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Abstract The latest developments in mobile computing technology have increased the

computing capabilities of smart mobile devices (SMDs). However, SMDs are still con-

strained by low bandwidth, processing potential, storage capacity, and battery lifetime. To

overcome these problems, the rich resources and powerful computational cloud is tapped

for enabling intensive applications on SMDs. In Mobile Cloud Computing (MCC),

application processing services of computational clouds are leveraged for alleviating

resource limitations in SMDs. The particular deficiency of distributed architecture and

runtime partitioning of the elastic mobile application are the challenging aspects of current

offloading models. To address these issues of traditional models for computational

offloading in MCC, this paper proposes a novel distributed and elastic applications pro-

cessing (DEAP) model for intensive applications in MCC. We present an analytical model

to evaluate the proposed DEAP model, and test a prototype application in the real MCC

environment to demonstrate the usefulness of DEAP model. Computational offloading

using the DEAP model minimizes resources utilization on SMD in the distributed pro-

cessing of intensive mobile applications. Evaluation indicates a reduction of 74.6% in the

overhead of runtime application partitioning and a 66.6% reduction in the CPU utilization

for the execution of the application on SMD.
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1 Introduction

Technological enhancements have enriched mobile devices with the attributes of auton-

omous operating systems and customized user application support. SMDs are high featured

and multifunctional computing and communication devices which have become universal

replacements for Personal Digital Assistants (PDA’s). SMDs incorporate the computing

capabilities of a handheld computer and the communication capabilities of an ordinary

cellular phone by providing multimodal connectivity and user applications support [1].

SMDs are predicted to become the primary computing devices for various computational

intensive applications [2]. Examples of such applications include natural language trans-

lators [3, 4], speech recognizers [5, 6], optical character recognizers, image processors

[7, 8], online computational intensive games, video processing [9] and wearable devices

for patients [10]. However, such applications require higher computing power, storage

capacity, and battery lifetime on SMDs [11]. However, SMDs currently have limitations in

memory capacity, processing potential, battery lifetime and wireless network access

medium.

MCC is a new advancement which aims at extending cloud services to SMDs for

augmenting the computing potentials of resources constraint SMDs [12, 13]. MCC

addresses the issue of resources limitations in SMDs by employing resources and services

of computational clouds.

Successful practices of cloud computing for stationary computers motivate to leverage

cloud resources and services for SMDs. Cloud computing employs different service pro-

vision models for the provisioning of cloud resources and services to SMDs [14]. Several

online file storage services are available on cloud server for augmenting the storage

potential of client devices, such as Amazon S3 [15], Google Docs [16], MobileMe [17],

and Drobox [18].

Applications which are partitioned at different granularity level into independent

components are called elastic applications. Application partitioning is employed either

statically or dynamically [21] for enabling intensive applications on SMDs. However, a

number of issues are raised [2, 3] in the development, deployment and management of

current cloud based distributed application deployment frameworks for intensive appli-

cations which obstruct optimization goals of distributed application processing in MCC

[19–22]. Current offloading frameworks lack in the deployment of distributed architecture

for intensive mobile application, which results in the runtime partitioning of mobile

applications for the establishment of ad-hoc distributed processing platform for application

processing. However, runtime partitioning of elastic mobile applications involves addi-

tional computing resources utilization in implementing application profiling and solving

[23]. The deficiency of distributed architecture and runtime partitioning of the application

for outsourcing intensive components of the application make the distributed platform

resources intensive and time consuming. However, the limited resources nature of SMDs

necessitates lightweight procedures for the distributed deployment of intensive mobile

applications which require minimal resources utilization in outsourcing computational load

to cloud server node [21].

This paper proposes a Distributed and Elastic Application Processing (DEAP) model

which addresses the issues of traditional application offloading frameworks [24–26]. The

availability of centralized resources and centralized monitoring in cloud datacenters

motivates the need for explicitly configured client/server applications as an alternative for

complex and resources starving runtime application offloading of intensive mobile
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applications [20]. DEAP incorporates distributed architecture for separating the intensive

components of mobile application at design time, which reduces the instances of runtime

application partitioning and therefore minimizes the additional overhead of runtime par-

titioning of the application. The graphical and mathematical models of DEAP are

presented.

