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Abstract Multi-layer Perceptron Neural Networks (MLP NNs) are one of the most pop-

ular NNs in classification of the actual objectives. ‘‘Training’’ is the most important

developmental section of these types of networks which has gained a lot of attention in the

recent years. Using the gradient descent and recursive methods have been common for the

purposes of training the MLP networks from a long time ago. Improper classification,

being stuck in the local minimums and low convergence speed are amongst the drawbacks

of the traditional methods. Using the heuristic and meta-heuristic algorithms became very

popular in the recent year for the purposes of overcoming these drawbacks. This paper uses

a method named ‘‘biogeography-based optimizer (BBO) with Chaos (CBBO)’’ to train the

MLP NNs. This method presents greater discovery capabilities in comparison with the

heuristic methods with regard to the immigration and emigration operators and also sep-

arate mutations for each individual. This algorithm will be compared with the ant colony

optimization, particle swarm optimization, genetics algorithm, differential evolution and

also the classic BBO through four data sets in order to test the presented method. The

measured metrics include the convergence speed, the probability of getting stuck in local

minimums, and classification accuracy. The results indicate that the new algorithm pre-

sents better or comparable results in all cases in comparison with the mentioned

algorithms.
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1 Introduction

Multi-layer Perceptron Neural Networks (MLP NNs) are widely used as soft computing

instruments. These networks can help to solve non-linear problems. The MLP NNs are

generally used to categorize the model, predict the data and approximate the functions

[1–7]. Despite the applications, the distinguished capability to MLP NNs is that they learn

[3]. Learning means that these networks can learn from an experience or an experiment just

as human brain. This property (learning) is the essential part of NNs which may be divided

into two types: supervised learning [8] and unsupervised learning [9]. For training the

multi-layer artificial NNs (in most cases), optimized Back-Propagation (BP) [10] or

standard algorithms [11] which are categorized under supervised learning methods are

used. The BP algorithm is based on gradient and has drawbacks such as slow convergence

[12] and application in small areas [13]. Therefore, it cannot be confidently used for

practical purposes.

The final aim of learning in NNs is to find the best combination of their bias or weighed

connections in such manner that we have minimum error in training the network and the

test samples. Most of the errors of the MLP NN remain great for a long time in the training

process and the learning algorithm directs it towards decreasing. This is common among

gradient based learning processes such as the BP algorithm. Moreover the contingency of

the BP algorithm is to a great extent dependent on the initial values of the learning rate and

momentum. Improper values of these variables can even lead to the divergence of the

algorithm. Numerous studies have been carried out to solve this problem with the BP

algorithm [14]. However, sufficient optimization has not been obtained and each method

has only had its side effects. Prior researches show that the heuristic algorithms can replace

the gradient based learning algorithms [15], since the stochastic nature of these methods

reduces the error percentage and possibility of trapping in local minimum compared to

gradient based methods. But the problems of slow convergence speed and getting stuck in

the local minimums still remain. We will try to solve these problems in the following

section through using the chaotic maps.

Different evolutionary methods such as: gray wolf optimization [16], Particle Swarm

Optimization (PSO) [17], Genetic Algorithm (GA) [18], Ant Colony Algorithm (ACO)

[19], evolutionary strategies [20], and Biogeography-Based Optimizer (BBO) [1] have

been used to train NNs. It has been proven through using the ‘‘no free lunch theorem’’ that

the heuristic algorithms will not necessarily generate the best answers for the optimization

problems [14, 21, 22]. On the one hand, this theorem and on the other hand the problems of

the gradient based methods made researchers study the effects of different Evolutionary

Algorithms (EAs) on the learning of MLP NNs and other different fields [23–27].

Regardless of the differences between the various meta-heuristic methods, they share a

common feature of dividing the search process into ‘‘exploration’’ and ‘‘exploitation’’

stages [28, 29]. The exploration phase occurs when the algorithm tries to explore the

reliable areas of the search space. The population undergoes sudden changes in this phase.

