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Abstract In this paper, an optimal resource allocation method in multiple-input multiple-

output-orthogonal frequency division multiplexing heterogeneous cloud radio access net-

work is proposed for downlink transmission. Our problem formulation takes into account

inter-tier interference and quality of service requirement for RRH/HPN association policy.

We formulate two non-convex optimization problems for resource block (RB) assignment

and power allocation, and then solve both problems using their equivalent convex feasi-

bility problems. By considering Lagrange dual decomposition technique, a closed form

expression for joint power and RB allocation in order to improve energy efficiency (EE) is

derived. In addition, the adaptive modulation is investigated to realize practical scenario.

Finally, the efficiency of the proposed algorithms in enhancing EE is confirmed through

Monte Carlo simulations.

Keywords Heterogeneous cloud radio access network (H-CRAN) � Multiple-input

multiple-output (MIMO) � Energy efficiency (EE) � Adaptive modulation

(AM) � Resource allocation � Fifth-generation (5G)

1 Introduction

Wireless communication traffic is dramatically growing due to the rise in popularity of

smartphones and tablets [1]. Demand to the revolutionary development of information and

communication technology (ICT) to achieve high quality services for this huge amount of
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users, arises some new challenges. One of the most significant obstacle is energy con-

sumption of ICT industry, which causes up to 2% of the global energy consumption [2].

Since both transmission rate and power consumption need to be considered, thus designing

energy efficient wireless networks instead of pursuing optimal capacity and spectral effi-

ciency is pressing [3].

Energy-efficient architecture designation is the first step in improving network perfor-

mance. Since traditional network architectures fail to achieve ever-increasing data rates, a

new network deployment strategy, HetNet, has emerged to enhance both network capacity

and coverage [4]. In HetNet various types of cells are deployed and due to improvement of

spatial frequency reuse, the system capacity increases. However, deploying more BSs

causes two major challenges: (1) inter-tier interference mitigation and handover process

result in more processing and signaling load. (2) Even though capacity of system increases,

due to more power consumption as a direct result of more deployed BSs, EE performance

degrades.

To overcome the above-mentioned problems, a promising architecture, cloud radio

access network (CRAN), is introduced in [5–7]. This architecture is composed of a

baseband unit (BBU) that is in charge of baseband processing and remote radio head

(RRH) that acts as soft relay [5]. Despite tremendous advantages offered by CRAN,

drawbacks such as long delay, non-ideal fronthaul with limited capacity and need to

decouple control plane to attain high transmission data rates impairs C-RAN performances.

The emergence of a new architecture, heterogeneous cloud radio access network

(HCRAN), which meets the challenges of both HetNets and C-RAN and takes full

advantage of both structures is a turning point in designing energy-efficient network

architecture. The proposed architecture is shown in Fig. 1. In HCRAN, RRHs are coop-

erated in the cloud which leads to obtain a high cooperation gain and low power con-

sumption at the same time. The high power nodes (HPNs) are interfaced with the cloud by

S1 and X2 interfaces. S1 and X2 are in charge of coordinating the inter-tier interference
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Fig. 1 MIMO-based HCRAN architecture
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and transferring data and control plane, respectively. Furthermore, shifting the control

functionality of the RRHs to the HPNs is beneficial in easing the fronthaul constraint in

C-RAN.

As another step, we consider multiple-input multiple-output (MIMO) and orthogonal

frequency-division multiplexing (OFDM) technologies. MIMO improves both spectral

efficiency (SE) and system performance in fading channels. However, due to inter-symbol

interference (ISI) and frequency selective nature of wireless channels, high data rate

transmission is restricted and the efficiency of MIMO technology for 5G is questionable.

OFDM, with its ability in reducing ISI, converts a frequency selective MIMO channel into

a parallel series of frequency flat-fading subchannels and enables MIMO technique to

increase data rate significantly [8, 9]. Due to simplicity and high SE, orthogonal frequency

division multiple access (OFDMA), which is multiuser/multiple access version of OFDM,

will be the dominant multiple access scheme for next generation wireless networks (5G).

In addition, by assuming perfect CSI, adaptive modulation (AM) utilization improves

the performance of MIMO–OFDM systems [10, 11]. By using adaptive modulation, each

subcarrier is adapted to its appropriate constellation size. The combination of these three

technologies (AM–MIMO–OFDM), would consist a collection of advantages and play an

indispensable role in the future of high data rate wireless communication systems.

Significant advantages of HCRAN, as a promising network architecture candidate for

5G, especially its impact on EE and SE improvement has attracted a lot of attention. An

energy efficient resource allocation and power management algorithm is investigated for

HCRAN in [12], in which by considering different QoS-requirement and inter-tier inter-

ference in an OFDMA based network, a nonconvex problem is solved and optimal power

and channel matrices are obtained. In [13] the maximization of the averaged weighted EE

in HCRAN by taking fronthaul capacity, inter-tier interference and queue length is con-

sidered for MIMO HCRAN.

