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Abstract Graph is widely used to model data in various applications. With the rapid

growth of many emerging applications such as Internet of Things, it is urgent to require the

processing capability on large scale graphs with billions of vertices. Web graph is a typical

case of graph data that is widely used for analyzing the structure, behavior and evolution of

the World Wide Web. In this paper, we focus on optimal representation of large-scale Web

graphs. Our work is motivated by the need of fit large-scale graphs into the main memory

and carry out analyze on them. By analyzing the adjacency matrix of Web graphs, we find

two characteristics on the distribution of 1s in the matrix. Firstly, only a very small

proportion of elements in the matrix are 1s. Secondly, majority of 1s gather around the

principal diagonal and form a few number of clusters in the matrix. Based on these

characteristics, we first develop a clustering mechanism to locate the clusters of 1s in the

adjacency matrix. Then, we combine this clustering mechanism with a structure named K2-

tree and propose an approach for representing large-scale Web graphs compactly. Basic
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idea of the approach is trying to compress a large number of zeros as a single zero.

Experimental results show that, our approach not only reduces the space for representing a

Web graph, but also reduces the time consumption for operations such as retrieving

neighbors of any nodes on the graph; compared with existing approaches, our approach

achieves the best space/time tradeoff.

Keywords Graph data � Web graph � Optimal representation � Clustering mechanism �
K2-tree

1 Introduction

Graph is widely used to model data in various applications [1–7]. With the rapid growth of

emerging applications like social network analysis, semantic Web analysis, bioinformatics

network analysis, and Internet of Things, it is urgent to require the processing capability on

large scale graphs with billions of vertices [8–14]. In order to analyze the structure,

behavior and evolution of the World Wide Web, researchers often model the Web as a

directed graph by treating Web pages as nodes and treating the links between pages as

directed edges. Such a directed graph is also called Web graph [14]. Web graph is a typical

case of graph data.

With the rapid increase in the size of the World Wide Web, it becomes a great challenge

to represent a large-scale Web graph on computers. According to the report of China

Internet Network Information Center, by the end of 2015, the total numbers of Web pages

and hyperlinks in China were more than 212 billion and 1018 respectively. If the corre-

sponding Web graph is represented as adjacent matrix, then the space for storing it is more

than 40 TB. Such a Web graph is too big to be loaded in the main memory of computer for

analyzing. Obviously, the explosive growth of the scale of Web graphs has made it difficult

for using traditional storage structure to represent and manipulate the graphs.

At present, there are three approaches to deal with large-scale Web graphs. (1) Make

use of external memory to store Web graph [15]. Shortcoming of this approach is a large

amount of time consumption for operations on graphs; since the access speed of external

memory is 4–6 orders of magnitude slower than that of main memory, and the graph has to

be loaded from external memory to main memory frequently. Therefore, when taking this

approach, the main concern of researchers is how to reduce the number of disk I/O

operations by optimizing the spatial locality of data access. (2) Divide a big Web graph

into many parts and store them in main memories of different computers in a distributed

system [16]. Shortcoming of this approach is a big communication cost between computers

caused by the coupling among all the parts of the Web graph. Therefore, when taking this

approach, the main concern of researchers is how to reduce the communication cost and

time consumption by technically designing a good segmentation algorithm. (3) Convert the

Web graph into a compressed form so that it could be stored in the main memory of a

computer and could be handled effectively [17]. In this paper, we follow the third

approach.

By analyzing the adjacency matrix of a Web graph, we find two characteristics on the

distribution of the values of ones in the matrix. First, only a very small proportion of

elements in the matrix are ones. Secondly, majority of 1s gathers around the principal

diagonal and form a few number of clusters in the matrix. Based on these characteristics,
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we develop a clustering mechanism to locate the clusters in the matrix, and incorporate this

mechanism into a structure named K2-tree. As a result, we propose an algorithm for

converting large-scale Web graphs into compressed forms, and we demonstrate that this

algorithm achieves the best space/time tradeoff in all existing algorithms.

