that the PUs

transmit to the PBS taking advantage of the SUs cooperation and there is no direct link

between the PUs and the PBS. All users are assumed to be equipped with multiple antennas

and without losing the generality, it is further assumed that all the users are equipped with

N antennas. We denote the set of PUs and SUs by N PU ¼ 1; . . .;NPUf g and

N SU ¼ 1; . . .;NSUf g, respectively. Without losing the generality and for ease of exposi-

tion, we assume that the i-th PU communicates with PBS using the i-th subchannel only,

and the set of all PUs’ subchannels in the primary network is denoted by

N F ¼ 1; . . .;NPUf g. The secondary transmitters can only communicate their respective

receivers using the subchannels leased from a group of PUs, and as a result, a coalition is

formed between the PUs and the SUs.
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As described earlier, we firstly aim at studying a coalitional game based method to

resource allocation in a multi-channel cooperative cognitive radio network with multiple

PUs and SUs. A coalition S ¼ SPU [ SSU is a subset ofN PU [ N SU in which multiple PUs

and SUs cooperate, where SPU � N PU and SSU � N SU . The coalition N PU [ N SU is

called the grand coalition. A simple example of the system model with two PUs and two

SUs is shown in Fig. 1. According to Fig. 1, PU 1 and SU 1 may form a coalition S1 and

PU 2 and SU 2 form another coalition S2, or all of them form a grand coalition. The

benefits of the grand coalition for PUs and SUs are summarized in the following:

– It will be possible for the PUs to select different relay nodes and thereby, PUs gain

more revenues.

– Forming the grand coalition enables the SUs to obtain more opportunities to access

subchannels leased by different PUs.

Our objective at the first part of this work is to validate the above two statements using the

the coalitional game theory [15].

subsectionCoalition-based Transmission Conventions

Before proceeding to the game theoretic formulation and analysis, we describe the

cooperation mechanism and assumptions in the following:

1. It is possible for the SUs to use different subchannels at any given time.

2. In the formed coalition, each PU has only one available subchannel to lease to the SUs.

When an SU relays the PU is traffic, it uses the subchannel i leased by PU i.

3. Cooperative transmissions for PUs and SUs are realized in a time-division fashion. As

shown in Fig. 1, the first time slot is for PUs transmission and the second time slot for

SUs transmission. The second time slot is further divided into two parts, i.e., SUs

relaying PUs’ data and transmitting their own data. In the second time slot, the fraction

of time that SU j relays PU i’s traffic (using subchannel i) and transmits its own traffic

using subchannel l are denoted by bj;i and aj;l, respectively, where 0� bj;i � 1 and

0� aj;l � 1 for all i 2 SPU , j 2 SSU , and l 2 SF .

4. The cooperation strategy in the proposed scenario is Amplify-and-forward (AF).

Meanwhile, we assume flat Rayleigh fading for all channels which is invariant within

each time-slot. The PBS uses maximal ratio combining to combine signals from the

direct link and cooperative links. The PBS is also aware of the channel state

information (CSI).

2.2 Utility Function

When PU m transmits to the PBS taking advantage of the cooperation of SU k, the received

signal at the PBS can be written as

ym ¼ GkAm;kHm;kxm þGkAm;kzk þ wm ð1Þ

where xm 2 CN�1 denotes the transmit signal of PU m; Hm;k and Gk are channel matrices

from PU m to SU k and from SU k to PBS, respectively; Am;k denotes the amplification

matrix at SU k for the signals of PU m; The noise contribution at SU k and the PBS are

denoted by zk �CN 0; r2INð Þ and wm �CN 0; r2INð Þ, respectively, where we have

assumed the same noise power at all SUs and PBS. Due to the availability of the full CSI at

all nodes, we can use the singular value decomposition of the channel matrices to deter-

mine transmit and receive beamforming matrices at all nodes. Since these matrices are
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unitary they do not change the statistics of the channel and therefore preserve the mutual

information and error performance of this link. The singular value decomposition of the

channel matrices is given by
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Fig. 1 The system model for the spectrum leasing in MIMO-CCRN from a coalitional game based point of
view and the transmission slots: a secondary transmitters (STs) receive primary signals In the first time slot;
b In the second time slot, STs cooperate with PUs or transmit signals to their respective secondary receivers
(SRs)
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Hm;k ¼ Um;kKm;kV
H
m;k

Gk ¼ SkCkD
H
k

ð2Þ

Using the appropriate beamforming, the resulting transmit signal at PU m is thus given by

xm ¼ Vm;k ~xm and the amplification matrix has the structure Am;k ¼ DkPm;kU
H
m;k. The PBS

multiplies the received signal in (1) by SHk such that it can be expressed as

~ym ¼ SHk ym ¼ CkPm;kKm;k~xm þ CkPm;k~zk þ ~wm ð3Þ

where ~zk ¼ UH
m;kzk and ~wm ¼ SHk wm denote the equivalent noise contributions.