In [14], a power and subchannel allocation problem for OFDM HetNet is investigated in

which by considering all user’s rate requirements and inter-cell interference, a nonconvex

problem is formulated for power saving purposes. An EE-oriented power and beamforming

vector allocation problem of OFDMA HetNet is proposed in [15], where by decomposing

main problem to multiple single constraint problems, a nonconvex problem is solved. In

paper [16], authors propose a joint power and admission control (JPAC) for OFDMA

HetNet aimed at maximizing EE/SE under power and interference constraints.

Due to ability of MIMO in achieving both multiplexing gain and diversity gain, a

MIMO-based network may increase throughput and decrease energy consumption, which

leads to better EE performance. To improve EE in MIMO–OFDM network several criteria

is investigated and the closed form expression for the EE–SE tradeoff is derived in [17]. In

[18] the optimal power allocation is researched for MIMO–OFDM in order to maximize

EE by QoS consideration in multimedia communication systems where by exploiting SVD,

a multichannel joint optimization problem turns into a multi-target single-channel opti-

mization problem.

Eigenvalue-based AM Scheme for MIMO–OFDM Systems are proposed in [10, 19–22].

In [10] an adaptive modulation scheme taking both BER and total bit rate constraints into

account, is presented. By considering both perfect and imperfect CSI, continuous and

discrete modulation constellation is adaptively allocated with the aim of average SE

maximization in [22], in which transmit rate and power constraints in each subchannel

have been taken under consideration.

In this paper, optimal resource allocation algorithms are proposed to enhance the EE

performance in MIMO–OFDM HCRAN. To maximize EE, inter-tier interference and

Energy-Efficient Resource Allocation for Adaptive Modulated… 4849

123



different QoS requirement are taken under consideration. Then, a joint power and RB

allocation optimization problem is investigated. Finally, by adapting appropriate constel-

lation sizes to different MIMO–OFDM subchannels, a practical energy efficient network

architecture is achieved.

The rest of this paper is organized as follows. In Sect. 2, we describe the system model

and formulate the optimization problem. In Sect. 3, optimization problem is transformed to

a convex optimization problem using Lagrange dual decomposition method and solved

using an iterative algorithm. Section 4 represents simulation results which verifies the

effectiveness of the proposed architecture and resource allocation algorithms. Finally, the

paper is concluded in Sect. 5.

2 System Model

2.1 Cellular Network Model

We assume downlink of a two-tier heterogeneous network including one HPN and a set of

coexisting RRHs. OFDMA is used in both type of base stations in order to serve multiple

users. Due to severe inter-tier interference between HPN and RRHs, association of users

with neighbor RRH/HPN based on the strongest receiving SINR is not efficient all the

time. Hence, closed-access policy is assumed so none of unregistered mobile stations

(MSs) can access to RRHs even if they are at their coverage area. As two key factors in

improving both EE and SE, inter-tier and intra-tier interference mitigation attracted a lot of

attention. Some advanced algorithms, such as cell association, fractional frequency reuse

(FFR) and coordinated multipoint (CoMP) have been proposed for this purpose. Several

researches indicate that CoMP method, utilizing advanced beamforming algorithm attain

significant success in mitigating interference [23–25]. In our scenario exploiting CoMP

method to mitigate intra-tier interference among different RRHs, looks to be efficient. the

reason is that, all RRHs are connected to BBU pool and their baseband processes are done

in cloud. Consequently, RRHs can use same frequency spectrum without performance

degradation. However, inter-tier interference mitigation among HPN and RRHs need to be

coordinated in BBU, which enforces a heavy burden of computational complexity on the

BBU pool. By employing different spectrum deployment scheme instead, extra burden of

BBU pool will be dwindled. Co-channel and orthogonal channel deployment are two major

choices, which due to their disadvantages in balancing performance and attaining desired

SE at the same time, the combination of them was introduced in [12]. The proposed

enhanced-FFR (e-FFR) shows better SE performance, so proved to be a better choice to be

used in this paper. In the mentioned scheme, frequency spectrum is bisected and each

portion is assigned to different types of subscribers. It is proved that the division of

spectrum by two brings a good trade-off between performance gain and implementation

complexity. Users accessing RRHs (denoted by RUEs) are divided into two groups, high-

QoS and low-QoS required users. High-QoS required users occupy unshared resource

blocks (RBs), while low-QoS required users share their spectrum by users accessing HPNs

(denoted by HUEs) and suffer from inter-tier interference. Since these users do not need

high-QoS required services, by adjusting their power and assigning the most appropriate

channel, can achieve their desired QoS. Figure 2 illustrates the spectrum scheme utilized in

this paper.
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2.2 Channel Model

We consider a point-to-point MIMO–OFDM system with nT transmit antennas and nR
receive antennas. Two different implementation of MIMO are known: (1) MU–MIMO

systems, which can provide high data rates by transmitting to multiple MSs simultaneously

over the same spectrum. (2) SU–MIMO, which allocate different subchannels to each MS.