2 The K2-Tree

K2-tree is a structure proposed by Brisaboa et al. [18] for representing graphs in the case

that the number of edges is far less than the square of the number of nodes. The basic idea

is to transform the adjacency matrix of a graph into a complete K2-fork tree, where K is a

positive integer. In this K2-complete tree, each node labeled with 1 just stands for an

element of 1 in the matrix, whereas each node labeled with 0 will stands for an area which

is full of 0s in the matrix.

More precisely, given an adjacency matrix, the K2-tree approach will first generate a

root node and divides the matrix into K2 submatrixes of the same size. Be corresponding to

each submatrix, the approach will generate a child for the root node, and labels this child

node with 0 if all elements in the submatrix is 0; otherwise the child node will be labeled

with 1. During this process, all the K2 submatrixes are sorted by the order that from top to

bottom and then left to right. Such a sequence is reflected in the ordering of the corre-

sponding children nodes that from left to right. Then, for each submatrix which contains 1,

the approach will divide it again into K2 submatrixes; and correspondingly K2 children

nodes will be generated and be labeled with 0 or 1 in the tree. Such a process is repeated,

until the submatrix containing 1 is a 1 9 1 matrix.

In the case that the order of an adjacency matrix is not an integral power of the integer

K, the K2-tree approach need to do some preprocessing. It will introduce a number of rows

and columns of 0s into the bottom and the right-hand side of the adjacency matrix so that

the order of the matrix is an integral power of K. Because a square matrix of 0s will be

compressed as a single node labeled with 0 in the K2-tree, 0s introduced in the prepro-

cessing stage don’t bring many effects on the performance of the K2-tree approach.

As an example, the white part of the matrix in the left part of Fig. 1 is an adjacency

matrix for a graph with 11 nodes and 12 edges. We will represent it as a K2-tree with

K = 2. First, 0s in the grey part of the matrix are introduced to transform the adjacency

matrix into a matrix with an order 16. Then, the complete 22-fork tree shown in the right

Fig. 1 Adjacency matrix and the corresponding K2-tree with K = 2
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part of this figure will be constructed by the K2-tree approach. Now, let L be a bit-vector

composed of the labels of the nodes in the lowest level of the tree, with the order that from

left to right; and let T be a bit-vector composed of the labels of all the other nodes in the

tree, with the order that from top to bottom and then left to right. Then, we just need to

store these two bit-vectors in computer since they contain all the information of original

graph. In this example, in the case that the graph is represented as adjacency matrix, the

space consumption is 121 bits. By making use of the K2-tree approach, we only need 72

bits to store the vectors T and L. Obviously, the K2-tree approach can reduce storage space

greatly.

The K2-tree approach also supports efficient operations on graphs. Based on a top-down

traverse of the tree, we can realize forward and backward navigation on graphs. Further-

more, the operations of checking individual links and retrieving links between given ranges

of nodes can also be realized [19].

3 Limitations of K2-Tree in Representing Web Graphs

K2-tree provides a good approach for representing graphs compactly. However, since it

divides a matrix into K rows and K columns mechanically during the compression process,

it has as least three shortcomes.

First, the close coupling between nodes might be destroyed and it will increase the time

consumption for query operations on the Web graph. In a World Wide Web there are

always some groups of Web pages which are related tightly. In an extreme case, there exist

links between every pair of pages in a group. By the K2-tree approach, nodes in such a

group might be dispersed to different submatrixes and therefore make a close connection

between submatrixes. As a result, for operations such as forward or backward navigation

on the graph, the visit of nodes in a K2-tree has to be switched frequently between brother

nodes. The switch of visit between brother nodes is time consuming, since it has to go

through the father node.

Second, a large area of matrix full of 0s might be divided into many submatrixes and

therefore can’t be compressed completely. The spirit behind the K2-tree approach is trying

to compress a large number of zeros as a single zero. If there is a large area of matrix full of

0s, the ideal result is to represent this area by a single node labeled with 0. However, once

it is divided into many submatrixes, more 0s and consequently more spaces will be used for

the representation.

Thirdly, the height of the K2-tree has a major impact on the time consumption of

operations on the graph. Suppose the number of nodes in a Web graph is n, then the height

of the corresponding K2-tree will be h ¼ logk nd e. For operations such as forward or

backward navigation on the Web graph, there will be lots of top-down traversals

accompanied with backtracking processes. For example, on the data set CNR-2000 [14] of

Web graph which has 325,557 nodes and 3,216,152 edges, we made an experiment to visit

all the neighbors of a given node in it. We found that the K2-tree was recursively visited

450 times in average, before all the neighbors of a given node were found. Therefore, in

order to reduce the time consumption of query operations, we need to reduce the height of

the K2-tree.