We formulate the performance of the elasticity attributes of DEAP by modeling the

computational resources utilization in runtime application profiling and optimization. The

performance gains of DEAP are evaluated by quantitative analysis of the intensive mobile

application using the mathematical model. Analysis of the results shows the optimal and

distributed nature of DEAP model for the intensive application deployment for MCC.

Intensive mobile applications which are distributed by design and elastic by nature are

promising alternatives of current offloading frameworks for intensive mobile applications.

The development of distributed applications on the basis of DEAP framework results in

substantial performance gains and enhancement in overall performance of application

development, deployment and processing in MCC. The paper is organized as follows.

Section 2, discusses traditional application offloading frameworks. Section 3 presents

the DEAP model in graphical model and mathematical form to clearly explain the idea of

the proposed solution. Section 4 evaluates DEAP model through a quantitative analysis.

Finally, simulation results are given in Sect. 5 followed by conclusions and future direc-

tives in Sect. 6.

2 Related Work

A number of related distributed and elastic application processing models are proposed for

offloading intensive applications such as: (a) decentralized virtual cloud computing

environment for mobile devices [27], (b) local surrogate based distributed computing

platform [28], (c) centralized cloud computing environment for mobile devices [29], and

(d) centralized cloud computing datacenters based cloud computing environment [26].

Current computational offloading frameworks employ diverse technique for the estab-

lishment of runtime distributed application execution platform. For example, virtual

machine (VM) migration based Cloudclone framework [30] seamlessly offloads cloned

image of the running applications on SMD to the nearby computer. The framework

exploits various augmentation strategies for different types of applications and reduces the

dynamic transmission overhead of application code by deploying a simple approach for

synchronization. Similarly, VM based Cloudlets architecture [22] is deployed for process

offloading. The framework exploits the tactic of copying the entire processing environment

of the mobile device into remote cloudlet. A cloudlet is a trustable remote computer which

provides the services of outsourced processing of application to SMD. A VM based

CloneCloud framework [31] is based on partitioning of the application on thread basis. The

framework is based on cloning mobile device application processing environment on to

remote host which involves the issues of privacy and access control. Mirror server [32]

augments SMDs by providing different types of services; security (file scanning), storage

(file caching) and computation offloading. A mirror server is a powerful server configured

in Telecommunication Server Provider (TSP) that maintains VM template for each of the

different types of mobile devices platform. The VM template for each mobile device is

kept with default company settings and a new VM instance is created for offloaded

component of the mobile application. Cloud datacenter based framework [33] employs
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virtual machine based application offloading procedure. The framework deploys applica-

tion level process migration on the Android platform. Fresh VM instance is created on the

cloud server and state of the application is cloned to the newly created VM instance on the

cloud server node.

Similarly, AIDE [34] is a dynamic distributed framework for resources constrained

devices. An application profiling component establishes the feasibility of offloading. The

partitioning component of the AIDE partitions the application dynamically by following a

partitioning policy. In [35] a middleware framework is proposed for sharing the application

processing dynamically between cloud server and mobile client. The framework imple-

ments both static partitioning and dynamic partitioning strategies. MAUI [25] uses

dynamic application profiling and partitioning approach to maximize energy saving for

mobile devices. The framework is based upon method state migration instead of method

code migration. MAUI involves the overhead of application profiling, dynamic partition-

ing, migration, and reintegration on mobile device which requires computing resources

abundantly. MAUI lacks of supporting remotely executing virtualized methods calling

native functions and requires programmers to annotate methods as REMOTABLE, which

is an additional effort from the development perspective. Similarly, elastic application

model [26] is a middleware framework for elastic mobile applications. The framework is

based upon dynamic distributed processing platform at application level. Weblets are

deployed for dynamic partitioning and migration at runtime. The critical aspects are that

the framework requires extensive overhead of application profiling, dynamic runtime

partitioning, migration, reintegration, and rigorous synchronization on mobile devices for

offload processing.