Although MU–MIMO offers higher data rate than SU–MIMO do, but severe interference is

caused due to the use of shared spectrum. Therefore, SU–MIMO deployment is assumed

throughout this paper. Channel matrix H�CNð0; 1Þ, whose entries Hi ¼ hi;nT ;nR
� �

repre-

senting independent channel coefficients for sub-carrier i, is assumed to be flat faded. This

assumption is known to be accurate due to utilizing OFDM technique. Additive white

Gaussian noise (AWGN), N�CNð0; r2Þ, is considered which includes nR �1 column

vector. As shown in Fig. 3, by assuming perfect CSI and applying SVD to H, we can

reduce each original MIMO–OFDM system into S ¼ m,minðnT ; nRÞ independent scalar
subchannels [22].

HPN

RRH

RRHRRH

RRH

BBU 
Cloud

Fig. 2 Enhanced S-FFR scheme

Fig. 3 Equivalent scalar
subchannels for MIMO system
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2.3 Performance Metrics

We assume N high-QoS required RUEs with QoS requirement denoted as g1 and M low

QoS-required RUEs with QoS requirement, g2. As shown in Fig. 2, total K RBs (denoted

as XT ) are divided into X1 and X2, where X1 is occupied by high QoS-required RUEs and

X2 is shared between low-QoS required RUEs and users of HPN. As a result of using

shared spectrum, an interference term must be considered for low QoS-required RUEs.

Hence, channel to interference plus noise ratio (CINR) for n-th RUE occupying the k-th

RB at s-th subchannel, is defined as,

rn;k;s ¼
dRn h

R
n;k;s=B0 N0 k 2 X1

dRn h
R
n;k;s= PHdH2R

n hH2R
n;k;s þ B0 N0

� �
k 2 X2

8
<

:
ð1Þ

where dRn and dH2R
n are pathloss from considered RRH and HPN to RUE n, respectively.

hRn;k;s and hH2R
n;k;s represent the channel gain from the RRH and HPN to RUE n on the k-th RB

at s-th subchannel, respectively. Since main purpose of deploying HPN is to extend

coverage area and to supply low-QoS required services, the allowed transmit power

allocated to each RB in HPN is equal and obtained as pH ¼ PH
max

H
, in which PH

max denotes the

maximum allowable transmit power of HPN and H indicates the number of total shared

subchannels. The estimated power spectrum density of both sum of noise and weak inter-

RRH interference is shown by N0 (in dBm/Hz).

The sum data rate of each RRH is calculated as

Cða; pÞ ¼
XNþM

n¼1

XK

k¼1

an;kB0

XS

s¼1

log2ð1þ rn;k;spn;k;sÞ ð2Þ

where matrices a ¼ an;k
� �

ðNþMÞ�K
And p ¼ pn;k;s

� �
ðNþMÞ�K�S

indicate the feasible RB and

power allocation policies, in which an;k can only be 1 and 0 showing whether k is allocated

to user n. The significant effect of the different energy consumption models on EE metric,

highlights the importance of defining model more meticulously. So based on [26] the total

power consumption of RRH is expressed as

PT ¼ 1

g

XNþM

n¼1

XK

k¼1

an;k
XS

s¼1

pn;k;s þ nTPdyn þ Psta ð3Þ

in which g, Psta and Pdyn are power amplifier efficiency, static and dynamic circuit power,

respectively. Moreover, nT stands for number of transmit antennas.

Since just low-QoS required users is considered for HPN, the SINR of HUE is

expressed as

qt;k;s ¼ PHdHt h
H
t;k;s=ðL� dþ B0N0Þ; k 2 X2 ð4Þ

where dHt and hHt;k;s are representing path loss and channel gain of t-th user and d is used to

show the interference caused by each RRH, which is multiplied by the number of RRH,

since we have dense RRH deployed network.

Similarly, the sum data rate and total power consumption of HPN are computed as
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CHðaH ; pHÞ ¼
XT

t¼1

XK2

k¼K1þ1

aHt;kB0

XS

s¼1

log2ð1þ qt;k;sÞ

PH
T ¼PH

max

g
þ nTPdyn þ Psta

ð5Þ

in which t 2 1; . . .; Tf g denotes the HUE allocated to the shared RB and aHand pH stand

for RB and power allocation, respectively. g, Psta and Pdyn indicate power amplifier effi-

ciency and static and dynamic circuit power.

As the Main parameter discussed in this paper, EE, can be defined as

e ¼ L� Cða; pÞ þ CHðaH ; pHÞ
L� PTða; pÞ þ PH

T ðaH ; pHÞ
ð6Þ

where L is the number of RRHs that in dense metropolitan area is a large number. If the

value of L increases, such that the total amount of sum data rate and power consumption of

all RRHs surpass the CHðaH ; pHÞ and PH
T ðaH ; pHÞ, then these parameters can be neglected

and the overall EE can be shrunk to

e � L� Cða; pÞ
L� PTða; pÞ

¼ Cða; pÞ
PTða; pÞ

ð7Þ

so (7) is a simple form that should be solved only for one RRH.

