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Abstract In this paper, discrete orthogonal moment-based shape features up to 5th order

are proposed for Indian sign language (ISL) recognition system. The shape recognition

capability of discrete orthogonal moment-based local features is verified on two databases.

These include the standard Jochen-Triesch’s database and 26 ISL alphabets. The ISL

alphabets are collected on both uniform and complex backgrounds, with variations in

position, scale and rotation. The feature-set is increased for 26 ISL alphabets by varying

Region of Interest (ROI) and extracting features from each ROI. A minimum possible

feature-set with least redundancy is selected that gives the best recognition accuracy. The

effect of order and feature dimensionality for different classifiers is studied. Results show

that both Dual-Hahn and Krawtchouk moments are found to exhibit user, scale, rotation

and translation invariance. Moreover, they have shape identification capability, thus

achieving good recognition accuracy.

Keywords Dual-Hahn moments � Indian sign language (ISL) � Krawtchouk
moments � Orthogonal moments � Shape recognition � Tchebichef moments

1 Introduction

Human–computer interaction (HCI) systems based on hand gestures find applications in

sign language communication. Sign language is a mode of communication among the deaf

community through gestures. The Indian sign language (ISL) exists in India. The idea is to

make computer understand ISL alphabets by means of hand shapes which can be inter-

preted in the textual/audio form on the computer screen, thus making interaction with the
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deaf people easy, without the need of an interpreter. For this, moment-based shape features

play an important part in distinguishing between different ISL alphabets. The proposed ISL

recognition system is shown in Fig. 1.

2 Literature Survey

In pattern recognition domain, moments have been identified to possess the capability to

extract both global and local information of shape. These are termed as shape-based

features.

After the introduction of non-orthogonal Hu moments in 1962, the continuous

orthogonal moments such as Zernike and Legendre were introduced [1]. These were

deployed in various applications of shape analysis [2]. The continuous orthogonal

moments involved change of the image co-ordinate space into a different domain. For

example, the Zernike moments are defined in polar co-ordinates. These also involved

approximation of continuous integrals, which resulted in discretization error, thus limiting

the accuracy with the increase in order [3]. Also, their complexity in terms of computation

of moments increased with the increase in order. Due to these limitations, discrete

orthogonal moments such as Tchebichef moments were introduced. They are used as

global descriptors and are defined in image co-ordinate space itself [4].

Krawtchouk moments also come under the category of discrete orthogonal moments,

based on classical Krawtchouk polynomials [5]. In case of Krawtchouk moments the

discretization error is non-existent. They have been used in image reconstruction and

object recognition because of minimum information redundancy [6–9]. Moreover, they

extract local information by varying the region of interest (ROI) in the image. The

Krawtchouk moments have been used in various applications like character recognition

[6, 10–12], image classification [13], 3-D object retrieval [14], face recognition [15–20],

gesture recognition [21, 22], speech signal processing [23], watermarking systems [24] and

medical image analysis [25].

Similar to Krawtchouk and Tchebichef moments, Dual-Hahn moments are discrete

orthogonal moments. These can however be used as local and global descriptors, thus

providing them an added advantage over other moments [7, 26].

Krawtchouk moments were first time used for object recognition by Yap et al. [6]. The

database of 7 English uppercase binary alphabets was used which were rotated by various

angles and were scaled. Krawtchouk moments outperformed Hu moments for both noisy

and noiseless images. Sit et al. [11] proposed local Krawtchouk and Hu-based invariants.

These were tested on a database of 9 English uppercase binary alphabets and 9 gray-scale

clip art images. It was concluded that Krawtchouk moments outperformed Hu moments in

terms of recognition accuracy.
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Fig. 1 Block diagram of a proposed ISL recognition system
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The image analysis of Dual-Hahn moments was done by Zhu et al. [26]. It was con-

cluded that Dual-Hahn moments performed better than Hu, Legendre, Tchebichef and

Krawtchouk moments in terms of recognition capability on a database of 7 English binary

alphabets in both noisy and noiseless conditions.