Existing computational offloading frameworks for MCC [24–26] are the analogous

extensions of pervasive computing [27] models or local distributed [28] application exe-

cution models for distributed application processing. Therefore, current offloading

frameworks are deficient in the deployment of distributed system architecture for the

development and deployment of applications for MCC. Current frameworks focus on the

establishment of runtime distributed platform which utilizes additional resources in the

deployment and management of distributed application processing platform.

Computing resources of the SMDs are utilized in arbitration with cloud servers for the

selection of remote server node, dynamic application profiling, runtime solving of critical

condition, application migration and reintegration and rigorous synchronization with cloud

servers for the entire duration of distributed platform [23]. Consequently, current dis-

tributed application deployment models employ heavyweight procedures in leveraging

application processing services of computational clouds for SMDs. The mobile nature,

compact design, limited computing potential and wireless medium attributes of SMDs

necessitate optimal and lightweight procedures for distributed application deployment in

MCC.

3 Proposed Distributed and Elastic Application Processing (DEAP)
Model

We propose DEAP model for enabling computationally intensive applications on SMDs.

DEAP is distributed from the development and deployment perspectives and elastic in

nature. Distributed features include explicitly defined distributed architecture for the

deployment of distributed processing environment. Whereas, considering the importance,
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versatility and robustness of current elastic application frameworks [25, 26], DEAP is

attributed with the elasticity features. The attributes of elastic mobile applications include

ad-hoc platform creation, partitioning of intensive components, adaptive offloading, and

transparency in distributed application deployment [30]. DEAP is based on the design time

separation of the loosely coupled and tightly coherent components (as represented in set S

in Sect. 4) and tightly coupled and loosely coherent components (as represented in set C in

Sect. 4) of the mobile application and incorporation of the elasticity attributes for dynamic

processing management on SMD.

The centralized management and availability of services in cloud datacenters motivate

for employing explicitly designed client and server components of the intensive mobile

applications for MCC. Therefore, DEAP model is based on explicitly defined client and

server components of the intensive mobile applications. DEAP addresses the issue of

deficiency of distributed architecture in remote processing of intensive components of

mobile applications. DEAP is designed with two objectives: (1) Incorporation of stan-

dardized distributed architecture for the design, development and implementation of

intensive applications in MCC. (2) Deployment of elasticity attributes for coping with

dynamic application processing load on SMDs. DEAP employs two tiered architecture by

explicitly defining the client and server components of the intensive mobile application at

design time. DEAP Client is composed of location aware, tightly coupled or slight

intensive components of the mobile application. DEAP Server is composed of maximum

possible loosely coupled, tightly cohesive, location unaware and intensive components of

the mobile application.

The client component of DEAP architecture is composed of SMD synchronizer, dis-

tributed middleware, profiler, optimizer, migrator and mobile node manager. DEAP Client

is designed with the objective to include location aware, slight intensive or tightly coupled

components of the intensive mobile application. DEAP Client utilizes the services of

explicitly defined DEAP Server by using inter-process communication (IPC) mechanism.

Traditionally, a large number of distributed applications are deployed over the internet

such as Email, Facebook and Web application which provide thin client framework for

client devices.

Client’s devices provide the user interface and the processing logic and implement on

the server component of the application. However, DEAP Client is distinct from traditional

thin clients for the reason of the enrichment of smartness of services on client component

of the application. DEAP is distributed for the reason of having explicitly defined client

and server components and elastic for the reason of runtime component offloading to cloud

server node.

Considering the mobile nature and intrinsic limitations of wireless medium, DEAP

proposes to process the slight intensive or tightly coupled components of the mobile

application on SMD which contributes to the richness and smartness of local services and

offline usability of the mobile application. DEAP proposes two independent operating

procedures for the implementation of distributed platform of intensive mobile applications

in MCC: Primary Operating Procedure (POP) and Secondary Operating Procedure (SOP).