Problem 1 The EE maximization of downlink HCRAN is formulated as:

max
a;pf g

Cða; pÞ
PTða; pÞ

¼

PNþM

n¼1

PK

k¼1

an;k B0

PS

s¼1

log2 1þ rn;k;s pn;k;s
� �

1
g

PNþM

n¼1

PK

k¼1

an;k
PS

s¼1

pn;k;s þ nT Pdyn þPsta

ð8Þ

s:t: C1 :
XNþM

n¼1

an;k ¼ 1; an;k 2 0; 1f g; 8k ð9Þ

C2 :
XNþM

n¼Nþ1

an;k
XS

s¼1

pn;k;sd
R2H
n

hR2Hn;k;s � d; k 2 X2 ð10Þ

C3 :
XNþM

n¼1

XK

k¼1

an;k
XS

s¼1

pn;k;s �PR
max; pn;k;s � 0; 8k; 8n ð11Þ

C4 :
XK

k¼1

cn;k � g1; 1� n�N ð12Þ

C5 :
XK

k¼1

cn;k � g2; N þ 1� n�N þM ð13Þ

where constraint C1 specifies that each RB can be occupied only by one user at the same

time, and also none of RBs should be left empty behind. Even though, our maximization

problem was dwindled to consider only RRHs, we need a constraint which assure us about

the QoS achieved by HUEs. For this purpose, constraint C2 enforces allocated powers to
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RUEs, to be below the threshold, d. Constraint C3 puts the limitation of the total value of

power which can be allocated by each RRHs. Finally, constraint C4 and C5 are responsible

for making sure each type of users attain at least their minimum required data rates.

Problem 2 In Problem 1 our objective function is based on capacity, which is a theo-

retical upper-bound for data rate. Since we intend to introduce a more practical scenario,

we reformulate above problem by constituting data rate as objective function,

max
a;pf g

Rða; pÞ
PTða; pÞ

¼
PNþM

n¼1

PK
k¼1 an;kB0

PS
s¼1 kðcsÞ

1
g

PNþM
n¼1

PK
k¼1 an;k

PS
s¼1 pn;k;s þ nTPdyn þ Psta

s.t. C1;C2;C3;C4;C5

ð14Þ

in which

k ¼ log2ð1þ kðcsÞÞ

K,
1:5

lnð0:2=BERÞ
ð15Þ

where cs stands for received SINR [27].

3 Solution of the Optimization Problem

The objective functions in (8) and (14) are classified as nonlinear fractional programming

which results in a non-convex problem. Since there is no standard solution for solving non-

convex problem, our first attempt would be transforming objective function to a more simple

form using nonlinear fractional programming. Since both proposed optimization problems

can be solved similarly, we solve the first problem and the second one can be solved the same

way.

3.1 Transformation of the Objective Function

For the sake of notation simplicity, we define F as the set of feasible solution of opti-

mization problem in (8) and a; pf g 2 F. Without loss of generality, we define the optimal

value of nonnegative variable e as

e� ¼ C a�; p�ð Þ
PT a�; p�ð Þ ¼ max

a;pf g

C a; pð Þ
PT a; pð Þ ð16Þ

The maximum EE, e�, is achieved if and only if

max
a;pf g

C a; pð Þ 	 e�PT a; pð Þ ¼ C a�; p�ð Þ 	 e�PT a�; p�ð Þ ¼ 0 ð17Þ

in which a; pf g is any feasible solution of proposed problem to satisfy constraints C1 	C5

[28].

To prove, we must consider sufficient and necessary conditions. By defining a� and p�

as the optimal RB and power allocation policies, e� holds,

e� ¼ Cða�; p�Þ
PTða�; p�Þ

� Cða; pÞ
PTða; pÞ

ð18Þ
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so we can derive the following formulas:

Cða; pÞ 	 e�PTða; pÞ� 0

Cða�; p�Þ 	 e�PTða�; p�Þ ¼ 0

�
ð19Þ

we can conclude that max
a;pf g

C a; pð Þ 	 e�PT a; pð Þ ¼ 0 which is attainable for optimal

resource allocation policies.

To prove necessary condition, a0� and p0� are assumed as optimal policies for transformed

objective function so we have C a0�; p0�ð Þ 	 e�PT a0�; p0�ð Þ ¼ 0. For any feasible a and p,

Cða; pÞ 	 e�PTða; pÞ�Cða0�; p0�Þ 	 e�PTða0�; p0�Þ ¼ 0 ð20Þ

The above inequality can be derived as

Cða; pÞ
PTða; pÞ

� e�;
Cða0�; p0�Þ
PTða0�; p0�Þ

¼ e� ð21Þ

Therefore, the optimal resource allocation policies a0� and p0� for the transformed objective

function are also the optimal resource allocation policies for the original objective function.

As a result, based on aforementioned proof for any optimization problem with an

objective function in fractional form, there is an equivalent optimization problem with an

objective function in subtractive form, which leads to the same solution. Hence, we can

concentrate on the equivalent problem in the rest of the paper.