Up till now, we have no restriction on the structure of the gain matrix Pm;k. The optimal

structure of Pm;k is found through the maximization of the achievable data rate of PU

m which is given by

RP
m;k ¼ bk;m log det IN þ 1

r2
IM þ CkPm;kP

H
m;kC

H
k

� ��1

CkPm;kKm;kUmK
H
m;kP

H
m;kC

H
k

� �
ð4Þ

where we have assumed that transmit signals Gaussian with Um ¼ E ~xm~x
H
m

� �
. Owing to

Hadamard inequality, a requirement for maximizing the determinant in (4) is that the rows

(or columns) of the matrix within the determinant have to be orthogonal [16]. Using this

condition and the observation that all matrices in (4) are diagonal, we pick the gain matrix

Pm;k also as a diagonal matrix. This leads to a diagonal overall matrix in the determinant

which maximizes (4). Therefore, we define Pm;k as

Pm;k ¼ diag pm;k;1; . . .; pm;k;N
� �

ð5Þ

with

pm;k;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps
k;n

P
p
m;nkm;k;n þ r2

s
ð6Þ

where Pp
m;n and Ps

k;n denote the transmit power of PU m and cooperating SU k on the n-th

spatial subchannel, respectively. km;k;n represents the n-th diagonal element of Km;k.

Therefore, the achievable data rate of PU m, taking advantage of the cooperation of SU k,

can be written as

RP
m;k ¼

XN
n¼1

bk;m log 1þ
Pp
m;nam;k;nP

s
k;nbk;n

1þ P
p
m;nam;k;n þ Ps

k;nbk;n

 !
ð7Þ

where am;k;n ¼ km;k;n
r2 and bk;n ¼ ck;n

r2 . ck;n denotes the n-th diagonal element of Ck. Hence, the

achievable data rate of PU m can be expressed as

RP
m ¼

X
k2SSU

RP
m;k ð8Þ

In case of leasing the subchannel of PU m to SUs, the cost of PU m’s spectrum leasing can

be modeled as the total fraction of time that its subchannel is used by SUs, i.e.,

lm ¼
X
k2SSU

ak;m ð9Þ
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Therefore, the utility of PU m can be written as

UP
m ¼ F RP

m

	 

þ cPm � G lmð Þ ð10Þ

where F :ð Þ is a concave function which maps the achievable data rate of the PU to a utility

gain, G :ð Þ is a convex function which maps the cost of each PU to a utility loss, and

cPm ¼ g
P

k2SSU
ak;m denotes the amount of payment of SUs to PU m with g representing the

price of frequency use per unit time. The achievable data rate of SU k can be expressed as

RS
k ¼

X
j2SF

RS
k;j ð11Þ

where RS
k;j ¼ ak;jRk;j represents the maximum data rate of the k-th SU link using the j-th

channel and using the appropriate transmit and receive beamforming in each SU link, we

have,

Rk;j ¼
XN
n¼1

log 1þ
Ps
k;nhk;j;n
r2

� �
ð12Þ

where hk;j;n denotes the n-th eigen-value of the channel matrix in the k-th SU link over the

j-th channel. Then, the utility of the k-th SU link can be expressed as

US
k ¼ L RS

k

	 

� cSk ð13Þ

where L :ð Þ is a concave function to project the rate to the revenues and cSk ¼ g
P

k2SSU
ak;j

denotes the payment of the k-th SU to the PUs.

In the next section, we recruit the coalitional cooperative games to formulate and

analyze the performance of the proposed system model.

3 Coalitional Cooperative Game Based Formulation

3.1 Concepts and Game-Theoretic Problem Formulation

A classification of the coalitional games can be based on the transferability of the utility of

the game [15]. Therefore, a coalitional game can be either with transferable utility (TU) or

with non-transferable utility (NTU). The coalitional game in which the coalition value can

be apportioned arbitrarily between the coalition members is called a TU game. Similarly,

when the apportioning of the coalition value depends on the joint actions of the members in

the coalition, the resulting game is referred to as an NTU game. As will be proved, since

we define the coalition value as the sum of utilities generated by PUs and SUs in the

coalition, a TU game applies to our considered network. Moreover, as will be shown, the

considered network in this paper fulfills the properties of a canonical coalitional game, e.g.,

grand coalition. Thus, we formulate the cognitive radio network as a canonical coalitional

game with TU. In what follows, we present some coalitional game-related terminologies

firstly, and then we prove that this coalitional game satisfies the desired properties that

ensure a stable grand coalition and a fair payoff allocation.
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A coalitional game with TU comprises of a set of players who form cooperative groups

and the coalition value which correlates each nonempty subset of players with a number

[15]. First of all, we provide the definition of the coalition value for the considered game.

Definition 1 For the proposed canonical coalitional game with TU, the coalition value

t Sð Þ of a coalition S is the maximum sum utility of PUs and SUs in Sand depends only on

the actions of the PUs and SUs in S (not those in N PU [N SUnS).

Recruiting Definition 1 and using the utility definitions in (10) and (13), the coalition

value t Sð Þ is the solution to the following convex optimization problem:

t Sð Þ,max
X

m2SPU

UP
m þ

X
k2SSU

US
k

s.t. (C1):
X
j2SF

ak;j þ
X
m2SPU

ak;m ¼ 1

(C2):
X
k2SSU

ak;j þ bk;m
	 


¼ 1

(C3): 0� ak;j � 1, 0�bk;m � 1

ð14Þ

where UP
m and US

k the utility functions for PU m and SU k are given in (10) and (13),

respectively. We require the set of time fractions a ¼ ak;j k 2 SSU ; j 2 SFj
� �

and b ¼
bk;m k 2 SSU ;m 2 SPUj
� �

to solve the problem in (14). Note that a is in UP
m and US

k ; while

b exists in UP
m. The first constraint in (14), C1ð Þ, makes sure that each SU works in either

relay or access mode but not simultaneously. The second constraint in (14), C2ð Þ, guar-
antees that the total fraction of time that an SU in coalition S accesses the spectrum will

not exceed one. Moreover, C3ð Þ is to guarantee a feasible joint action of coalition S [17]. If

the solution to problem in (14) is not feasible, then t Sð Þ,�1.