Selection and recombination operators are executed in this phase. The exploitation phase is

a phase in which the algorithms become contingent towards confident answers. The
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population undergoes small changes in this phase. The mutation operator occurs in this

phase and in many cases there is no clear border between these two phases due to the

random nature of the EAs. In other words, imbalance between these two phases leads to the

algorithm getting stuck in the local minimum. A lot of studies have been carried out in

order to improve the performance of the EAs through increasing the exploration and

exploitation power. In this paper, BBO with Chaos (CBBO) will be used to train the MLP

NN for classifying Sonar and other data sets.

This paper has been organized in a manner that the second section will introduce the

MLP NNs. The third section discusses the overview of the BBO algorithm. Section 4

introduces the chaotic maps and applies them to the BBO algorithm. The method of

applying the obtained CBBO method (as an evolutionary training algorithm) in MLP NN

has been described in Sect. 5. The results will be discussed in Sect. 6 and finally the

conclusion will be expressed in Sect. 7.

2 Multi-layer Perceptron Neural Network

Figure 1 shows a MLP NN with two layers. R is the number of input nodes, S1 is the hidden

neurons and S2 is the number of output neurons. As can be seen, there exist one-way

connection between nodes in a MLP NN which is categorized under the feed-forward NNs

family. The MLP NN outputs are calculated using the following equation:

n1 ¼ IW� Pþ b1 ð1Þ

where IW is the connection weight matrix from the input nodes to the neurons of hidden

layer, b1 is the neuron’s bias matrix (in hidden layer) and P is the node’s input matrix.

Each hidden layer neuron’s output is calculated using a sigmoid function as given in

Eq. (2):

a1 ¼ Sigmoidðn1Þ ¼
1

1þ expð�n1Þ
ð2Þ

Final outputs after calculating the hidden nodes output can be defined as:

Fig. 1 A MLP NN with one hidden layer
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n2 ¼ LW� a1 þ b2 ð3Þ

y ¼ Sigmoidðn2Þ ¼
1

1þ expð�n2Þ
ð4Þ

where LW is the connection weight matrix from the hidden layer to the output layer and b2
is the neuron’s bias matrix in the output layer. The most important parts of the MLP NNs

are the connection weights and neuron’s biases. As one can see from above equations, the

final output of the network is defined by connection weights and neuron’s biases. Training

the MLP NN includes finding the best values for connection weights and neuron’s biases,

so that the specific inputs result in desired outputs.

3 Biogeography-Based Optimizer Algorithm

The BBO algorithm was first proposed in 2008 by Simon and then developed by Seyedali

Mirjalili in 2014 for optimization and classification task [1]. The main idea of this algo-

rithm has been inspired by biology which discusses the spreading manner of animals and

plants (in time and space). Different ecosystems (habitat or territories) will be examined

based on emigration, immigration and mutation regarding this field of the paper. The

evolution of ecosystems is the foundation of BBO algorithm with regard to different types

of species and the effect of migration and mutation for obtaining a stable condition.

Like the GA, the BBO uses a number of search factors named ‘‘habitats’’. These habitats

are similar to chromosomes in the GA. The BBO algorithm considers each habitat as

vector of habitants (like genes in the GA) which show the variables of the problem.

Moreover the Habitat Suitability Index (HSI) is also defined for each habitat. High value of

this index indicates having better conditions. The habitats are determined based on three

main laws explained below at any given time [1]:

I. Habitants residing at high-index habitats have a tendency to migrate to habitats

with lower value of index.

II. Habitants residing at low-index habitats have a tendency to attract migrants from

habitats with high-index value.

III. The habitats must change their habitants randomly without considering the value

of their indexes.

This phenomenon creates a balance among different ecosystems in nature. In other words,

nature has a tendency to improve the suitability of different environments. The BBO

algorithm uses these concepts to improve the index of all the environments the results are

used in exploiting a primary random solution for a specific problem.

The BBO starts through randomly selecting a series of habitats. Each habitat has n

different habitants who are determined based on the variables of a specific problem.