3.2 Iterative Algorithm For EE

By considering theorem which has been proved in previous subsection, the equivalent

problem can be reformulated as

max
a;pf g

C a; pð Þ 	 e�PT a; pð Þ

s.t. C1;C2;C3;C4;C5

ð22Þ

hence we should find optimal value of e. Since e� cannot be obtained directly, an iterative

algorithm (known as the Dinkelbach method [29]) is proposed, in which, the obtained

solution ensures the condition stated above. The proposed iterative method is summarized in

Algorithm 1 and the convergence to the optimal solution is guaranteed if we are able to solve

the inner problem in (22).

Algorithm 1 Dinkelbach’s method for EE maximization
1: Initialize the maximum number of iteration Imax and convergence condition εγ

2: set i ← 1 and ε(1) ← 0

3: do while ε(i) − ε(i−1) > εγ and i < Imax

4: i ← i + 1

5: solve the resource problem with ε(i−1) (Inner Loop) to obtain the optimal solution a∗
i and p∗

i

6: ε(i) ← C(a∗
i ,p∗

i )
PT (a∗

i ,p∗
i )

7: end do

8: return
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As shown in Algorithm 1 in each iteration of the outer loop we solve the optimization

problem for a given e. Since e increases in each loop, the optimal solution can be obtained. To

achieve this, two constraints should be taken under consideration. First, by defining F eð Þ ¼

max
a;pf g

C a; pð Þ 	 eP a; pð Þ one should prove that for all feasible a, p and e, FðeÞ is a strictly

monotonic decreasing function in e and FðeÞ� 0. Moreover, convergence of Algorithm 1 to

the global optimal solution has to be proved. Both constraints have been addressed in [12].

Due to integer nature of a, FðeÞ becomes a continuous but nondifferentiable function of

e. By updating eðiþ1Þ in each iteration, using Cða ið Þ; p ið ÞÞ and Pða ið Þ; p ið ÞÞ obtained in the last

iteration, the optimal value is attainable.

3.3 Resource Allocation Optimization in the Inner Loop

max
a;pf g

C a; pð Þ 	 e ið ÞPT a; pð Þ

s.t. C1;C2;C3;C4;C5

ð23Þ

Since the problem is non-convex, we cannot use the convex optimization methods to solve

that. By defining the dual of mentioned problem and determining whether the duality gap

between main problem and its dual is negligible, we may be able to solve our optimization

problem utilizing its convex dual. We show that for sufficiently large number of RBs, the

duality gap between (23) and its dual problem is nearly zero.

For the given RB allocation scheme, (23) can be expressed as

C� ¼ max
XK

k¼1

dkðpn;k;sÞ

s.t.
XK

k¼1

qkðpn;k;sÞ
ð24Þ

where

dkðpn;k;sÞ ¼
XNþM

n¼1

an;kB0

XS

s¼1

log2ð1þ rn;k;spn;k;sÞ 	
XNþM

n¼1

eðiÞ
1

g
an;k

XS

s¼1

pn;k;s 	
e�

K
ðnTPdyn

þ PstaÞ ð25Þ

in which pn;k;s 2 CN , dkð:Þ : CN ! R and
PK

k¼1 qkðpn;k;sÞ expresses constraints as the

function of pn;k. qkð:Þ : CN ! RL and L represents number of constraints. To prove the

duality gap between (23) and the optimal value of its dual O� is zero, a perturbian function

is defined as

vðQÞ ¼ max
XK

k¼1

dkðpn;k;sÞ

s.t.
XK

k¼1

qkðpn;k;sÞ�Q

ð26Þ

where Q 2 RL is the perturbation vector.
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If VðQÞ is a concave function of Q, the duality gap between C� and O� is zero [30]. So

in order to prove concavity of VðQÞ a time-sharing condition should be demonstrated.

3.3.1 Time-Sharing Condition

If p1�n;k;s and p2�n;k;s be the optimal solution of (26) to VðQ1Þ and VðQ2Þ respectively, (24)
satisfies the time-sharing condition if for any VðQ1Þ and VðQ2Þ, there always exists p3�n;k;s
for which

XK

k¼1

qkðp3n;k;sÞ� aQ1 þ ð1	 aÞQ2 ð27Þ

XK

k¼1

dk p3n;k;s

� �
� adk p1�n;k;s

� �
þ ð1	 aÞdk p2�n;k;s

� �
ð28Þ

where 0� a� 1.

It has been proved in [31] that the time-sharing condition is always satisfied for the

multicarrier system when the number of carriers goes to infinity, such as the OFDMA-

based HCRAN in this paper. Hence VðQÞ is a concave function of Q and the duality gap

between C� and O� is zero.

3.3.2 Lagrange Dual Decomposition Method

In this subsection we solve the resource allocation optimization problem by defining its

dual for a given value of e. For this purpose we need the Lagrangian function of the primal

problem which is given by

D a; b; lð Þ ¼ max
a;pf g

L a; p; a; b;lð Þ ¼

max
fa;pg

XNþM

n¼1

XK

k¼1

an;kB0

XS

s¼1

log2 1þ rn;kpn;k;s
� �

	 eðiÞ
1

g

XNþM

n¼1

XK

k¼1

an;k
XS

s¼1

pn;k;s þ nTPdyn þ Psta

 !(

þ
XN

n¼1

an
XK

k¼1

cn;k 	 g1

 !