Now let us have a closer look of Web graph and analyze the adjacency matrix of it.

CNR-2000 is a public data set of Web graph that often used as benchmark in literatures. As

we mentioned before, the graph has 325,557 nodes and 3,216,152 edges. In order to
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investigate the distribution of 1s in the adjacency matrix, we map the line number and

column number of nodes into the X-coordinate and Y-coordinate respectively, and map

each element in the matrix with value 1 into a corresponding point in the coordinate

system. As a result, we get Fig. 2. It is obvious that majority of 1s are gather around the

principal diagonal and form a few number of clusters.

Next, we make a quantitative analysis of this phenomenon. Let us horizontally divide

the adjacency matrix of CNR-2000 into many parts. Without loss of generality, we let the

height of each part be 65,536, and in this case, the matrix is in fact divided into 5 parts. We

count the number of 1s contained in each part and denote it as total_num, as shown by the

second column in Table 1. Furthermore, for each part, we pick out the square matrix whose

principal diagonal is a part of the principal diagonal of the adjacency matrix; we call this

square matrix as main submatrix. Now, for each part, we count the number of 1s in the

main submatrix and denote it as in_num, as shown by the third column in Table 1; we also

count the number of 1s not in the main submatrix and denote it as out_num, shown by the

fourth column in Table 1. Finally, we calculate the ratio of out_num to total_num and call

the result as outlier rate. With the index of outlier rate, it is shown again that majority of

ones in the adjacency matrix gather around the principal diagonal and form a few number

of clusters.

Based on the above observation, we get the following idea to improve the K2-tree

approach. Given the adjacency matrix of a Web graph, instead of dividing it mechanically,

we will carry out the following operations. (1) Find out such submatrixes of the adjacency

matrix that majority elements in the submatrix are 1s; compress each submatrix by the K2-

tree approach. (2) Remove all of these submatrixes from the adjacency matrix and fill their

places in the adjacency matrix with 0s; compress the resulted adjacency matrix by the K2-

tree approach. (3) Record all of those K2-trees generated in the previous steps by some

mechanism, and get a compressed representation of the graph.

Figure 3 illustrates the above idea. In the rest of the paper, we will call the submatrixes

found in the first step as clusters of 1s.

Intuitively, our method can overcome or alleviate the defects of the K2-tree approach

discussed in the beginning of this section. First, the close coupling between nodes is

protected by the first step. Second, areas of matrix full of 0s in the adjacency matrix are

expanded in the second step, and therefore each single node labeled with 0 in the K2-tree

can represent more elements of the adjacency matrix. Thirdly, the height of the resulted

Fig. 2 Distribution of 1s in the
adjacency matrix of CNR-2000
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K2-tree is decreased; since we generate many K2-trees where each K2-tree only represents

a submatrix or represents a very sparse matrix that has been backfilled by 0s.

4 Incorporating Clustering Mechanism into K2-Tree

In this section, we give a detailed description to our method. Firstly we propose an

algorithm Clustering(M, MinSize, /) to find out the clusters of 1s in the adjacency matrix

M along the principal diagonal. In this algorithm, the parameter M is an adjacency matrix

of the Web graph that we will compress; parameters MinSize and / respectively sets the

minimum size and the minimum outlier rate for the clusters that we are looking for. After

the execution of the algorithm, we will get a queue of matrixes that will be compressed into

K2-trees one by one in Algorithm 2.

Given a Web graph, it is possible that some nodes that have the same neighbors are not

encoded in adjacent positions. Such an order of nodes will damage the locality charac-

teristics of the adjacency matrix. Therefore, in the beginning of Algorithm 1, we firstly

make use of the BFS technique [21] to change the order of nodes in the adjacency matrix

so as to get a better locality characteristic.