Moreover, each habitat has its own specific emigration, immigration and mutation rates

which have been modeled from the places which are distinguished with regard to biology

of the nature. Emigrating (lk) and immigrating (kk) are defined as functions of the number

of their habitants as below:

lk ¼
E � n

N
ð5Þ
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kk ¼ I � 1� n

N
ð6Þ

where n presents the number of the current habitants, N is the maximum permitted habitants

which increases through the habitant suitability index (more suitable habitats, more habitants),

E is the emigration maximum rate and I indicates the maximum rate of immigration [30].

Mutation is the third index of the BBO algorithm. It improves the exploitation capability of the

BBO algorithm and preserves the variety of the habitats. This index is defined as Eq. (7):

mn ¼ M � 1� pn

pmax

� �
ð7Þ

In whichM is the initial value of mutation which is defined by the user, pn is the probability

of the n-th habitat undergoing mutation and pmax is the maximum pn and is defined as

Eq. (8):

pmax ¼ argmax pnð Þ ð8Þ

We will introduce the chaotic maps in the following section and the manner of their

application in improving the performance of the BBO algorithm.

4 Chaotic Maps for Improving the Biogeography-Based Optimizer
Operator

The chaotic maps which have been used to improve the performance of BBO are explained in

this section. Six chaotic maps have been used in this paper in accordance with Table 1 and

Fig. 2. These chaotic maps are deterministic systems which have random behavior. In this

paper, value 0.7 has been considered as the primary point of all the maps in accordance with

Ref. [31].Asmentioned previously, three operators namely selection,migration andmutation

operators are affected by the chaotic maps. We will explain them in the following section.

4.1 Chaotic Maps for Selection

As it could be seen in Fig. 3, the habitats are selected for migration with probability equal

to k. The chaotic maps are used to define this probability as shown in Fig. 4 [31].

Table 1 Chaotic maps

No Name Chaotic map Range

1 Quadratic xiþ1 ¼ x2i � c ; c ¼ 1 (0, 1)

2 Gauss/mouse

xiþ1 ¼
1 xi ¼ 0

1

modðxi; 1Þ
otherwise

8<
:

(0, 1)

3 Logistic xiþ1 ¼ axið1� xiÞ; a¼ 4 (0, 1)

4 Singer xiþ1 ¼ lð7:86xi � 23:31x2i þ 28:75x3i � 13:302875x4i Þ;l ¼ 1:07 (0, 1)

5 Bernoulli xiþ1 ¼ 2xiðmod1Þ (0, 1)

6 Tent

xiþ1 ¼

xi

0:7
xi \0:7

10

3
ð1� xiÞ 0:7� xi

8><
>:

(0, 1)
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4.2 Chaotic Maps for Migration

As shown in Fig. 3, migration after selecting the habitat will occur with probability equal

to l. We will use the chaotic maps as Fig. 5 in order to calculate this probability.

Where C(t) is the value derivate from the chaotic map in the t-th iteration and xi shows

the i-th habitant. Figure 5 indicates that the chaotic maps allow us to regulate the migration

probability and consequently have migration with chaotic behavior.

Fig. 2 The chaotic maps and their pseudo-phase trajectories used in the paper
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4.3 Chaotic Maps for Mutation

The mutation probability is defined directly through chaotic maps as shown in Fig. 6.

In the following section, the CBBO will be first applied to a MLP NN and then it will be

compared with PSO, GA, ACO, DE and BBO in the first stage. Different CBBO algorithms

which use different chaotic maps are compared with each other in the following stage.