þ
XNþM

n¼Nþ1

an
XK

k¼1

cn;k 	 g2

 !

þ
XK

k¼1

bk d	
XNþM

n¼Nþ1

an;k
XS

s¼1

pn;k;sd
R2H
k hR2Hn;k;s

 ! 

þl PR
max 	

XNþM

n¼1

XK

k¼1

an;k
XS

s¼1

pn;k;s

 !!)

ð29Þ

and the dual problem may be written as

min
a;b;lf g

D a; b; lð Þ

s.t. a� 0; b� 0; l� 0
ð30Þ

which is solved using the dual decomposition approach. In order to use the dual decom-

position method to solve the dual problem, we decompose the problem into K independent

problems as
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gða; b; lÞ ¼
XK

k¼1

gkða; b; lÞ 	 eðiÞ nTPdyn þ Psta

� �
	
XN

n¼1

ang1 	
XNþM

n¼Nþ1

ang2 þ
XK

k¼1

bn d

þ lPR
max

ð31Þ

where

gk a; b; lð Þ ¼ max
a;pf g

XNþM

n¼1

XS

s¼1

1þ anð Þan;kB0log2 1þ rn;kpn;k;s
� ��

(

	e ið Þ1

g
an;kpn;k;s 	 bkan;kpn;k;sd

R2H
k hR2Hn;k;s 	 lan;kpn;k;s

	
 ð32Þ

Since the problem is now in a standard concave form, the KKT conditions which are first

order necessary and sufficient condition for optimality, may be used in order to find the

optimal solution. The optimal power may be readily obtained as

p�n;k;s ¼ w�
n;k;s 	

1

rn;k;s

� 	þ
ð33Þ

where �½ 
þ denotes max 0; �ð Þ and the optimal waterfilling level is expressed as

w�
n;k;s ¼

B0 1þ anð Þ
ln 2 eðiÞ 1g þbk d

R2H
k hR2Hn;k;s þl

� � ð34Þ

Having calculated the optimal power, the optimal subcarrier allocation may be derived

using the first order derivation as follows

a�n;k ¼
1; n ¼ argmax

1� n�NþM

PS

s¼1

Hn;k;s=S

0; otherwise

8
<

:
ð35Þ

where

Hn;k;s ¼ 1þ anð Þlog2 w�
n;k;srn;k;s

� �h iþ
	 1þ anð Þ

ln 2
1	 1

w�
n;k;srn;k;s

" #þ
ð36Þ

Thus constraints C1 	C5 are satisfied and the optimal primal variables are obtained for

given a, b and l.
Sub-gradient method can be used for updating the dual variables a; b and l, in the

subgradient direction. The subgradient update equations are given by

aðmþ1Þ
n ¼ a mð Þ

n 	 n mþ1ð Þ
1 �

XK

k¼1

C
mð Þ
n;k 	 g1

 !" #þ
; 1� n�N

aðmþ1Þ
n ¼ a mð Þ

n 	 n mþ1ð Þ
1 �

XK

k¼1

C
mð Þ
n;k 	 g2

 !" #þ
; N þ 1� n�N þM

ð37Þ
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bðmþ1Þ
n ¼ b mð Þ

n 	 n mþ1ð Þ
2 � d0 	

XNþM

n¼1þN

a
mð Þ
n;k

XS

s¼1

p
mð Þ
n;k;s

 "

dR2Hk hR2Hn;k;s

�iþ
8k 2 X2

bðmþ1Þ
n ¼0 8k 2 X1

ð38Þ

lðmþ1Þ ¼ l mð Þ 	 n mþ1ð Þ
3 � PR

max 	
XNþM

n¼1

XK

k¼1

a
mð Þ
n;k

XS

s¼1

p
mð Þ
n;k;s

 !" #þ
ð39Þ

where i is the iteration number and n mþ1ð Þ
1 , n mþ1ð Þ

2 and n mþ1ð Þ
3 are positive step sizes. a

mð Þ
n;k

and p
mð Þ
n;k;s are the RB and power allocation policies derived in m-th iteration, respectively. It

is proved that the subgradient method is guaranteed to converge to the optimal Lagrange

multipliers, as long as step sizes are chosen sufficiently small.

According to prior explanation, this algorithm is designed for dense areas in which large

number of RRHs are deployed. Due to recent researches, some methods are proposed to

put light loaded RRHs into sleep mode to enhance EE. In (7) we have neglected the effect

of HPN, but if we put some RRHs to sleep mode, the capacity and power consumption of

HPN should be taken under consideration. Here we propose two simple but efficient

resource allocation algorithms for HPN in which the total EE would be optimal.