DEAP Client is capable to implement processing logic on SMD for enhancing the

smartness of local services on SMD. Figure 1 shows the sequence diagram for POP of

DEAP client. In the POP of DEAP client application invokes the preconfigured services on

the server application running on the cloud server node. Once the execution of remotely

invoked services is completed, results are returned to the client application running on

mobile device. The synchronizer component of DEAP model enables synchronization

between application running on the mobile device and cloud server node. The primary
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communication mechanism in the POP is to invoke the processing of remote services by

using IPC mechanism rather than send and receive messages. However, whenever data

transmission is required between DEAP client application and DEAP server application,

appropriate logic can be implemented for sending and receiving data. The POP of DEAP

client is a simple and optimal procedure for remote processing of intensive components of

the mobile application. POP utilizes the significance of explicitly designed DEAP server

running on cloud node and does not involve the overhead of runtime optimization such as

profiling, optimization and migration.

Figure 2 shows sequence diagram for the SOP of DEAP framework. The SOP of DEAP

is employed for coping with the dynamic application processing load on the SMDs. DEAP

client employs SOP at times when the computing requirements of the client application

cannot be fulfilled on SMD. In order to cope with such critical situations, DEAP client

activates the Profiler mechanism to identify the larger intensive components of the

application; whereas, the Optimizer component resolves the problem of critical situation on

the basis of input provided by Profiler. Similarly, Migrator component arbitrates with cloud

servers for the migration of intensive components of the DEAP client application at run-

time. It is important to highlight that the SOP does not utilize the services of explicitly

defined DEAP server; instead, the migrator component arbitrates with cloud servers to

facilitate remote execution services on casual basis.

Considering the availability of centralized resources and management of centralized

datacenters in computational clouds, explicitly configured DEAP server is an appropriate

alternative for ad-hoc surrogates based remote servers of traditional offloading frameworks

[27, 28]. Figure 3 shows the architecture of DEAP model. DEAP Server is deployed on

cloud server node which eliminates the overhead of arbitration for the selection of

appropriate remote host and migration of intensive partitions of the mobile application.

The server component of the DEAP architecture is composed of cloud synchronizer and

distributed middleware and cloud server node manager. The services of DEAP server are

accessible to DEAP Client in POP of DEAP framework. DEAP server utilizes the services

Fig. 1 Sequence diagram for primary operating procedure of DEAP model
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of distributed middleware for communication with DEAP client. The Synchronizer com-

ponent on both SMD and cloud server is responsible for the synchronization between

DEAP client application and DEAP server application. Synchronizer provides different

types of services in the POP and SOP. In POP synchronizer coordinates for the synchro-

nization between DEAP client application and DEAP server application. Whereas, the

Fig. 2 Sequence diagram for secondary operating procedure of DEAP model

Application on Mobile Device

Profiler

Optimizer

Migrator 

Synchronizer

Mobile Node Manager

Distributed 
Middleware

Application on Cloud Server

Distributed Middleware

 Synchronizer

Server Node Manager

IPC

Fig. 3 Architecture of DEAP model
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intensive components of the application are offloaded to cloud server node by employing

application level partitioning in the same way as traditional offloading frameworks

[24–26].

The offloaded components of the application are executed on temporarily created server

node of cloud datacenters. In such scenario the role of synchronizer is to coordinate

between elastic DEAP client mobile application and remote offloaded components of the

application. The responsibility of the Synchronizer is to ensure the consistency of trans-

missions between DEAP client and DEAP sever in the POP and DEAP client application

and temporarily allocated cloud server in the SOP. Mobile node manager and Server

manager are responsible for communication between SMD and cloud datacenters. Mobile

node manager copes with the challenges of mobility in the wireless environment and cloud

server manager is responsible for ensuring the provision of cloud services to SMD.

4 Analytical Model to Evaluate DEAP Model

In this section we present an analytical model to evaluate traditional elastic mobile

applications and DEAP framework. We model the overhead of runtime partitioning by

formulating the computational resources utilization in application profiling and

partitioning.

Mobile applications have distinct framework which is different from the framework of

traditional applications for personal computers. However, application frameworks differ

for different mobile operating systems [36]. For instance, applications for Android plat-

form are composed of different components such as activity, services, content provider and

broadcast receiver [37]. These application components are the fundamental building blocks

of Android applications. Each component has a different point through which the system

can enter the application. Each component is a unique building block that helps to define

the overall behavior of the application. The following notations are used in the proposed

analytical model for DEAP framework.