Fig. 2 continued
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Initialize a set of habitats (candidate solutions)

Calculate HSI for each habitat

Update S, λ and μ of each habitat

for i=1 to maximum number of habitants

Select a random habitant in xi and replace it with xj

for j=1 to maximum number of habitants

Chaotic value < λi

Chaotic value < mutation probability

Chaotic value < μj

Mutate a random number of habitats

Elitism

Termination 
condition

Optimal habitat

Yes

Yes

No

No

No

No

Yes

Fig. 3 Flowchart of the CBBO algorithm

( ) iC t λ<
Emigrate habitants from Hi to Hj chosen with the 

probability proportional to iμ
Yes

Elitism
No

Fig. 4 Chaotic selection
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5 Training a Multi-layer Neural Network Using the CBBO Algorithm

CBBO algorithm will be applied to a MLP NN in this section for the purposes of finding

the best combination of weighed connections and bias nodes in order to have the least

amount of error. The general stages of training MLP by CBBO algorithm are shown in

Fig. 7.

5.1 Proposed Multi-layer Neural Network Structure

The vector method has been used to show the values of the weighed connections and bias

nodes since we are not dealing with complex MLP NNs in this paper [32]. The Matlab

toolbox will not be used in order to decrease the running time of the MLP NNs program.

As an example of this coding method, the final vector of the MLP NN has been shown in

Fig. 8 are brought into Eq. (9)

habitat ¼ w11w21w31 � � �wð2Nþ1Þ�NWO1WO2WO3 � � �WOð2Nþ1Þb1b2b3 � � � b2Nþ1

� �
ð9Þ

After displaying the MLP NN as habitat vector, it is essential to write an equation for

computing the HSI (a suitable function) in order to evaluate each of them (the habitats).

5.2 Habitat Suitability Index (Fitness Function)

As mentioned previously the final aim of the learning methods is to train the NNs. The

most important section of learning is the training process. Each training sample must

include calculating the suitability index of all the habitats. In this paper, the HSI will be

calculated through the Mean Squared Error method (MSE) and as Eq. (10).

E ¼
Xq
k¼1

Pm
i¼1 oki � dki

� �2
q

ð10Þ

In which q is the number of the training samples, m is the number of outputs, dki is the

desirable output from the i-th input when the k-th learning sample is applied to the input.

For instance the HSI for the i-th habitat is calculated as Eq. (11):

( ) iC t μ< Select a random habitant in xi and replace it with xj

Yes
Elitism

No

Fig. 5 Chaotic migration

( )C t < Mutation-rate(k) Mutate i-th 
habitants

Yes
Elitism

No

Fig. 6 Chaotic mutation
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HSIðHabitatiÞ ¼ E Habitatið Þ ð11Þ

Learning in MLP NN can be formulated in two stages through using CBBO algorithm.

The proposed diagram block has been shown in Fig. 7. As it could be seen in this figure,

the suggested method starts with generating random sets from MLP NNs based on the

number of the defined habitats. Each MLP NN corresponds to one habitat and each weight

or bias corresponds to the habitants of that habitat. After the first step the MSE of each

MLP NN is calculated through Eq. (10). Equations (5), (6), (9), (10) and (11) are used in

the following step to update the emigrating, immigrating and mutation through the use of

the chaotic maps. Then, the MLP NNs are combined based on emigrating and immigrating

of the habitat. Afterwards each MLP NN undergoes change based on the mutation rate of

its habitat. Selecting the elites is the last step of the proposed method in such manner that

the best MLP NNs are protected in order to prevent destructions caused by the migration

and mutation operators in the succeeding generation. These stages (from computing the

MSE to selecting the elite) continue until the finishing conditions are met.

CBBO Algorithm MLP Algorithm

Generate initial habitat

Calculate HIS for all habitats

Update the emigration, immigration rates 
by using of chaotic maps for each habitat

Update the mutation rates by using 
of chaotic maps for each habitat

Modify habitats according to 
immigration and emigration rates

Select random number of habitats and 
mutate them based on mutation rate

Select elite habitat

End 
criteria?

Output prediction results

Constructing MLP

Initializing weights and 
bias habitat

Getting optimal weights and bias 

Computing error

Updating weights and bias

End 
criteria?