Significant research work has been done in face recognition using discrete orthogonal

moments. Krawtchouk moments were extracted on a database of 40 subjects, differing in

expression, position, rotation and scale. These outperformed Geometric, Zernike and

Tchebichef moments in terms of recognition accuracy. It was found that the Krawtchouk

moments gave good classification accuracy, even with the addition of noise for face

recognition [15–17].

However, very few papers have used discrete orthogonal moments in gesture recog-

nition domain. Priyal et al. [21, 22] compared the recognition accuracy of Krawtchouk

moments with Zernike, Geometric and Tchebichef on a database of 10 gesture signs of

digits collected from 23 users, which were rotated, translated and scaled. It was concluded

that Krawtchouk moments outperformed other moments and were viewpoint and user-

invariant. However, the role of Krawtchouk moments in gesture recognition domain was

not deeply investigated.

In this paper, an ISL database contains 26 ISL alphabets collected on a uniform and

complex background with variations in position, scale and rotation. Based on the literature

survey, Krawtchouk and Dual-Hahn moments are found to be one of the best shape

descriptors. The paper focuses on the following objectives:

(1) To extract Krawtchouk and Dual-Hahn moment-based features till 5th order for both

Jochen-Triesch and ISL databases by varying ROI.

(2) To select a minimum possible feature-set that gives good recognition accuracy at

various classifiers using correlation-based feature selection (CFS) algorithm.

(3) To prove that discrete orthogonal moment-based features have shape recognition

capability and are user, position, rotation and scale invariant.

3 Krawtchouk Moments

Krawtchouk moments are derived from classical Krawtchouk polynomials, associated with

binomial functions [5].

3.1 Krawtchouk Polynomials

The rth order classical Krawtchouk polynomial is:

Kr i; p;Xð Þ ¼
XX

k¼0

ak;r;pi
k

� �
¼ 2F1 �r;�i;�X;

1

p

� �
ð1Þ

where i, r = 0, 1, 2…X, X[ 0, p e (0, 1), ak;r;p
are the Krawtchouk Polynomial coefficients.

Here, 2F1 is a hypergeometric function:
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2F1 m; n; o; tð Þ ¼
X1

k¼0

mð Þk nð Þktk
oð Þk k!ð Þ ð2Þ

where (m)k is a pochhammer symbol:

mð Þk¼ m mþ 1ð Þ. . . mþ k� 1ð Þ ¼ C mþ kð Þ
C mð Þ

The normalized Krawtchouk polynomials are:

~Kr i;p;Xð Þ ¼ Kr i;p;Xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

q r; p;Xð Þ

s

ð3Þ

The weighted Krawtchouk polynomials are [6]:

~Kr i;p;Xð Þ ¼ Kr i;p;Xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w i; p;Xð Þ
q r; p;Xð Þ

s

ð4Þ

The weight function is:

w i; p;Xð Þ ¼ X

i

� �
pi 1� pð ÞX�i ð5Þ

q r;p;Xð Þ ¼ �1ð Þr 1� p

p

� �r
r!

�Xð Þr
ð6Þ

The Krawtchouk polynomials till the second order are:

K0 i;p;Xð Þ ¼ 1 ð7Þ

K1 i;p;Xð Þ ¼ 1� 1

Xp

� �
i ð8Þ

K2 i;p;Xð Þ ¼ 1� 2

Xp
þ 1

X X � 1ð Þp2

� �
iþ 1

X X � 1ð Þp2

� �
i2 ð9Þ

With the increase in the order of Krawtchouk polynomials, the range of the polynomials

also increases thus, resulting in numerical instability. Therefore, weighted Krawtchouk

polynomials were introduced to overcome this drawback [6].