Let X be an intensive mobile application consists of n 2 N operations or components

such that X 2 U and Xj j ¼ n, where U represents the universal set and N represents the set

of natural numbers. Let xi i ¼ 1; 2; . . .; nð Þ be any single component in X, then xi can be

defined as xi 2 U : 8i 2 N; Uj j � 1f g for X ¼ x1; x2; . . .; xnf g.
The computational intensity of the application comprises the sum of computational

requirements of all the components in X. CloudSim [38] is a simulation toolkit for

modeling such a problem in cloud computing environments and evaluation of resource

provisioning algorithms. This study adopts a similar means to model the memory (RAM)

requirement and processing intensity i.e., amount of CPU requirement for millions of

instructions (MI) to accomplish the application.

L and Tp be the total memory and processing requirements respectively, and Y and Z be

the corresponding sets of memory size and processing length for X. Then, Y ¼ fyi 2 N :
yi [ 0; 8ig when is the memory (RAM) size of the ith single component xi 8ið Þ. And the

total memory requirement of the application can be defined as,

Tm ¼
Xn

i¼1

yi; for yi 2 Y and Yj j � 1: ð1Þ
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Similarly, if zi represents the processing length (amount of CPU) of the ith component

xi, then Z ¼ fzi 2 R : zi [ 0; 8ig. when R represents the set of real numbers. Hence the

total processing requirement of the application can be defined as,

Tp ¼
Xn

i¼1

zi; for zi 2 Z and Zj j � 1: ð2Þ

4.1 DEAP Model Based Mobile Application

AP model is based on the design time separation of the components of the application. A

simplified depiction of the DEAP model based intensive mobile application is presented in

Fig. 4. In DEAP model, the overall intensive mobile application Xð Þ is classified into two

defined categories which are—client application (Xc) and server application (Xs). For each

category, the model organises the components of the application on the basis of the

computational requirements—either memory size (i.e.,Yc for Xc and Ys for Xs) or pro-

cessing length (i.e., Zc for Xc and Zs for Xs). Typically, the client application is composed

of the small intensive and tightly coupled components, whereas the server application is

composed of big intensive and loosely coupled components of X.

Let there are n1 components in Xc and n2 components in Xs such that n1 þ n2 ¼ n,

Xc [ Xs ¼ X 2 U and Xc \ Xs ¼ ;; then by using the respective notations the following

expressions can be easily defined with respect to different aspects of DEAP model.

For the DEAP client mobile application, let Tc
m and Tc

p be the total memory and

processing requirements respectively, and yk and zk be the respective memory size and

processing length of the kth single component xk 2 Xc. Then, Yc ¼ fyk 2 N :
yk [ 0; 1� k� n1g and Zc ¼ zk 2 R : zk [ 0; 1� k� n1f g. So, Tc

m and Tc
p are determined

as,

Tc
m ¼

Xn1

k¼1

yk; for yk 2 Yc and Ycj j � 1; ð3Þ

and

Tc
p ¼

Xn1

k¼1

zk; for zk 2 Zc and Zcj j � 1: ð4Þ

Similarly for the DEAP server mobile application, if Ts
m and Ts

p represent the total memory

and processing requirements respectively, then they can be determined as,

Client application Server application 
DEAP 
model

Processing 
length 

Memory size Processing 
length (

Memory size 
(

Fig. 4 A typical depiction of DEAP model based mobile application
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Ts
m ¼

Xn2

l¼1

yl; for yl 2 Ys and Ysj j � 1 ð5Þ

and

Ts
p ¼

Xn2

l¼1

zl; for zl 2 Zs and Zsj j � 1: ð6Þ

where given that, Ys ¼ fyl 2 N : yl [ 0; 1� l� n2g for the memory size yl of the lth

single component xl 2 Xs, and Zs ¼ zl 2 R : zl [ 0; 1� l� n2f g for the processing length

zl of the lth single component xl 2 Xs.