3.2 The Core of the Game

As stated earlier, for a coalitional game with TU, the coalition value can be divided

arbitrarily among the participants in the coalition. A feasible payoff allocation policy for a

canonical coalitional game guarantees that if a subset of players separates from the grand

coalition, at least one PU or SU in the separated subset has a utility worse than that in the

grand coalition. To obtain a feasible payoff allocation policy, we recruit the core solution

concept [15] as defined in the following:

Definition 2 The core of the proposed coalitional game is the set of feasible payoff

allocation vectors y ¼ yP1 ; . . .; y
P
NPU

; yS1; . . .; y
S
NSU

h i
(where yPm and ySk represent the payoff

value of PU m and SU k, respectively) for the grand coalition and is called an imputation ifP
m2SPU

yPm þ
P

k2SSU

ySm ¼ t N SU [N PUð Þ and yi � t if gð Þ, 8i 2 N SU [ N PUð Þ. The core C is

the set of imputations for which
P

m2SPU

yPm þ
P

k2SSU

ySm � t Sð Þ for all S � N PU [N SU , i.e.,

C ¼ y :
X

m2SPU

yPm þ
X
k2SSU

ySm ¼ t SSU [ SPUð Þ and

(

X
m2SPU

yPm þ
X
k2SSU

ySm > t Sð Þ; 8S � N PU [ N SU

) ð15Þ
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According to Definition 2, if the core exists, it offers a set of stable payoff allocations

because no coalition S � N PU [N SU has the incentives to refuse the proposed payoff

allocation and leave the grand coalition to form a separate coalition instead.

In the following, we prove that the proposed canonical coalitional game with TU has a

nonempty core. At first, we find the dual problem of (14) using the duality theorem [18].

Using the transformation of the primal problem in (14) to the dual problem, the relation of

the solution set between the dual problem and the primal problem can be obtained. In other

words, the optimal solution of the dual problem is the upper bound of the optimal solution

of the primal problem [19]. Meanwhile, the solution set of the dual problem can be shown

to be a subset of the core, as will be proved in Theorem 1. The Lagrangian functions of

PUs and SUs can be expressed as

fm;j d; q; sð Þ ¼ max
RP
m � 0;lm � 0;cPm � 0;8m2SPU

F RP
m

	 

þ cPm � G lmð Þ þ dmR

P
m þ qmc

P
m þ smlm

	 


ð16Þ

g w;uð Þ ¼ max
cS
k
� 0;RS

k
� 0;k2SSU

L RS
k

	 

� cSk þ wkR

S
k þ ukc

S
k

	 

ð17Þ

where dm, qm, sm, wk and uk are the Lagrange multipliers. Therefore, the dual problem of

the problem in (14) for S ¼ SPU [ SSU is formulated as

D Sð Þ : min
a;b

X
m2SPU

X
k2SF

fm;j d; q; sð Þ þ xm;j

	 

þ
X
k2SSU

g w;uð Þ þ vkð Þ

s.t. qj þ wkR
S
k;j þ gsj þ guk þ

X
m2SPU

xm;j � 0; 8k 2 SSU ; j 2 SF

dmR
P
k;m þ vk þ

X
j2SF

xm;j � 0; 8k 2 SSU ;m 2 SPU

uk; vk;wk � 0; 8k 2 SSU

qj; sj � 0; 8j 2 SF

xm;j � 0; 8m 2 SPU ; j 2 SF

dm � 0; 8m 2 SPU

ð18Þ

where xm;j and vk are also the Lagrange multipliers, derived from the transformation of the

problem in (14) into its dual problem in (18). Let D denote the set of optimal solutions of

the dual problem in (18) for SPU ¼ N PU and SSU ¼ N SU , and let

O ¼ y	 : yP
	

m ¼ fm;j d
	; q	; s	ð Þ þ x	

m;j;m 2 N PU ; j 2 SF

n

yS
	

k ¼ g w	;u	ð Þ þ v	k ; k 2 N SU

for d	; q	; s	;x	;w	;u	; v	ð Þ 2 Dg

ð19Þ

correspond to the dual payoff generated by the solution of the dual problem. The dual

payoff is the set of the optimal payoff allocation of PUs and SUs. In the following theorem,

we prove that the core of the proposed coalitional game with TU is nonempty.

Theorem 1 The core of the proposed canonical coalitional game with TU is nonempty

and O � C.
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Proof The set O is nonempty, because the set D is nonempty. We consider an arbitrary

y	 2 O which corresponds to some d	; q	; s	;x	;w	;u	; v	ð Þ 2 D. Therefore,P
m2SPU

yP
	

m þ
P

k2SSU
yS

	
m is the optimal value of the objective function of D Sð Þ. The

objective function of (14) is concave, because F :ð Þ and L :ð Þ are concave, and G :ð Þ is

convex. Moreover, the constraints C1ð Þ C3ð Þ are linear. D Sð Þ is the dual of the problem in

(14) for each S � N PU [ N SU . Therefore, based on the strong duality [18], the duality gap

is zero. Hence,
P

m2SPU
yP

	

m þ
P

k2SSU
yS

	

m ¼ t N PU [N SUð Þ. We only need to show thatP
m2SPU

yP
	

m þ
P

k2SSU
yS

	

m � t Sð Þ for all S � N PU [N SU . Assume that (14) is feasible.