3.3.3 Algorithm GRA (General Resource Allocation)

The SINR of user t in s-th subchannel of k-th RB is expressed as

qt;k;s ¼ PHd
H

t h
H
t;k;s= L� dþB0N0ð Þ; k 2 X2 ð40Þ

in which, d, has been introduced as threshold in order to manage interference caused by

RRHs so received information can be decoded accurately.

The power is assumed to be fixed for each user and RB is assigned to user with the

highest
PS

s¼1

qt;k;s=S.

3.3.4 Algorithm CRA (Cloud-Based Resource Allocation)

Since there is an interface between cloud and HPN, we have access to CSI of all RRHs, so

can achieve favorable information of RRHs and define more accurate q for HPN. The

enhanced definition is described as

qt;k;s ¼
PH d

H

t hHt;k;s
PNþM

n¼Nþ1 an;k
PS

s¼1 pn;k;s d
R2H
n hR2Hn;k;s þB0 N0

; k 2 X2 ð41Þ

where I ¼
PNþM

n¼Nþ1 an;k
PS

s¼1 pn;k;s d
R2H
n hR2Hn;k;s is the precise interference caused by RRHs,

and channels are allocated as described for algorithm GRA. By utilizing proposed algo-

rithm, EE increases noticeably in compare with algorithm GRA which will be shown

through simulation results.
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4 Simulation and Numerical Results

In this section the EE performance of the proposed algorithms are evaluated by simulation.

The two-tier heterogeneous network is simulated by assuming 1 HPN and L RRHs in

which N high-QoS required RUEs and M low-QoS required RUEs are served. The max-

imum total number of RUEs is 25, however the ratio between high-QoS required RUEs and

total number of RUEs is kept constant and is equal to 1
3
. The high and low-rate constrained

QoS requirement are expressed as g1 ¼ 128 kbit/s and g2 ¼ 64 kbit/s, respectively. The

path-loss model for RRH-to-RUE is represented as 31:5þ 40:0� log10ðdÞ, where d is the

distance in meters and is given as dRn ¼ 50 m for 1� n�N and dRn ¼ 75 m in the case of

N þ 1� n�N þM. Path-loss for the HPN-to-RUE, RRH-to-HUE and HPN-to-HUE is

modeled as 31:5þ 35:0� log10ðdÞ, in which dH2R
n ¼ 450 m for 1� n�N, dH2R

n ¼ 375 m

in the case of N þ 1� n�N þM and dR2Hn ¼ 125 m and dHt ¼ 325 m.

The system bandwidth is B ¼ 5 MHz which is shared among K ¼ 25 RBs. Since our

scenario is based on MIMO and downlink transmission is considered, the number of users

antennas cannot be more than 2 due to 5G standards, hence we assume 2� 2 and 4� 2

MIMO structures.

Number of simulation snapshots is set at 1000. In each snapshot, the small scale fading

coefficients are generated as i.i.d Rayleigh random variables with unit variance. We

assume the static and dynamic power consumption of HPN and the PA efficiency to be

Psta ¼ 10 W, Pdyn ¼ 18 W and g ¼ 4, respectively. For RRHs these parameters are

assumed to be Psta ¼ 0:1 W, Pdyn ¼ 0:2 W and g ¼ 2, respectively.

4.1 Performance Comparision

To evaluate the EE performance of the proposed algorithms, a scenario including 16 RRH

is considered for N = 3 and M = 6, where two algorithms are presented as baselines. The

first baseline algorithm, called fixed power allocation, sets same and fixed transmit power

to different RBs and the second baseline algorithm is denoted as sequential RB allocation,

in which the RB is allocated to RUEs sequentially. The EE is depicted under varied

number of iteration and is shown in (bits/J) scale. According to Fig. 4, even though

computing complexity is increased in our proposed algorithm, convergence speed is

acceptable compared with other two algorithms. Furthermore, as expected, EE has

increased significantly for both capacity and rate based proposed algorithms and our

proposed algorithms surpass two baseline algorithms. To evaluate EE performance further,

another scenario including 1 HPN and 8 RRHs is considered. The EE, in (bps/Hz/W) scale,

is depicted according to varied number of high QoS-required RUEs, in which the ratio

between high and low QoS-required users, keeps constant to 1
2
. An algorithm proposed in

[12], is assumed as baseline, in which a jointly power and RB allocation algorithm is

investigated for single antenna scenario.

In Fig. 5, performances are compared among proposed algorithms and algorithm in

[12]. For simplicity, combination of algorighm 1 and GRA is called CGRA and combi-

nation of algorighm 1 and CRA is called CCRA. As expected, since CGRA and CCRA are

computing capacity of system, are upper-band of RGRA (combination of algorighm 2 and

GRA) and RCRA (combination of algorighm 2 and CRA). Nonetheless, algorithm RCRA

and RGRA offer valuable information for practical deployment. Comparison between al-

gorithm CGRA and CCRA, shows that due to utilizing features offered by cloud, algorithm

CCRA has better EE performance in compare with CGRA. In addition, since algorithm
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CGRA is using MIMO structure it outperforms algorithm proposed in [12] in EE

enhancement and shows the benefit offered by MIMO structure.