As Xc� X 2 U, Xs � X 2 U, Xc [ Xs ¼ X 2 U and Xc \ Xs ¼ ;, the memory size of

the standalone mobile application is equal to the sum of memory size of client application

and the memory size of server application. Now the Eq. (1) can be expressed as,

Tm ¼
Xn

i¼1

yi ¼
Xn1

k¼1

yk þ
Xn2

l¼1

ylðasn ¼ n1 þ n2Þ:

Hence, by employing Eqs. (3) and (5), the overall total memory size of the standalone

intensive mobile application is determined as,

Tm ¼ Tc
m þ Ts

m ð7Þ

This standard Eq. (7) is useful for validating the total memory size of client application

(i.e., Tc
m ¼ Tm � Ts

m) and the total memory size of server application (i.e.,

Ts
m ¼ Tm � Tc

m).

Moreover, if u represents the percentage of memory saved by outsourcing intensive

components of the application at design time. Then by using (7), u can be calculated as,

u ¼ Ts
m

Tm

� 100: ð8Þ

Similarly, by using Eqs. (2), (4) and (6) the overall total processing length of the

standalone mobile application can be determined by the following standard equation,

Tp ¼ Tc
p þ Ts

p ð9Þ

The Eq. (9) is helpful for validating the total processing length of client application (i.e.,

Tc
p ¼ Tp � Ts

p) and the total processing length of server application (i.e., Ts
p ¼ Tp � Tc

p).

Now, if v represents the percentage of CPU saved by outsourcing intensive components

of the application at design time. Then by using (9), v can be easily estimated as,

v ¼
Ts
p

Tp

� 100: ð10Þ

4.2 Modeling Profiler Overhead

The elasticity aspect of DEAP framework employs runtime component offloading for

coping with the dynamic processing loads on SMD. However, runtime component

offloading is implemented as the secondary operation procedure. Investigation of the
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application processing on Android devices indicates that the resources utilization of

application profiling depends on the number of components in the mobile application and

the computational intensity of the components of the mobile application [23]. It means that

profiling larger intensive component of the mobile application results in higher resources

utilization for a longer period of time. The overhead of the single instance of profiler

activation can be modeled on the basis of the number of components in the mobile

application with a runtime profiling rate.

Let ai be the overhead of profiler activation at runtime of the ith 8ið Þ single instance for
the ni number of components in the mobile application, and r1 be an objective rate of the

average overhead of runtime application profiling. Then ai can be defined as, ai ¼ ni � r1
for ni � 1 and 0\r1 � 1. Now the total overhead of profiler activation at runtime can be

obtained as,

a ¼
Xn

i¼1

ai; where ai [ 0; 8i: ð11Þ

4.3 Modeling Application Partitioning Overhead

The overhead of runtime application partitioning depends on the computational intensity of

the components being partitioned at runtime. Typically optimizer uses an additional

arbitrary rate of CPU as per the intensity of the component for each instance of optimizer

activation. Also the overhead of each instance of the optimizer activation vary with the

memory size or processing length of the intensive component of the mobile application.

Thus, the application partitioning overhead runtime for a single instance can be modeled

on the basis of the number of components in the mobile application with a runtime

application partitioning rate.

Let bi be the respective processing overhead of the ith single instance, and r2 be an

objective rate of processing overhead of optimizer activation down to the computational

intensity of the operation. In this case bi can be expressed as bi ¼ max yi; zif g � r2 for

yi [ 0; zi [ 0 8ið Þ and 0\r2 � 1. Hence, the total overhead of optimizer activation at

runtime can be determined as,

b ¼
Xn

i¼1

bi for 0\ai � 1: ð12Þ

Moreover, the total overhead of runtime optimization is the sum of the total profiler

overhead a and total optimizer overhead b for resolving the problems of n number of

intensive components of the mobile application. Now if t represents the total overhead of

runtime partitioning for the mobile application, then the total overhead of runtime opti-

mization for X can be estimated as,

t ¼ aþ b ð13Þ

5 Evaluation and Validation

The intensive mobile application is represented in terms of computational requirements of

the application. The computational requirements of the application are represented in terms

of memory size and processing length of the components of the application. We investigate
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computing resources requirement for the same mobile application in two different sce-

narios A and B. Scenario A describes computational offloading by employing the con-

temporary offloading techniques [24, 39] wherein runtime partitioning is deployed for

outsourcing computational load to the remote server node. Scenario B explains leveraging

application processing services of computational clouds while employing the proposed

DEAP model.