Initializing CBBOInput 
data

Processing

Yes

No

No
Yes

Fig. 7 The general stages of CBBO algorithm for training the MLP NN
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In order to see how the suggested algorithm works a conceptual image is shown in

Fig. 9 regarding the migration occurring among the habitats in order for a MLP NN to

learn through using the CBBO algorithm. Habitat 3 is more suitable (has the minimum

value of HSI which indicates that the MSE is minimum for all the test samples) that

habitats 1 and 2 in this image.

As it could be seen habitat 1 has the maximum amount of emigration while habitat 3 has

the maximum immigration and so it accepts more habitants (weights and biases) in

comparison with the other habitats.

6 Explaining the Material and the Results

In this section, the CBBO algorithm will be measured through four data sets of

available data in Table 2. In order for the evaluation to be comprehensive, these data

have different dimensions and a number of examples. In each test, the efficiency of

the CBBO algorithm will be compared with that of the other EAs regarding classi-

fication accuracy, convergence speed, and the probability of getting stuck in the local

minimums. The comparing algorithms include: BBO, PSO, GA, ACO, DE. The

CBBO algorithms will be divided and named with regard to the type of the used

chaotic map and to which selection, migration, and mutation operators have these

maps been applied to. For instance if the circle map has been used to correct the

Fig. 8 MLP NN with (N, 2N ? 1, 1) structure
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selection operator we will name that algorithm CBBO1. This naming style has been

thoroughly shown in Table 3.

6.1 Regulating the Parameters and Conducting the Experiment

The essential parameters and the primary values have been presented in Table 4. Each

network was tested 10 times. The average result of trained NN will be computed and used

Table 2 The set of data used in the test

Name Default task Data types Attribute characteristics # Attributes # Instances Year

Iris Classification Multivariate Real 4 150 1988

Lenses Classification Multivariate Categorical 4 24 1990

Breast-cancer Classification Multivariate Integer 10 699 1992

Sonar Classification Multivariate Real 60 208 1988

Fig. 9 Migration between the habitats for learning of an MLP NN
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for comparison. The classification rate and the test error percentage are two criteria used

for comparing the mentioned algorithm. All the algorithms stop when the maximum

iteration reaches 250 in order to compare relatively well. The convergence of the results

will be eventually examined to carry out a comprehensive comparison. Since there is no

Table 3 Dividing the CBBO algorithms with regard to chaotic maps and the corrected operator

Chaotic map Circle Gauss/mouse Iterative Logistic Singer Tent

Chaotic selection operator CBBO1 CBBO2 CBBO3 CBBO4 CBBO5 CBBO6

Chaotic migration operator CBBO7 CBBO8 CBBO9 CBBO10 CBBO11 CBBO12

Chaotic mutation operator CBBO13 CBBO14 CBBO15 CBBO16 CBBO17 CBBO18

Chaotic selection/migration
operators combined

CBBO19 CBBO20 CBBO21 CBBO22 CBBO23 CBBO24

Chaotic selection/
migration/mutation operators

CBBO25 CBBO26 CBBO27 CBBO28 CBBO29 CBBO30

Table 4 The primary parameters of the algorithms

Algorithms Parameters Value

BBO and CBBO The probability of correcting the habitants 1

The probability range for migrating into for each gene [0, 1]

Step size for the probability numerical integral 1

Maximum migration into (I) and migrating out of (E) coefficient 1

Mutation probability 0.005

Population size 200

PSO Layout Full connection

Cognitive constant (C1) 1

Social constant (C2) 1

Local constant (W) 0.3

Population size 200

GA Type Real coded

Selection Roulette wheel

Recombination Single-point (1)

Mutation Uniform (0.01)

Population size 200

ACO Primary pheromone (s0) 0.000001

Pheromone updating constant (Q) 20

Pheromone constant (q0) 1

Decreasing rate of the overall pheromone (Pg) 0.9

Decreasing rate of local pheromone (Pt) 0.5

Pheromone sensitivity (a) 1

Observable sensitivity (b) 5

Population size 200

DE Weighting factor (F) 0.5

Crossover constant (CR) 0.5
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standard for selecting the number of the hidden nodes, the suggestion proposed in [1] and

Eq. (12) will be used based on the structure of the MLP NN in order to classify the sets of

data.