3.2 Krawtchouk Moment Invariants

The Krawtchouk invariant moments corresponding to (r, q) order of an image intensity

function f(i,j) is:

Qrq ¼
XX�1

i¼0

XY�1

j¼0

�Kr i; p1;X� 1ð Þ �Kqðj; p2;Y� 1Þf i; jð Þ ð10Þ
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where f(i,j) is of size X 9 Y and these are substituted for X-1 and Y-1. These are

Krawtchouk moment-based invariants, which are used as shape-based features for ISL

alphabets. p1 and p2 are used for varying ROI horizontally and vertically. For p1[ 0.5,

ROI shifts horizontally towards positive x-direction and for p1\ 0.5 it shifts horizontally

towards negative x-direction. For p2[ 0.5, ROI shifts vertically towards negative y-di-

rection and for p2\ 0.5 it shifts vertically towards positive y-direction. In this paper, r = q

is chosen for varying orders and the feature vector size is (r ? 1)2.

4 Dual-Hahn Moments

Dual-Hahn moments encompass all the properties of Tchebichef and Krawtchouk

moments. These can be used as both global and local feature descriptor as compared to

Tchebichef moments which are global feature descriptors and Krawtchouk moments which

extract local information [7].

4.1 Dual-Hahn Polynomials

The rth order Dual-Hahn polynomial is [27]:

hvr p; a; bð Þ ¼ a� bþ 1ð Þr aþ vþ 1ð Þr
r!

3F2 �r; a� p; aþ pþ 1; a� bþ 1; aþ vþ 1; 1ð Þ

ð11Þ

where r = 0,1,2,…,R-1, p = a, a ? 1,…, b-1

Here, 3F2 is a hypergeometric function:

3F2 m; n; o; p; q; rð Þ ¼
X1

k¼0

mð Þk nð Þk oð Þkrk
pð Þk qð Þk k!ð Þ ð12Þ

where (m)k is a pochhammer symbol:

mð Þk¼ m mþ 1ð Þ. . . mþ k� 1ð Þ ¼ C mþ kð Þ
C mð Þ ð13Þ

To avoid the numerical instability with increase in order, the Dual-Hahn polynomials

are scaled by using the weighing function.

The weighted Dual-Hahn polynomials are given by [26]:

�hvr p; a; bð Þ ¼ �hvr p; a; bð Þ
ffiffiffiffiffiffiffiffiffiffi
w pð Þ
d2r

s

ð14Þ

where

d2r ¼
C aþ vþ rþ 1ð Þ

r! b� a� r� 1ð Þ!C b� v� rð Þ ð15Þ

Weighing function is
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w pð Þ ¼ C aþ pþ 1ð ÞC vþ pþ 1ð Þ
C p� aþ 1ð ÞC b� pð ÞC bþ pþ 1ð ÞC p� vþ 1ð Þ ð16Þ

4.2 Dual-Hahn Moments

The Dual-Hahn invariant moments corresponding to (r, q) order of an image intensity

function f (p,u) is:

hrq ¼
Xb�1

p¼a

Xb�1

u¼a

�hvr p; a; bð Þ�hvq u; a; bð Þf p; uð Þ ð17Þ

where -0.5\ a\ b, vj j\ 1 ? a, b = a ? R, r, q = 0, 1,…,R-1 and f (p,u) is of size

R 9 R.

The parameters a and v are used for varying ROI. As v increases, the ROI shifts from

left to right and with increase in a, shifting of ROI takes place from top to bottom. In this

paper, r = q is chosen for varying orders and the feature vector size is (r ? 1)2.

5 Tools and Techniques

5.1 Database

(1) The standard Jochen-Triesch’s database consisting of 10 static hand postures col-

lected from 24 subjects in uniform dark, uniform light and complex background

[28].

‘A’ ‘B’ ‘C’ ‘D’ ‘E’ ‘F’ ‘G’

‘H’  ‘I’ ‘J’ ‘K’  ‘L’ ‘M’ ‘N’

‘O’ ‘P’ ‘Q’ R’ ‘S’  ‘T’ ‘U’

‘V’ ‘W’  ‘X’  ‘Y’ ‘Z’

Fig. 2 Samples of ISL alphabets on a uniform background
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(2) The ISL database consists of 26 ISL alphabets from ‘A’ to ‘Z’. Some alphabets

have identical shapes like, ‘A’, ‘B’, ‘P’, ‘Q’, ‘U’, ‘W’, ‘M’, ‘N’, high occlusion

as in ‘M’, ‘N’, ‘W’ and one gesture being sub-gesture of other as in ‘I’, ‘K’. In

most of the signs both hands are used, which leads to complexity. A dataset of

around 72 subjects is constructed for 26 ISL alphabets on the uniform

background. It has total number of 1865 images. It is shown in Fig. 2. These

are pre-processed and each image is converted from RGB to binary. Edge

detectors are used and each image is resized to form 30 9 30 binary images.