Scenario A represents the partitioning of the elastic application X at runtime in which

the application is partitioned at runtime for coping the critical condition of excessive

computational requirements of the application. However, scenario B represents distributed

elastic application wherein the mobile application is organized on the basis of DEAP

model. In scenario B the application is organized between explicitly defined DEAP client

Xc and DEAP server Xs application. In order to achieve the objective of richness of services

and enhance offline usability, DEAP client is enriched with application processing logic of

slight intensive components of the application whereas DEAP server is configured with the

highly intensive components of the application. Therefore, DEAP client is a distinct

framework from traditional thin client applications.

Let sp denotes the CPU speed and sm denotes the RAM capacity of SMD. The appli-

cation is tested for Android devices with (ARMv7 CPU having 600 MHz Processor,

(470.22 BogoMIPS speed), and 512 MB RAM capacity. Therefore, sp = 470.22 MIPS and

sm= 512 MB. The computational intensity of mobile application is determined by using

prototype application for Android devices. The mobile application is composed of five

intensive service components. The intensive components of mobile application are as

follows:

1. A sorting service component which implements the logic of bubble sorting for linear

list of 20,000 integer type values. The computational requirement of the sorting service

includes 7.8 KB memory and 402.7 MI processing length.

2. A matrix multiplication service component which implements the logic of computing

the product of 300 9 300 size two dimensional array of integer data type values. The

computational requirements of the matrix multiplication service include 8.4 KB RAM

and 286.4 MI processing length.

3. The power computing service which implements the logic of power computing be (is it

power) where b = 2 and e = 108. The computational requirements of the power

compute service requires 7.8 KB RAM and 279.9 MI processing length.

4. The factorial compute service computes factorial of n, whereas n = 40. The

computational requirement of the factorial compute service includes 7.9 KB RAM

and 51.7 MI processing length.

5. The searching service component of the mobile application searches a linear list of

length n, whereas n = 10,000. The computational requirements of the searching

service component include 8.2 KB RAM and 61.135 MI CPU.

By using Eq. 1 the total memory size (Tm) of the mobile application is 40.1 KB.

Similarly, by using Eq. 2 the total processing length (Tp) of the mobile application is

1081.9 MI. As, Tp[ sp, therefore component offloading is required to reduce the pro-

cessing load on SMD. Profiler and Optimizer are required to be activated three times for

separating the larger intensive components (x3–x5) from the mobile application. By

employing profiling on the Android platform it is found that profiler overhead (a) is 37%

and Optimizer overhead is 5% of the computational intensity of the component being

partitioned at runtime. By using Eq. 11 the total Profiler overhead is computed as

a = 358.5 MI and by using Eq. 12 total Optimizer overhead is computed as b = 48.45 MI.
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Equation 13 indicates that the runtime partitioning overhead is the sum of total profiling

overhead and total optimizing overhead. Hence, by using Eq. 13 total runtime partitioning

overhead t is =407 MI. Runtime partitioning of the application reduces application pro-

cessing load of the application to 112.9 MI and memory allocation is reduced to 16.1 KB.

However, runtime partitioning requires additional 407 MI for application partitioning

which shows additional resources utilization in the computational load distribution process.

By employing DEAP model the intensive mobile application is classified into DEAP

client application Xc and DEAP server application Xs. Let the client application is com-

posed of 3 components (x1–x3) and the server application is composed of 2 resources

intensive components (x4–x5) which are separated at design time. Let set B is the finite set

of components in DEAP client application and set C is the finite set of components in

DEAP server application. I am not sure about the following notations, please revise it. We

know that Xc [ Xs ¼ X 2 U and Xc \ Xs ¼ ;;. By using Eq. 3 the total memory size of the

DEAP client application is computed as Tc
m = 23.9 KB and by Eq. 4 the total processing

length of the DEAP client application is computed as Tc
p = 392.8 MI.

Let a single component of the mobile application is offloaded at runtime; therefore the

profiler mechanism is activated for partitioning the intensive component of the mobile

application. In this scenario, the overhead of runtime profiling is 103.6 MI and the over-

head of Optimization is 13.9 MI by partitioning a single component of mobile application.