H ¼ 2� N þ 1 ð12Þ

In this equation, N is the number of inputs and H shows the number of the hidden nodes.

It is worth mentioning that the simulations were done with a personal computer with a

2.3 GHz CPU, 4 GB RAM and in Matlab software space. The results of the simulations

have been shown in Fig. 10.

As it could be seen in Fig. 10 that CBBO algorithm shows much better results in

comparison with classic algorithms regarding classification accuracy and convergence

speed in all cases. The weak results of the DE, ACO and PSO are also caused by the natural

nature of these algorithms. These algorithms have no operator to suddenly change the

solution of the problem and as a result they get stuck in the local minimums. Moreover, the

ACO algorithm uses the pheromone matrix which increases the exploitation and learning

ability of the algorithm this is considered an advantage in integrated problems, but it also

increases the chances of getting stuck in local minimums. PSO are to a large extent

dependent on the manner of the initial distribution of the particles and their primary stimuli

based on the attraction between them. In case a large number of particles get stuck in the

local minimums, the algorithm will slightly prevent the other particles from getting stuck.

The reason why the CBBO algorithm is more efficient in comparison with the GA in

most cases is the different rate of emigration and immigration in each of habitats. The

CBBO algorithm has two rates (emigration and immigration) for each of its habitat while

the GA has one total regeneration rate for all the habitats of its population. This causes

evolutionary behavior and a different recognition power. We could state in short that the

ability to explore is very important in the issue of training a MLP NN. Therefore the

random and sudden search steps are essential for the purposes of preventing getting stuck

in the local minimums, when solving complex problems through using MLP NNs.

Regarding the effect of the chaotic maps on the performance of CBBO algorithm, with

regard to Fig. 10, it could be concluded that applying chaotic maps to the selection and

migration operators dramatically improves the convergence speed of the algorithm in most

cases in comparison with the other methods. This is because using these maps improves the

exploration power of the algorithm and the search space is better explored. This better

exploration of the search space makes the convergence speed much better and prevents the

algorithm from getting stuck in the local minimums. In other words, using the chaotic

migration in selection operators improves the performance of the CBBO algorithm. Of

course, using the chaotic migration operators and the mutation operator also improve the

results in comparison with the classic BBO algorithm, but their influence is not as much as

that of the chaotic migration and selection operators.

cFig. 10 a Comparing the accuracy of classifying and convergence speed of the CBBO algorithm and
criterion algorithms on Iris data set. b Comparing the classification accuracy and the convergence speed of
different CBBO algorithms on the Iris data set. c Comparing the classification accuracy and convergence
speed of the CBBO algorithm with criterion algorithms on Lenses data set. d Comparing the classification
accuracy and convergence speed of different CBBO algorithms on Lenses data set. e Comparing the
classification accuracy and convergence speed of CBBO algorithm with criteria algorithms on breast-cancer
data set. f Comparing the classification accuracy and convergence speed of different CBBO algorithms on
breast-cancer data set. g Comparing the classification accuracy and convergence speed of CBBO algorithm
with criteria algorithms on Sonar data set. h Comparing the classification accuracy and convergence speed
of different CBBO algorithms on Sonar data set
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Fig. 10 continued
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7 Conclusion

A MLP NN is trained through the use of CBBO algorithm in this paper. Four data sets with

different sizes were used to examine the effect of the CBBO algorithm on training MLP

NNs. The obtained statistical results were compared with the results obtained from the

PSO, GA, ACO, DE and BBO to stabilize the performance. The results indicate that with

regard to the chaotic operators used in the CBBO algorithm and the exploration ability

increasing in these operators, this algorithm is sufficiently capable of preventing from

getting stuck in the local minimums in comparison with the criterion algorithm. Moreover,

the superior efficiency of the CBBO algorithm in training the MLP NN can be seen based

on the accuracy of the objectives classification results and the convergence speed from the

obtained results.
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