These binary images are varied in a scale of 0.7, 0.8 and 0.9 rotated at 90�, 180�
and 270� angles resulting in the total number of 13,055 images in the first

dataset. In the second dataset, the alphabet signs are superimposed on complex

backgrounds. 4 variations of background are taken, with 100 images per alphabet.

It has a total number of 2600 images in a complex background. During

classification phase, 60% of the samples are used for training and rest 40% are

used for the testing phase. Some of the samples of ISL alphabets on the complex

background are shown in Fig. 3.

5.2 Feature Extraction

5.2.1 Krawtchouk Moment-Based Local Features

Figure 4 shows reconstructed images from 1st to 8th order. As can be seen, at lower

orders finer details of the image are captured giving local information. Increasing the

order beyond 5th order does not add many details into the reconstructed images. The

complexity of database increases when 26 classes of ISL database are taken. Therefore,

the feature vector size is increased by extracting Krawtchouk features at different ROIs

in order to capture local features from different positions of the image, thus covering

the entire image. For this, the values of (p1, p2) taken are 0.1, 0.3, 0.5, 0.7 and 0.9

corresponding to which ROIs are varied by (0.1, 0.1), (0.1, 0.3), (0.1, 0.5), (0.1, 0.7),

(0.1, 0.9), (0.3, 0.1)…till (0.9, 0.9) giving 25 ROIs by permutation as shown in Fig. 5.

For each ROI, 36 features are extracted till 5th order, thus giving a feature vector size

of 900 (36 9 25 = 900).

Fig. 3 Samples of ISL database on a complex background
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Original Image of alphabet ‘A’ (30x30)

(1, 1)  (2, 2) (3, 3) (4, 4)

 (5, 5)  (6, 6) (7, 7)  (8, 8) 

Fig. 4 Reconstruction of original image using Krawtchouk moments at different orders

 (0.1, 0.1) (0.5, 0.1)  (0.9, 0.1) (0.1, 0.5)  (0.5, 0.5) 

(0.9, 0.5) (0.1, 0.9) (0.5, 0.9) (0.9, 0.9) 

Fig. 5 Representation of various ROIs using Krawtchouk moments

(r, q) = (5, 5) (10, 10) (15, 15) (20, 20) (29, 29) 

Fig. 6 Reconstruction of original image using Dual-Hahn moments
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5.2.2 Dual-Hahn Moments as Global Features

The Dual-Hahn moments can be used as global descriptors by setting a = v = 0 as can be

seen in Fig. 6 where global features are extracted at different orders. For a 30 9 30 image,

perfect reconstruction takes place when moments are extracted till 29th order as shown in

Fig. 6.

5.2.3 Dual-Hahn Moments as Local Features

In case of Dual-Hahn moments, ROI is varied by changing the tuning parameters ‘a’ and

‘v’. Dual-Hahn moments can also extract local features by setting {a, v}[ 0. The

smaller the values of tuning parameter, ROI shifts in the upper-left corner of the image.

As its value becomes larger, ROI stretches to the bottom-right corner of the image as can

be seen in the Fig. 7 for an image size of 30 9 30. Thus, Dual-Hahn local features are

extracted by changing a and v parameters with even values of (a, v) = (2, 4,…,48, 50)

so that feature extraction is done at each of the 25 different ROIs. Thus, 36 features till

5th order are extracted at each ROI giving a total of 900 features (36 9 25 = 900). For

global feature extraction, a large number of moments are needed to extract features of

the entire image, which results in a large feature-vector as opposed to local feature

extraction where features are extracted for a particular portion of the image, thus giving

a smaller feature-vector. The detailed methodology used for ISL recognition system has

been illustrated in Fig. 8.