In Algorithm 1, we look up clusters of 1s along the principal diagonal of the matrix

M. Starting from the first element in M, the algorithm will selects a submatrix with the size

of width 9 width, and then calculate the outlier rate of it. If this submatrix satisfies the two

Fig. 3 Partition on the
adjacency matrix according to the
clustering results

Table 1 Node distribution of the data set CNR-2000

Line numbers Number of 1s in
this part
(total_num)

Number of 1s in the
main submatrix
(in_num)

Number of 1s not in
the main submatrix
(out_num)

Outlier
rate (%)

0–65,536 776,538 768,697 7885 1

65,537–131,072 457,733 424,237 33,496 7.3

131,073–196,608 349,665 343,191 6474 1.8

196,609–262,144 960,510 954,170 6340 0.66

262,145–325,557 671,662 662,415 9247 1.38

2276 L. Chang et al.

123



conditions on clusters, then it will be recorded in the queue list, and its area in the matrix

M will be filled with 0s. The purpose of setting the parameter MinSize is to avoid the cases

that too many clusters will increase the time consumption of operations on the compressed

representation of graphs.

Now we can present our compression algorithm Cluster-K2-tree(M, K). The first

four steps of Algorithm 2 are designed to calculate the parameters MinSize and /.
Then the algorithm Clustering(M, MinSize, /) is called and a queue list of matrixes is

generated. For each matrix contained in list, we make a compression to it by the K2-

tree approach, and get the corresponding T vectors and L vectors. The storage mode

used here is a little different from the storage mode of the K2-tree approach. In

Algorithm 2, the T vectors of compression results by the K2-tree approach will be

stored independent; but all the L vectors, except the L vector corresponding to the

whole adjacency matrix, will be composed to form the vector global_L, which will

then be transformed into an array and a bitmap by the DACs [22] encoding approach.

The DACs coding technique can compress the L vectors with a high efficiency and

support fast random access [13]. Due to the space limitation, here we omit the

detailed process of DACs encoding.
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As an example, let us consider again the adjacency matrix in the left part of Fig. 1. In

the case that MinSize = 4 and / = 0.1, we will get two clusters shown in Fig. 4. For each

of these clusters, we make a compression to it by the K2-tree approach with K = 2, and get

the results shown in Fig. 5. Now we only need to record the bit-vectors T1, T2, L1 and L2,

and the corresponding space consumption is only 64bit. Recall that, in Section II, it needs

121 bits to store the adjacency matrix of this graph, and needs 72 bits by the original K2-

tree approach.

The advantage of our method not only reflects in the ratio of compression, but also

reflects in the time consumption of query operations on Web graphs. The reason is that our

method reduces the height of the generated K2-trees and, at the same time, preserves the

close coupling between nodes. For example, the height of the K2-tree in the left part of

Fig. 1 is 5, and it is now reduced to 4 in Fig. 5. Furthermore, if we need to visit all the

neighbors of the tenth node in the graph, then the K2-tree in Fig. 1 will be visited recur-

sively 31 times; however, the K2-trees in Fig. 5 will be visited only 15 times.

The above advantage is more obvious in large-scale Web graphs. For example, let us

consider again the data set CNR-2000 that we discussed in Section III. In the case that

MinSize = 40 and / = 0.00003, we will get 221 clusters. For the query operation that

visiting all the neighbors of a given node, by our method the K2-trees will be visited

recursively 361 times in average. However, recall that, in the discussion of Section III, the

Fig. 4 Partition of an adjacency
matrix
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K2-tree generated by the original K2-tree approach was visited recursively 450 times in

average. Obviously, we get a reduction of almost 20%.

5 Experiments

In this section, we compare our method with existing approaches for representing large-

scale Web graphs.

At present three are three typical algorithms in the literatures, named K2-tree [18], Re-

Pair [23] and LZ78 [23], that have excellent space/time tradeoff. Source codes of these

algorithms are available on the website of the FCWGR (Fast Compact Web Graph Rep-

resentations) project [24] from the University of Chile. We downloaded the source codes

from the Website and ran them in our testing environment. Our testing environment is

based on a computer with Intel(R) Core(T) i5-4590 CPU@3.30 GHz and 4 GB RAM.

Operation system is Ubuntu GNU/Linux in version 12.04 (64 bits). All tests only use one

CPU core. Programming language is the C language and the compiler is gcc in version

4.4.7.