Then, strong duality states that t Sð Þ equals the optimal value of the objective function of

D Sð Þ. The sub-vectors d; q; s;x;w;u; vð Þ consisting of the components of

d	; q	; s	;x	;w	;u	; v	ð Þ in S satisfy the constraints of the dual problem in (18). Thus,P
m2SPU

yP
	

m þ
P

k2SSU
yS

	
m ¼ t N PU [ N SUð Þ is the value of the objective function of the

problem in (18) for the above feasible solution. It follows that the optimal value of the

objective function of the problem in (18) is a lower bound for
P

m2SPU
yP

	

m þ
P

k2SSU
yS

	

m .

Therefore, y	 2 C. h

Based on Theorem 1, the optimal payoff vector y	 lies in the core and can be achieved

by solving the dual problem D N PU [ N SUð Þ. In other words, the solution of the dual

problem D N PU [ N SUð Þ provides the optimal payoff allocation of the PUs, yP
	

m , and the

optimal payoff allocation of the SUs, yS
	
k , in the core.

4 A Two-Level Cooperative Game-Based Approach for Spectrum
Leasing in MIMO-CCRN

In this section, we study the interactions among the SUs and PUs from a bargaining game-

based point of view. We consider a single-PU multi-SU scenario and formulate the

cooperative interactions between the PU and SUs as the first-level bargain game, while the

interactions among the SUs is modeled as the second-level bargain game. In what follows,

we derive the optimal actions of the PU and SU in a single-PU single-SU scenario, firstly.

Then, a revised numerical searching algorithm is proposed for the single-PU multi-SU case

and the convergence of the proposed scheme is proved.

As depicted in Fig. 2, the PU communicates with the PBS using the licensed band,

while NSU SUs are hunting for vacant channels to transmit data to their respective sec-

ondary receivers (SRs). We assume that the PU has a minimum rate demand denoted by

RP
min. Moreover, it is further assumed that the communications between the PU and the PBS

does not meet the minimum rate requirement of the PU and thereby, the PU will recruit the

existing SUs, equipped with cognitive radio capabilities, for cooperative transmission in

order to meet the minimum rate demand. The SUs are also interested in cooperating with

the PU through relaying the signals transmitted from the PU to the PBS. The SUs are

granted a portion of the transmission frame to transmit their signals from secondary

transmitters (STs) to their intended receivers (SRs), in return, as shown in Fig. 2. After the

SUs assist the PU, they bargain to share the granted bandwidth using the Time Division

Multiple Access (TDMA) strategy. Similar to the previous section, we focus our discus-

sions on Amplify-and-Forward (AF) strategy.

According to Fig. 2, the PU allocates 1� að Þ fraction of its transmission frame to SUs.

It is presumed that the PU is able to achieve its required QoS by using only a fraction of its

transmission frame (for a 2 0; 1½ 
). This is the origin of the so-called spectrum holes that
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Fig. 2 The modified system model for the spectrum leasing scenario in MIMO-CCRN with a single PU: a
The PU transmits to the secondary transmitters (STs); b STs relay the primary signals to the PBS; c STs
transmit to their respective secondary receivers (STs)
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leads to the spectrum under-utilization. Therefore, at the beginning of each transmission

frame, the PU decides that it can free-up up to an 1� að Þ fraction of its transmission frame.

As shown in Fig. 2, the cooperative transmission for the PU consists of two phases. In the

first phase, the PU transmits its signals to the SU. The bandwidth that the PU retains for its

own use is divided into two sub-slots with equal length. In the first sub-slot, the PU

transmits to the SUs, and then the SUs relay the primary data to the PBS in the second sub-

slot. In the following, we study the proposed spectrum leasing scenario.

4.1 Two-level cooperative game-based Problem Formulation

Recall from (8) that the utility function of the PU (the achievable data rate of PU), as a

result of the cooperation of SU k, can be written as

UP ¼
X

k2N SU

XN
n¼1

a
2
log 1þ

Pp
nak;ndk;nP

s
k;nbk;n

1þ P
p
nak;n þ dk;nP

s
k;nbk;n

 !
ð20Þ

where ak;n ¼ kk;n
r2 and bk;n ¼

ck;n
r2 ; kk;n and ck;n denotes the n-th eigen-value of the channel

matrices from PU to SU k and from SU k to PBS, respectively; Pp
n and Ps

k;n denote the

transmit power of the PU and cooperating SU k on the n-th spatial subchannel, respec-

tively; We further assume that the SU k uses only part of its power in each spatial mode n,

i.e., dk;nP
s
k;n (0� dk � 1), to relay primary signal. Using (12), the utility function of the k-th

SU can be expressed as

US
k ¼

XN
n¼1

ek log 1þ
Ps
k;nhk;n
r2

� �
� a
2
csdk;nP

S
k;n

� �
ð21Þ

where ek is the fraction of time in the third sub-slot which is allocated to the k-th SU to

transmit to its intended receiver; cs is the price of per unit power for the SUs.

Therefore, the PU should determine the fraction of time which is supposed to be granted

to the SUs, a, and each SU k in the secondary system should find the fraction of its

cooperative transmission power on the n-th spatial subchannel to relay primary signal, dk;n.

Moreover, each SU k, is supposed to determine the fraction of the granted spectrum it can

use for its own transmission, ek. To stimulate the cooperation between the PU and the SUs,

as well as the cooperation among the SUs, we propose to cast such a decision making

process into a two-level bargain framework.