5.3 Parameter Selection of Moments

The parameters of discrete orthogonal moments are adjusted on the basis of experimental

results given in Sect. 5.2 in order to extract local and global features for ISL database as

shown in Table 1.

5.4 Feature Selection

Feature Selection removes irrelevant and redundant features. It reduces the feature vector

size and the computation time of the classifier. In this paper, correlation-based feature

selection (CFS) algorithm with greedy stepwise search method is used. As the moment-

based features have minimum redundancy and the features of the same class are highly

correlated, CFS with greedy stepwise search method is highly suitable. It is considered as

the most stable feature selection algorithm and reduces problems of class imbalance, high

dimensionality and information redundancy [29–31].

a=v=2 a=v=8  a=v=16 a=v=30 a=v=48 

Fig. 7 Representation of various ROIs using Dual-Hahn moments
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The CFS gives a feature-set which has a higher correlation with the class and lower

correlation within one another. CFS uses Pearson correlation coefficient which is calcu-

lated as follows [32]:

ISL Alphabet 

Image Pre-Processing 
Image Pre-
processing 

Conversion to binary 
image using edge 
detectors and resizing 
into 30 × 30 image.

Feature Extraction 

Tchebichef 
moments till 10th

order 

Krawtchouk moments 
at 25 ROIs by varying 
(p1, p2) parameters till 
5th order. 

Dual-Hahn moments 
at 25 ROIs by varying 
(a, v) parameters till 
5th order. 

Feature Selection 

CFS with greedy stepwise search algorithm 

Classification: k-NN using Euclidean and Manhattan distance, SVM, ELM 
and MLP 

Fig. 8 Proposed methodology of ISL recognition system
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Ms ¼
k�rcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ k k� 1ð Þ�rff
p ð18Þ

MS is the merit of the current subset of features, k is the number of features, �rff is the
mean of correlations between each feature and the class and �rff is the mean of pair-wise

correlations between every two features. The feature subsets are formed using search

strategies: forward and backward elimination. In case of forward elimination, one feature

at a time is added in the subset and stops when the performance deteriorates. In backward

elimination, all features are added and each feature one at a time is removed until the

performance degrades. These are then ranked on the basis of highest correlation coefficient

(Ms). Out of all the feature subsets, the best feature subset is selected on the basis of the

largest Ms. Greedy stepwise search method used in the paper can start with either forward

or backward elimination.

5.5 Classification

Features are classified by K-Nearest Neighbour (k-NN) using Manhattan and Euclidean

distance, with k = 1 for both the classifiers, multi-layer perceptron (MLP), support vector

machine (SVM) with radial basis function (RBF), PUK (Pearson VIII Universal Kernel)

and Polynomial kernels and extreme learning machines (ELM) with Linear, RBF and

Polynomial kernels. 60% samples are used for training, rest 40% are used for testing. The

recognition accuracy in terms of feature set dimensionality and orders is analysed using all

the above classifiers.

5.5.1 k-Nearest Neighbour (k-NN)

This classifier is based on instance-based learning algorithms which are lazy- learning

algorithms where the generalizations take place during the classification phase. In this, the

distance between the query sample and the training samples is measured. Some of the

widely used distance metrics include Manhattan, Euclidean, Chebychev and Minkowski.

Euclidean and Manhattan distance metrics have been used in the classification of ISL

alphabets.

The Euclidean distance metric,

Table 1 Parameter selection of moments

Moments Tchebichef
moments
(Global
features)

Krawtchouk moments (Local features) Dual-Hahn moments

Local features Global
features

Order (r,
q)

r = q = 10 r = q = 5 r = q = 5 r = q = 5

ROI
selection

– (p1, p2) = (25 ROIs):
(0.1,0.1),(0.1,0.3), (0.1,0.5),(0.1,0.7),
(0.1,0.9),(0.3,0.1)…till (0.9, 0.9)

a = v = (2,4,8,10
till 50) giving 25
ROIs

a = v = 0
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d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

xi � yið Þ2
s

ð19Þ

The Manhattan distance metric,

d x; yð Þ ¼
Xm

i¼1

xi � yij j ð20Þ

Algorithm for k-NN classification:

(1) Determine the value for K = number of nearest neighbours.