4.2 Convergence of the Proposed Iterative Algorithm

A cell with 16 RRHs is assumed, in which N = 2 and M = 4 are stand for high and low

QoS-required RUEs. Figure 6 illustrates EE performance per user of proposed algorithms

under different number of iteration. As it is obvious, both algorithms converges within 3

iteration number. The parameter which is taken under consideration in Fig. 6 is maximum

allowed inter-tier interference, d, which is calculated based on SINR threshold of HPN

through (4). Two different values are considered for gHPN to make sure messages received

by HUE can be decoded correctly and even can forbid RRHs to allocate specific RBs to its

user. As expected, by increasing gHPN (from 0 to 20 dB), we enforce d to decline. As a

result, less power can be allocated to each RUEs that leads to reduction in EE.

4.3 EE Performance of the Proposed Solution

In order to evaluate the EE performance of the proposed algorithms, some key parameters

need to be taken under consideration. Since our scenario is based on MIMO, the number of

antennas influence EE. Moreover, by considering constraint C1 	 C5 in optimization

problem, d and ratio of allocated RBs to each type of users, are another key factors which

their impact need to be evaluated, that the impact of d is investigated in Fig. 6. Impact of

deploying adaptive modulation for practical deployment, can be supposed as another key

parameter which need to be investigated.
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Number of iteration

EE
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Fig. 4 Performance comparisons among proposed algorithms and two baseline algorithms

Energy-Efficient Resource Allocation for Adaptive Modulated… 4861

123



The main purpose of Fig. 7 is to compare performance of AM with the case in which

only BPSK is used. BPSK, 4QAM, 16QAM and 64QAM are assumed as possible con-

stellation sizes which are assigned to each channel for desirable BER. By considering

BER ¼ 10	3 and for different number of high-QoS required RUEs, EE performance of all

1 2 3 4 5 6
Number of high QoS required RUEs
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7

8

9

10

11

12

13

14

EE
(b

ps
/H

z/
W

)

CGRA
CCRA
RCRA
RGRA
Algorithm in [12]

Fig. 5 Performance comparisons among proposed algorithms and algorithm in [12]
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Algorithm 2- ηHPN= 0dB
Algorithm 2- ηHPN= 20dB

Fig. 6 Convergence of iterative algorithm based on Dinkelbach’s method
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algorithms are depicted in Fig. 7. Even though algorithm CCRA shows better EE perfor-

mance in Fig. 5, with deploying AM and by increasing the number of RUEs, algorithm

RCRA outperforms other algorithms. To justify, since SE is determined as the objective

function in algorithm RCRA, power is allocated more efficiently, so less power is wasted

and better EE performances is achieved.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number of high QoS required RUEs
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RCRA-BPSK
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RGRA-AM
CGRA-BPSK

Fig. 7 EE performance comparisons between adaptive modulated and non-adaptive form of proposed
algorithms
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Fig. 8 Impact of number of transmitting antenna on EE performance of system
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In Fig. 8 the number of transmit antenna is chosen as the effective parameter. The number

of RRHs is set to 8 and gHUE is assumed to be 0 dB.We consider two sets of antennas as 2� 2

and 4� 2. Due to simulation result, which is plotted for AM modulated form of algorithms,

by increasing the number of antennas to 2� 2, EE increases but by further increase EE

shrinks. To clarify, we can claim that by taking more antennas under deployment, SE

increases but regarding to definition of total energy, energy consumption increases signifi-

cantly. Since EE depends both on data rate and power consumption, calculating the optimal

number of antenna and taking advantage of antenna selection methods can improve energy

efficiency, that numerous investigations have been done in this area [32].

EE performance for different ratio of allocated RBs to each type of users is illustrated in

Fig. 9. As aforementioned, low-QoS required RUEs share their RB with HUEs, so due to

inter-tier interference their SINR is less than high QoS required RUEs. RUEs which have

their own share of RBs, may adopt higher constellation sizes which result in higher data

rates. Hence by allocating more RBs to high QoS-required RUEs, data rate increases

significantly which leads to increase in EE. However, by considering fairness and seamless

coverage goal, we cannot just focus on EE enhancement and other parameters should be

taken into account. Determining the optimal ratio is an open issue for future work.

5 Conclusion

In this paper, a MIMO–OFDM HCRAN scenario is investigated from EE point of view. By

considering interference mitigation and QoS constraints, nonconvex optimization problems

with the aim of jointly allocating power and assigning channel are proposed and solved by

Lagrange dual decomposition method. Four algorithms are proposed and their performance

from EE aspect are analyzed, in which the adaptive modulated form of RCRA outperforms

other 3 algorithms. According to simulation results, combination of HCRAN structure,
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RCRA-AM
RGRA-AM

Fig. 9 Evaluation of EE performance for different ratio of X1 to XT
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MIMO and AM improve EE significantly and due to its practicality, is a cardinal candidate

to be used in 5G deployment. To maximize EE further, massive MIMO deployment and

optimal antenna selection algorithm should be taken under consideration for future works.
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