Before formulating the problem as a cooperative game, we introduce the Nash Bar-

gaining Solution (NBS) briefly. A special type of cooperative games are bargaining games,

where players negotiate/bargain their actions/strategies to reach an agreement with guar-

anteed minimum payoffs. The agreement is associated with a utility vector

u ¼ u1; . . .; uN½ 
, where ui is the utility of player i and there are N players in the game. Let

di and Di denote the action and action space for player i, respectively (di 2 Di). The utility

ui is a function of the action vector d ¼ d1; . . .; dN½ 
. The utility space U is the set of all

possible payoff allocations u that result from all possible action vectors d. It is also

possible that no agreement is reached after bargaining, a situation referred to as a dis-

agreement point. A disagreement point is associated with a utility vector u0, which consists
of minimum payoffs that players insist on having.

Given the variety of outcomes, Nash [20] suggested to, instead of study all possible

outcomes, specify characteristics or axioms of one or several outcomes that we expect and
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find how to drive the bargaining process to that agreement point. Nash proposed following

axioms that describe a Nash Bargaining Solution (NBS) [20], denoted by S u; u0ð Þ:

– A NBS is Pareto optimal, i.e. there is no other solution that two or more players can

simultaneously be better off.

– At the NBS, all players are guaranteed their minimum payoffs that they insist on at the

beginning of the bargaining process.

– A NBS is symmetric, meaning that all players have the same priority. Specifically, if all

users have identical action space Di, then they have the same utility/payoff at the NBS.

– If the action spaces of players shrink, leading to a shrunken utility space ~U, the old

NBS S u; u0ð Þ remains optimal provided that S u; u0ð Þ remains feasible in the new utility

space ~U. This property ensures that eliminating solutions that would not have been

selected does not affect the NBS.

Given the above properties, the problem is whether a unique NBS exists, and how to find

such a unique NBS. Nash proved the following theorem that answers these three key

questions [20]:

Theorem 2 If the utility space U is upper-bounded, closed and convex, then there exists a

unique NBS which is the solution of the following problem:

u ¼ arg max
u2Uf g

YN
i¼1

ui � u0;i
	 


ð22Þ

In the first level of the resource allocation game and with the target of maximizing the

social welfare of the secondary system, we model all SUs in the secondary system all

together which bargain with the PU, i.e., US ¼
P

k2N SU

US
k . Therefore, the game between the

PU and the SUs, also known as the first level bargain game, can be formulated as

G1 UP;US; u0p; u
0
s

� �
, where u0p and u0s are the disagreement point of the PU and the SUs,

respectively. The disagreement point of PU should be set as RP
min. Besides, the goal of the

SUs is to get the opportunity to access the spectrum. Then, the SUs wish to cooperate if

their gain from rate increasing by spectrum leasing is not less than the cost from power

consumption. Therefore, the disagreement point of the secondary system has to be set to

u0s ¼ 0. At last, the first level Nash bargaining based game can be formulated as

G1 : max
a;dk;n

UP � uP0
	 


US � uS0
	 


s.t.UP � uP0 ;U
S � uS0

ð23Þ

The benefits of the cooperation with the PU should be allocated among the SUs in a fair

fashion. Thus, another Nash bargaining game, known as the second level game, should be

played among the SUs, which is defined as G2 US
k ; u

0
s;kjk 2 N SU

� �
, with , u0s;k ¼ 0 for all

k 2 N SU , being the disagreement point of the SUs. Similarly, the solution of G2 can be

achieved through solving the following problem

G2 : max
ek

Y
k2N SU

US
k � uSk

	 


s.t.
X

k2N SU

ek ¼ 1� a
ð24Þ
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4.2 Solution of the Two-Level Game

In this section, we explore the interactions between the PU and the SUs and among the

SUs. First of all, the case of single-PU single-SU is considered and the optimal actions of

the PU and the SU are derived. Afterwards, the multi-user scenario is considered and a

numerical searching algorithm is proposed and its convergence is proved.

4.2.1 Single-PU Single-SU Case

In the following, we prove that the NBS for the single-PU single-SU bargaining game is

unique.

Theorem 3 There exists a unique NBS for the single-PU single-SU bargaining game, and

the solution is given by

a	 ¼ AC þ B C þ Dð Þ
2A C þ Dð Þ ; d	 ¼ arg min

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ D

A

r
if aL � aM � aH and X d	ð Þ\

ffiffiffiffi
C

B

r

a	 ¼ 1; d	 ¼ 0 otherwise

8><
>:

ð25Þ

where:

A ¼ 1

2

XN
n¼1

log 1þ Pp
nandnP

s
nbn

1þ P
p
nan þ dnPs

nbn

� �
ð26Þ

B ¼ uP0 ð27Þ

C ¼
XN
n¼1

log 1þ Ps
nhn
r2

� �
ð28Þ

D ¼ 1

2

XN
n¼1

csdnP
S
n ð29Þ

Proof For the single-PU single-SU scenario, the utility functions (20) and (21) can be

written as

UP ¼
XN
n¼1

a
2
log 1þ Pp

nandnP
s
nbn

1þ P
p
nan þ dnPs

nbn

� �
ð30Þ

US
k ¼

XN
n¼1

1� að Þ log 1þ Ps
nhn
r2

� �
� a
2
csdnP

S
n

� �
ð31Þ

Therefore, the following problem should be solved:
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G1 : max
a;dk;n

XN
n¼1

a
2
log 1þ Pp

nandnP
s
nbn

1þ P
p
nan þ dnPs

nbn

� �
� uP0

 !