(2) Determine the distance metric (Euclidean and Manhattan) to find distance between

test and training samples.

(3) Find the minimum distance.
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Fig. 9 Comparison of Dual-Hahn moments as global features for ISL database
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Fig. 10 Comparison of Dual-Hahn moments as local features for ISL database
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(4) Determine the nearest neighbours on the basis of majority vote.

(5) Assign the class of maximum nearest neighbours to the test sample.

5.5.2 Support Vector Machine (SVM)

In this, features of different classes are separated by a hyperplane. The position of the

features decides as to which class the test sample belongs. It is used for linear as well as

non-linear classification. In case of non-linear classification, the feature points are mapped

into a high-dimensional feature space by means of kernel functions. SVM with PUK shows

better generalization as compared to other kernel functions like polynomial and RBF and

classifiers like k-NN and MLP [29, 33, 34].

5.5.3 Multi-Layer Perceptron (MLP)

In this, the neural network is first trained through training samples given to input neurons.

Accordingly, learning takes place through weight updation. The test samples are then

supplied to input neurons where the desired and predicted values are compared in order to
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Fig. 11 Comparison of discrete orthogonal moments for ISL on a uniform background

0.00% 

10.00% 

20.00% 

30.00% 

40.00% 

50.00% 

60.00% 

70.00% 

80.00% 

90.00% 

100.00% 

1 2 3 4 5 6 7 8 9 10

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 

Moment Orders 

Recognition Accuracy for ISL on a complex background 

Tchebichef 

Krawtchouk 

Dual-Hahn 

Fig. 12 Comparison of discrete orthogonal moments for ISL on a complex background
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calculate local error. To minimize the mean squared error, weight learning is carried out

from output to hidden layer till the weight convergence is achieved.

5.5.4 Extreme Learning Machine (ELM)

is a generalized feed-forward network in which hidden layer doesn’t need any prior tuning.

It can be applied on regression and multi-class classification problems directly. ELM is

used in various multiclass classification applications and gives similar generalizations at

faster learning speed as compared to SVM which has high computational complexity [35].

6 Results and Discussions

In this section, results and discussions are presented to validate the proposed feature

extraction method for ISL recognition system. The experiments were executed on

MATLAB R2014b using Intel(R) Pentium(R) laptop with windows 7, 32-bit operating

system at 2 GHz with 4 GB RAM memory.

6.1 Analysis of Dual-Hahn Moments as Local and Global Features

Figures 9 and 10 shows the comparison of effectiveness of Dual-Hahn moments as local

and global features for ISL database. Dual-Hahn moments are set in global feature

extraction mode by setting, a = v = 0 with orders varying from 9 to 29. The feature vector

size is (r ? 1)2 corresponding to order (r, q) when orders are taken as r = q. Thus, the

feature vector varies from 100 to 900 for orders varying from 9 to 29 as shown in Fig. 9.

For local feature extraction, the values of a and v is varied from 2, 4, 6… till 50 giving 25

different ROIs at orders 1 to 5, with a feature vector size of 100, 225, 400, 625 and 900 for

orders 1, 2, 3, 4 and 5, respectively as can be seen in Fig. 10.

It shows that for a feature-vector size of 900, Dual-Hahn moments as global features

give 87.9 and 61.9% for ISL in uniform and complex background, respectively while as

global features for the same feature vector size of 900, Dual-Hahn moments as local

features give 98.2 and 75.9% for ISL in uniform and complex background, respectively.

Thus, Dual-Hahn moments perform best when features are extracted for a particular ROI as

compared to global features where feature extraction is done on the entire image.