We use the data sets CNR-2000 and EU-2005 as benchmarks. CNR-2000 and EU-2005

are data sets for real Web graphs and are available on the website of the LAW laboratory

[20] from the University of Milan. Some information on these data sets are listed in

Table 2, including the number of nodes, the number of edges, ratio of the number of edges

to the number of nodes, and the size for a plain adjacency list representation of the graph

(using 4-byte integers).

In the experiment, we take into account both space and time. Space consumption is

measured as a ratio of bits per edge. More precisely, we calculate the total space for storing

Fig. 5 Submatrixes and corresponding K2-trees according to the result of clustering
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the results of compression, and divide it by the number of edges in the Web graph. For the

time consumption, we focus on the operation that finding all neighbors of a given node in

the graph. For every node in the graph, we respectively calculate the time consumption of

finding all the neighbors of it; then we add all of these time consumptions together and

divide the sum by the number of edges in the Web graph. The unit of time in the

experiment is microsecond.

Figure 6 shows the space and time consumption on the data set CNR-2000. During the

execution of our algorithm, there are 221 clusters been generated. Figure 7 shows the

results on the data set EU-2005, and on this data set there are 180 clusters been generated

during the execution of our algorithm.

Compared with the classical K2-tree approach, our method significantly reduces both

the space consumption and the time consumption. More precisely, for the space con-

sumption, our method reduces 42 and 38% respectively in the data sets CNR-2000 and EU-

2005. For the time consumption, our method reduces 20 and 43% respectively.

Compared with the Re-Pair and LZ78 algorithms, our method significantly reduces the

space consumption. More precisely, on the data set CNR-2000, our method reduces 59% to

Re-Pair and 78% to LZ78; on the data set EU-2005, our method reduces 50% to Re-Pair

and 65% to LZ78. The disadvantage of our method is that it needs more time on the

operation of finding all neighbors of a given node. More precisely, on the data set CNR-

2000, our method increases 6% to Re-Pair and 75% to LZ78; on the data set EU-2005, our

method increases 45% to Re-Pair and 95% to LZ78.

Although our method needs more time compared with Re-Pair and LZ78, it achieves a

better space/time tradeoff. Furthermore, for operations on Web graphs, both Re-Pair and

LZ78 only support forward navigation. Since our method is an improvement of the K2-tree

approach, in theory it supports all the operations supported by K2-tree approach, such as

forward navigation, backward navigation, deciding the existence of a link, and retrieving

the links between certain nodes [19].

Fig. 6 Space/time tradeoff of
querying for neighbors over
CNR-2000

Table 2 Description of the web graphs used in the experiment

Nodes Edges Edges/nodes Size (MB)

CNR-2000 325,557 3,216,152 9.88 14

EU-2005 862,664 19,235,140 22.30 77

2280 L. Chang et al.

123



6 Conclusions and Future Work

With the rapid development of World Wide Web and the rapid growth of many emerging

applications on the Web, it is urgent to require the processing capability on large scale

graphs with billions of vertices. How to represent such large scale graphs is a problem full

of challenge.

In this paper, by combining a clustering mechanism with the K2-tree structure, we

propose a method for representing large-scale Web graphs compactly. Our method firstly

finds out clusters of 1s in the adjacency matrix, and represents each cluster compactly by

making use of the K2-tree approach. Then, for the original adjacency matrix of the Web

graph, our method replaces all the 1s occurring in the clusters by 0s, and gets a sparse

adjacency matrix. This sparse adjacency matrix is represented compactly again by making

use of the K2-tree approach. Finally, the representations of clusters and sparse adjacency

matrix are well-organized and we get a compressed representation of the whole Web graph.

Compared with existing approaches in the literature, such as the classical K2-tree approach,

the Re-Pair approach and the LZ78 approach, our method not only reduces the space for

representing Web graph but also reduces the time consumption for the query operation on

the graph. Furthermore, our method has the best space/time tradeoff.

In the future work we will extend our method to support more operations on graphs such

as the forward navigation, backward navigation, existence checking of certain links, and

retrieving of links between nodes. Another work is to extend the method to deal with

dynamic graph data.
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