XN
n¼1

1� að Þ log 1þ Ps
nhn
r2

� �
� a
2
csdnP

S
n

� � !

s.t.
XN
n¼1

a
2
log 1þ Pp

nandnP
s
nbn

1þ P
p
nan þ dnPs

nbn

� �
� uP0

XN
n¼1

1� að Þ log 1þ Ps
nhn
r2

� �
� a
2
csdnP

S
n

� �
� 0

ð32Þ

h

At first, we consider the fraction of SU power for cooperating with the PU in the n-th

spatial mode, dn for n ¼ 1; . . .;N, as a constant and attempt to find a. Then, we can rewrite

(32) using (26)–(29), according to the following:

G1 : max
a;dk;n

aA� Bð Þ 1� að ÞC � a
2
D

� �

s.t. aA�B

1� að ÞC� a
2
D

ð33Þ

By setting the first derivative of (33) to zero, we can solve (33) and summarize the results

according to the following:

a	 ¼ a	 dð Þ ¼

1; if aH\aL
aL; if aM\aL
aM ; if aL � aM � aH
aH ; if aH\aM

8>><
>>:

ð34Þ

where d ¼ d1; . . .; dN½ 
, aL ¼ B
A
, aM ¼ ACþB CþDð Þ

2A CþDð Þ , and aH ¼ C
CþD

. Afterwards, by replacing

(34) into (33) we can find the optimal value of d ¼ d1; . . .; dN½ 
, d	, under different con-
ditions. If aH\aL, aM\aL and aH\aM , then a	 ¼ 1 and d	 ¼ 0, meaning that the PU will

not lease its spectrum to the SU. As a result, no cooperation will take place between the PU

and the SU. However, if aL � aM � aH , by replacing a	 ¼ aM ¼ ACþB CþDð Þ
2A CþDð Þ into (33), and

assuming that X2 ¼ CþD
A
, we have

max
d

1

4

C

X
� BX

� �2

s.t. 0\X\

ffiffiffiffi
C

B

r ð35Þ

For X 2 0;
ffiffiffi
C
B

q i�
, f Xð Þ ¼ 1

4
C
X
� BX

	 
2
is a decreasing function of X. In this case, (35) is

equivalent to the following:

max
d

X dð Þ

s.t. 0\X dð Þ\
ffiffiffiffi
C

B

r ð36Þ
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Ultimately, the optimum value of d, d	, can be achieved by

d	 ¼ argmin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ D

A

r
if X d	ð Þ\

ffiffiffiffi
C

B

r

0 otherwise

8<
: ð37Þ

Finally, the NBS for the single-PU single-SU scenario can be summarized as

a	 ¼ AC þ B C þ Dð Þ
2A C þ Dð Þ ; d	 ¼ arg min

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ D

A

r
if aL � aM � aH and X d	ð Þ\

ffiffiffiffi
C

B

r

a	 ¼ 1; d	 ¼ 0 otherwise

8><
>:

ð38Þ

4.2.2 Single-PU Multi-SU Case

After finding the optimal solution of the single-PU single-SU case, we consider the single-

PU multi-SU case. In order to derive the optimal solution for such a scenario, we first

calculate the solution of G2, i.e., ek, by assuming that a and dk, for all k 2 NSU , are known.

Theorem 4 If a and dk, for all k 2 NSU , are given, the optimal solution of G2 is

e	k ¼
1

NSU

1� að Þ � a
2

X
i2N SU

csdiP
S
i

RS
i

" #
þ a
2

csdkP
S
k

RS
k

ð39Þ

where Rs
i ¼

PN
n¼1

log 1þ Ps
i;nhi;n
r2

� �
, di ¼ di;1; . . .; di;N

� �
and PS

i ¼ PS
i;1; . . .;P

S
i;N

h iT
.

Proof The Lagrangian function of the problem in (24) can be written as

L ¼
Y

k2N SU

ekR
S
k �

a
2
csdiP

S
i

� �
� k

X
k2N SU

ek � 1þ a

 !
ð40Þ

where k is the Lagrange multiplier. We set to zero the first order derivative of (40) with

respect to ej, for all j 2 NSU , we have

oL

oej
¼

Y
k2N SU ;k 6¼j

ekR
S
k �

a
2
csdiP

S
i

� �
RS
j � k ¼ 0 ð41Þ

By some simple manipulation, (41) can be rewritten as

Y
k2N SU

ekR
S
k �

a
2
csdiP

S
i

� �
¼ k

RS
j

ejR
S
j �

a
2
csdjP

S
j

� �
ð42Þ

for all j 2 N SU . Then, it can be concluded that

ek �
a

2RS
k

csdiP
S
i ¼ ej �

a

2RS
j

csdjP
S
j ð43Þ

for all k; j 2 N SU . Finally, the optimal value of ek, e
	
k , can be expressed as
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e	k ¼
1

NSU

1� að Þ � a
2

X
i2N SU

csdiP
S
i

RS
i

" #
þ a
2

csdkP
S
k

RS
k

ð44Þ

h

Now, the optimal solution of G1, i.e. a	 and d	k , should be found. Using (44), the total

utility of the SUs can be expressed as

US ¼
X

k2N SU

US
k ¼ 1� a

NSU

� a
2NSU

X
i2N SU

csdiP
S
i

RS
i

 ! X
k2N SU

RS
k ð45Þ

By replacing (45) into (23), the following complex non-linear optimization problem is

obtained:

max
a;dk

XN
n¼1

a
2
log 1þ Pp

nandnP
s
nbn

1þ P
p
nan þ dnPs

nbn

� �
� uP0

 !
1� a
NSU

� a
2NSU

X
i2N SU

csdiP
S
i

RS
i

 ! X
k2NSU

RS
k

 !

s.t.
XN
n¼1

a
2
log 1þ Pp

nandnP
s
nbn

1þ P
p
nan þ dnPs

nbn

� �
� uP0

1� a
NSU

� a
2NSU

X
i2N SU

csdiP
S
i

RS
i

 ! X
k2N SU

RS
k � 0

ð46Þ

It is possible to obtain a closed-form solution for the problem in (46). Therefore, we

propose a numerical searching algorithm which recruits the sequential unconstrained

minimization technique (SUMT).