Table 3 Comparison of results for Jochen-Triesch’s dataset

References Feature extraction method Recognition accuracy (%)

[28] Elastic graph matching 92.9

[38] Modified census transform 89.9

[39] Weighted Eigen-space size functions 85.1

[40] Tchebichef (till 9th order), Hu and Geometric features 84.63 (dark background)
95.55 (light background)

[41] Krawtchouk moments till 3rd order (45 features) 84.9

Proposed method Krawtchouk features till 5th order (900 features) 93.4

Dual-Hahn moments till 5th order (900 features) 96.5
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6.2 Comparison of Discrete Orthogonal Moments for ISL Database

To validate the effectiveness of discrete orthogonal moments, ISL database is used. The

recognition accuracies of Tchebichef, Krawtchouk and Dual-Hahn moments are compared

till 10th order. Figures 11 and 12 shows a significant increase in accuracy from 1st to 5th

order after which the accuracy stabilizes at higher orders. The Dual-Hahn moments when

used as local features perform best as compared to Tchebichef and Krawtchouk moments.

To demonstrate the recognition capability of discrete orthogonal moments, the com-

parison of Krawtchouk and Dual-Hahn moments is done for a standard Jochen-Triesch’s

database as these achieve best recognition accuracy.

Table 2 shows the comparative analysis of the recognition accuracies at various clas-

sifiers using Jochen-Triesch’s database by varying ROIs for Krawtchouk and Dual-Hahn

moments. Raw features are normalized to map the feature values in the range of [-1, 1],

thus improving the recognition accuracy [36, 37].

Dual-Hahn moments show best results with 96.5% accuracy using SVM PUK.

Krawtchouk moments also give comparable results with 93.4% accuracy using SVM PUK.

Table 3 shows a comparative analysis of the proposed method with other recently proposed

methods for Jochen-Triesch’s database. The Dual-Hahn moments as local features out-

performs other recently proposed methods giving an accuracy of 96.5%.

Table 4 shows the performance of Dual-Hahn moments for ISL database on a uniform

as well as complex background. An accuracy of 98.2% is observed for the database on a

uniform background using SVM PUK. However, for a complex background, the accuracy

obtained is 75.9% using k-NN.

Table 5 compares the performance of Krawtchouk moments for ISL database on a

uniform as well as on a complex background. An accuracy of 97.8% is obtained for the

Table 6 Recognition accuracy using CFS of ISL database on a complex background

CFS k-NN using
ED (%)

k-NN using
MD (%)

SVM ELM MLP
(%)

Poly
(%)

RBF
(%)

PUK
(%)

Poly
(%)

RBF
(%)

Linear
(%)

Krawtchouk
(578)

71.4 72.3 72.4 72.3 71.9 72.6 72.3 72 71.9

Dual-Hahn
(610)

75.5 75.4 75.9 75.4 75.7 75.4 75 74.9 74.9

The bold values indicate maximum values of the recognition accuracy for a particular feature-set

Table 7 Recognition accuracy using CFS of ISL database on a uniform background

CFS k-NN using
ED

k-NN using
MD

SVM ELM MLP

Poly RBF PUK Poly RBF Linear

Krawtchouk
(598)

96.4 96.4 97.4 97.3 97.9 97.8 97.9 97.4 96.9

Dual-Hahn (638) 97.5 97.4 97.9 97.9 98.3 98.2 97.9 98 98.2

The bold values indicate maximum values of the recognition accuracy for a particular feature-set
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Table 8 CPU elapsed time (in s) to compute discrete orthogonal moments till 5 order

Proposed method Computation time (in seconds)

Tchebichef moments 1.234

Krawtchouk moments 0.182

Dual-Hahn moments 0.102

Table 9 Comparison of proposed methodology with recent methods on ISL database

References Feature extraction method Number of ISL alphabets Recognition
accuracy (%)