Let z ¼ a; d1; . . .; dNSU
½ 
T . Then (46) can be reformulated in the form of the following:

min v zð Þ
s.t. wk zð Þ� 0; k ¼ 1; 2; . . .; 3NSU þ 4

ð47Þ

Let Z1 ¼ z wk zð Þ[ 0; k ¼ 1; . . .; 3NSU þ 4jf g. Then, it would be possible to solve (47)

through sequentially solving a series of unconstrained optimization problems in the form of

min
z2Z1

/ z; tkð Þ ð48Þ

where / z; tkð Þ ¼ v zð Þ þ u z; tkð Þ, and u z; tkð Þ ¼ �ti
P3NSUþ4

k¼1 ln wk zð Þð Þ is the barrier item,

k is a positive integer and tkf g is a positive descending series with lim
k!1

tk ¼ 0. The steps to

find the solution of (47), i.e., z, is presented in Table 1 (Algorithm 1).

In order to run Algorithm 1, we need a strictly interior point to start the iteration. In

Algorithm 2, we propose a scheme to obtain a strictly interior point. Therefore, in order to

solve (47), the first step is to call Algorithm 2. Then, using the initial point found in

Algorithm 2, Algorithm 1 is recruited to solve the reformulated optimization problem in

(48). It is noteworthy that in each round of iteration in Algorithm 1 and Algorithm 2, a

modified Broyden-Fletcher-Goldfarb-Shanno (MBFGS) method [21] is used to solve the

associated unconstrained optimization problems. The point that Algorithm 1 is converged

to is announced as the optimal solution of (47). In Theorem 5, the convergence of the

proposed algorithm is proved formally (Table 2).
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Table 1 Algorithm 1 (Interior Point Method to solve (48))

Initializations:

1) Set an initial point z 0ð Þ 2 Z1 (a strictly interior point)

2) Set an initial barrier factor t1.

3) Set an initial contraction coefficient d 2 0; 1ð Þ.
Stopping Condition:

1) Specify e.

2) Compute E ¼ u z mð Þ; tm
	 


 

 ¼ tm

P3NSUþ4

k¼1

ln wk z mð Þ	 
	 









.

4) If E\e then STOP

Else CONTINUE

Iterations:

Iteration Count: m ¼ 1.

While Stopping Condition is not satisfied do

1) Using z m�1ð Þ as starting point, solve the unconstrained optimization problem in (48) and save the

solution as z mð Þ.

2) Set tmþ1 ¼ dtm.

3) m ¼ mþ 1.

End While

Table 2 Algorithm 2 (Searching for A Strictly Interior Initial Point for Algorithm 1)

Initializations:

1) Set an initial barrier factor t1.

2) Set an initial contraction coefficient d 2 0; 1ð Þ.
3) Set a maximum iteration number mmax.

4) Set z 0ð Þ ¼ 0:5; . . .; 0:5½ 
T .
Iterations:

Iteration Count: m ¼ 1.

1) Construct sets Pm and Qm as

Pm ¼ k wk z m�1ð Þ	 

� 0; 1 6 k� 3NSU þ 4



� �

Qm ¼ k wk z m�1ð Þ	 

[ 0; 1� k� 3NSU þ 4



� �

2) If Pm ¼ ; do

z m�1ð Þ is returned as a strictly interior point and the algorithm ends.

Else Continue to the algorithm.

3) Construct the barrier function / z; tmð Þ ¼ �
P
k2Pm

wk zð Þ þ tk
P

k2Qm

ln wk zð Þð Þ Denote

Rm ¼ z wk zð Þ[ 0; k 2 Wmjf g. Use z m�1ð Þ as the starting point and solve the unconstrained

optimization problem min
z2Rm

/ z; tmð Þ And solve the solution as z mð Þ.

4) Set m ¼ mþ 1.

5) If m[mmax do

The algorithm terminates and no feasible point is announced.

Else tmþ1 ¼ dtm and go to Step (1).
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Theorem 5 Algorithm 1 is convergent to at least a local optima of the proposed two-level

game.

Proof Based on Algorithm 1, we know that all the iterations of MBFGS are limited

within the open ball with center x ¼ 0:5; . . .; 0:5½ 
T and radius R ¼ 0:5, i.e.,

B yð Þ ¼ y 2 RNSUNþ1 y� xk kj \R
� �

ð48Þ ð49Þ

We refer to the functions in the iterative step of Algorithm 1 and step 3 of Algorithm 2 as

the target functions. It is easy to verify that the target functions are continuously differ-

entiable within the open ball. Since both the starting point and the domain of the target

function are within this ball, the target function is continuously differentiable within the

domain. According to [22], the target function is Lipschitz continuous. Then, according to

[21], the MBFGS is globally convergent. According to [23], as long as the method for

solving the unconstrained optimization problem, i.e., MBFGS, is globally convergent,

Algorithm 1 is guaranteed to converge at least to a local optimum of the original bar-

gaining game. h

Similarly, we can also prove that Algorithm 2 will converge to a feasible solution if the

feasible region is not empty.