[42] Geometric features and Zernike moments
till 10th order

19 ISL alphabets on a uniform
background

98.74

[43] Zernike moments (magnitude and phase)
till 10th order

5 ISL alphabets on a uniform
background

94.4

[41] Krawtchouk moments till 3rd order 10 ISL alphabets on a uniform
background

90

[44] Hu moments, Zernike moments and
Geometric features

26 ISL alphabets on a uniform
background

97.8

Proposed
method

Krawtchouk moments till 5th order 26 ISL alphabets on a uniform
background

97.9

26 ISL alphabets on a complex
background

72.6

Proposed
method

Dual-Hahn moments till 5th order 26 ISL alphabets on a uniform
background

98.3

26 ISL alphabets on a complex
background

75.9

Fig. 13 Confusion matrix for ISL alphabets on a uniform background

Identification of ISL Alphabets Using Discrete Orthogonal… 4841

123



database on a uniform background using SVM PUK. However, for a complex background,

the accuracy obtained is 72.9% using k-NN and SVM PUK.

The CFS algorithm reduces the feature-set so as to minimize information redundancy.

Feature selection results in slight improvement in accuracy results. For ISL database on a

complex background, Dual-Hahn moments give 75.9% accuracy using SVM Polynomial

kernel as shown in Table 6. For ISL database on a uniform background, Dual-Hahn

moments give 98.3% accuracy using SVM PUK as shown in Table 7.

The time taken to compute discrete orthogonal moment-based features till 5th order in

case of Tchebichef, Krawtchouk and Dual-Hahn moments are shown in Table 8. It is seen

that Tchebichef, Krawtchouk and Dual-Hahn moments consume 1.234, 0.182 and 0.102 s

to compute features till 5th order for a 30 9 30-resolution image.

Dual-Hahn moments till 5th order perform best for 26 ISL alphabets on a uniform

background with an accuracy of 98.3% followed by Krawtchouk moments giving 97.9%.

For complex background, accuracies obtained are 75.9 and 72.6% for Dual-Hahn and

Krawtchouk moments, respectively. However, recent works have used limited ISL classes

on a uniform background only as illustrated in Table 9.

The confusion matrices for ISL database are shown in Figs. 13 and 14. Figure 13

illustrates the confusion matrix of ISL database on a uniform background using Dual-Hahn

moments which give 98.3% accuracy. It is seen that most of the samples of alphabets ‘M’

and ‘N’ are misinterpreted because of their similar shapes and high occlusion. Alphabets

‘A’, ‘B’, ‘E’,‘C’ have identical shapes which results in incorrect classifications.

Figure 14 illustrates confusion matrix of ISL alphabets on a complex background with

Dual-Hahn moments that give 75.9% accuracy. Because of background variations,

alphabets are difficult to identify. However, discrete orthogonal moments have shape

recognition capability and thus are able to achieve good results on both uniform as well as

complex background.

Recent works have used Tchebichef and Krawtchouk moments at higher orders (80th

order) for gesture recognition [21, 22]. In this work, the recognition accuracy stabilizes at

higher orders. Moreover, this increases the feature-vector size thus taking more compu-

tational time. Therefore, to increase the recognition accuracy for complex background,

features can be extracted on more number of ROIs at lower orders which capture finer

details from different ROIs in an image.

Fig. 14 Confusion matrix for ISL alphabets on a complex background
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7 Conclusion and Future Scope

In this paper, the shape recognition capability of discrete orthogonal moment-based local

features is studied on 26 ISL alphabets in uniform as well as complex backgrounds. The

comparative analysis of the performance of proposed feature vector is first analysed on

standard Jochen- Triesch’s database. The proposed method shows competent results as the

recognition accuracy obtained for Krawtchouk and Dual-Hahn moments is better than the

other recently proposedmethods.An accuracy of 98.3 and 97.9% is achieved for ISLdatabase

on a uniform background by Dual-Hahn and Krawtchouk moments, respectively. For ISL

database on a complex background, an accuracy of 75.9 and 72.6% is observed forDual-Hahn

and Krawtchouk moments, respectively. Thus, the orthogonal moment-based local features

are rotation, scale and translation and user invariant. They also have shape identification

capability to distinguish between similar shapes in case of ISL alphabets. In future, the static

gestures can be extended to dynamic gestures, involving the movement of hands.
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