5 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms are using simu-

lations. We do a static system level simulation as a single cell. The simulation assumptions

are as follows:

– The area covers 2 km � 2 km and the users are uniformly distributed in the area.

– All users are assumed to be equipped with the same number of antennas, denoted by N.

– The minimum rate requirement of the PU is set to 2 bps / Hz.

– The noise power, r2, is set to 10�6W=Hz.

The performance evaluation tools are the leasing parameters (such as a and dk;n’s, for all

k 2 SSU and all spatial modes), the outage probability of the primary link and the total rate

of all SUs. The performance evaluation is realized through comparing the evaluation tools

when the proposed two-level game based approach (TL) is recruited, when the primary

transmitter directly communicates primary receiver (direct) and when the non-cooperative

approach (NCA) proposed in [24] is recruited. In NCA, a portion of the primary spectrum

is leased in return for the cooperation of SUs, and the leased spectrum is non-cooperatively

shared among the SUs.

The superiority of the proposed scheme over NCA approach is shown in Fig. 3, where

the leasing parameters, i.e., the portion of primary spectrum retained for the PU com-

munications (a) and the average portion of power assigned by the SUs to relay primary

signals, D ¼ 1
NSUN

P
k2N SU

PN
n¼1

dk;n. To provide more clarifications, the leasing parameters, a

and D, indicate the eagerness of the users for cooperating. More specifically, it can be

deduced from the smaller a and the larger D that the PU and SUs are highly motivated for

taking part in the proposed cooperative two-level game. According to Fig. 3, when

NSU ¼ 1, the leasing parameters of the NCA are a ¼ 1 and D ¼ 0, meaning that the PU and

the SU are not cooperating. However, the proposed two-level game based approach results
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in a ¼ 0:95 and D ¼ 0:378, which shows that the PU and the SU cooperate successfully.

The superiority of the proposed approach (TL) over the spectrum leasing approach in [24]

(NCA) can be attributed to more power that the SUs own for bargaining with the PU and

further, sharing the profits of cooperation in a cooperative manner among themselves.

When NSU [ 1, although the cooperation between the PU and the SUs takes place as a

result of NCA, but the enthusiasm of the PU for cooperating with SUs does not change

significantly, because of the selfish nature of the game in [24], while the SUs eagerness for

cooperating diminishes as the number of the SUs grows. Opposed to NCA, the proposed

two-level game approach leads in augmenting the motivations of the PU and the SUs to

cooperate with each other, as the number of SUs increases. Another significant observation

is that as a result of the proposed scheme, the cooperative spectrum leasing is guaranteed to

happen between PU and the SUs.

The outage probability of the primary user is another important tool for evaluating the

performance of the proposed scheme. As shown in Fig. 4, the worst outage probability is

achieved when the PU decides not to cooperate with the SUs. The cooperation of the SUs

with the PU in the leasing scenario presented in [24] (NCA) reduces the outage probability.

However, in comparison with NCA, our proposed spectrum leasing scheme causes a more

significant reduction in the outage probability of the PU. The proposed two-level game

based approach (TL) motivates the SUs to allocate a higher portion of their transmission

power for relaying the primary signal and consequently, the outage probability perfor-

mance of the proposed scheme is better than others.

The total rate of SUs in terms of the number of SUs for different number of the antennas

and different schemes is presented in Fig. 5. Similar to previous discussions, it can be

inferred from Fig. 5 that for the single-SU case, NCA does not motivates the SU enough to

participate in PU transmissions and get access to the leased resources, in return. However,

the proposed two-level game based approach (TL) persuades the SU to relay the primary

signals and benefit from the leased resources to increase its data rate. As the number of

existing SUs in the system increases, the total rate of the system implemented based on

NCA does not escalate significantly, because of the competition among the SUs for sharing
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the leased spectrum. Meanwhile, the proposed two-level game based scheme which takes

advantage of the cooperative games, provides a much better sharing of the leased spectrum

among the SUs and thereby higher sum rate for the SUs. As another point, Fig. 5 suggests

that deploying more antennas in all users, results in higher data rates expectedly.

In order to determine whether SUs are receiving a fair share of system resource, Jain’s

fairness measure as a widely used fairness measure is used. Fig. 6 depicts the Jains fairness

indices of the different algorithms. Evidently and expectedly, the proposed two-level

cooperative game based scheme achieves significantly better fairness than NCA. As the

number of SUs increases, fairness indices under NCA decreases. However, the proposed

approach maintain quite stable fairness for different network sizes.
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6 Conclusions

In this work, we studied the resource allocation problem in a spectrum leasing scenario in

MIMO-CCRN with multi channels using a coalitional game based approach. After proving

that all PUs and SUs should be grouped in a set and as a result of such grouping, the grand

coalition is formed, we analyzed the stability of the proposed coalitional game based

approach using the core concept. Afterwards, we explored a practical scenario where the

data rate of the primary system, falls below a minimum data rate requirement, and alter-

natively, the PU resorts to the leasing of its unused spectrum to SUs. However, it is

guaranteed that the SUs perform as cooperatively as to meet the rate requirement of the

primary system. Moreover, the benefits of cooperating with the primary system may not be

exploited by the secondary system efficiently, if the SUs compete over the resources. We

propose a two-level game based on the bargaining games to tackle the aforementioned

problems. The simulation results confirm the theoretical achievements.
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