By using Eq. 13 the total overhead (u) of runtime partitioning is 117.6 MI. As Xs is the

finite set of components configured in the DEAP server application; therefore by using

Eq. 5 the memory size (Ts
m) of the DEAP server application is computed as 16.2 KB and

by using Eq. 6 the processing length (Ts
p) of the DEAP server application is computed as

689.1 MI.

Asis indicates that in scenario A and scenario B partitioning of the application is

employed for reducing computation load on SMD. By using Eq. 7 the total memory size of

the elastic application is equal to the sum of the memory size of DEAP client and DEAP

server application. As, the total memory size of the elastic application is Tm = 40.1 KB,

whereas the total memory size of DEAP client application is Tc
m = 23.9 KB and the total

memory size of DEAP server is Ts
m = 16.2 KB. Since, Tm ¼ Tc

m þ Ts
m which validates

Eqs. 7, 8, 9 and 10.

Similarly, by using Eq. 9 the total processing length of elastic application is equal to the

sum of processing length of DEAP client and DEAP server application. We know that the

total processing length of the elastic application is Tp = 1081.9 MI whereas, the total

processing length of DEAP client application is Tc
p = 392.8 MI and the total processing

length of DEAP server application is Ts
p = 689.1 MI. DEAP based deployment of the

mobile application reduces: Memory allocation on SMD 40.4% and CPU load 63.7%. In

both the scenarios (A&B) the computational load offloaded to cloud server node is iden-

tical. However, additional resources utilization in computational offloading reduces 74.6%

in scenario B for the reason of eliminating the overhead of runtime partitioning of the

intensive component of the mobile application, which indicates the lightweight nature of

DEAP framework.

Figure 5 shows the total CPU allocation in scenario A, wherein computational

offloading is employed by using the existing techniques [24, 39] and scenario B, wherein

DEAP model is employed for computational offloading. The analysis indicates that in

scenario A the processing load of the application processing on SMD is 1488.9 MI

whereas, in scenario B the processing load of the DEAP client application is 496.4 MI.

However, in both scenarios two components of the application are executed on SMD,
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whereas three components of the application are outsourced to cloud server nodes. It shows

66.7% reduction in the CPU utilization for processing the identical workload on SMD in

scenario B as compared to scenario A. The decrease in CPU utilization in DEAP model

based computational offloading is for the reason of minimizing the instances of runtime

component offloading which reduces the overhead of additional CPU utilization in runtime

application profiling and optimization.

Figure 6 compares the Profiler overhead in scenario A and B. Profiler overhead is found

358.5 MI in scenario A, wherein three intensive components of the application are off-

loaded at runtime. The profiler overhead is found 103.6 MI in scenario B, wherein a single

intensive component of the application is offloaded at runtime. It shows that the profiler

overhead is 28.8% higher in scenario A, as compared to B for the reason of larger number

of components in the profiling of elastic application in scenario A.

Similarly, Fig. 7 compares additional overhead of CPU utilization in application par-

titioning in scenario A and B. Additional CPU utilization in application partitioning is

observed 48.5 MI in scenario A; whereas, CPU utilization is found 14 MI in scenario B. It

shows that runtime application partitioning involves 28.8% additional CPU utilization.

Optimizer overhead is larger in scenario A as compared to scenario B for the reason of

partitioning larger number of components with higher computational intensity in scenario

A.

Moreover, in [23] we investigated the overhead of application profiling and partitioning.

It is concluded that offloading the intensive components of the application at runtime

places additional load on mobile device which increases the utilization of computing

resources on SMD. As a result, the execution time of the locally executing components of

the mobile application is affected adversely. It is found that CPU utilization increases 8%

and the execution time of the locally executing services increases 32.6%. It is also found

that during the component offloading process at runtime CPU utilization increases 9.8%

which shows the additional overhead of application partitioning and component offloading

at runtime.

We tested a prototype application on Android platform in the real MCC environment for

evaluating the size data transmission and significance of DEAP framework. The prototype

application is composed of sort service, matrix multiplication service and power compute

service components. Each component of the application is evaluated with 30 different

computational intensities. Figure 8 shows the comparison of the size of data transmission

in employing the latest existing techniques [24, 39] and DEAP framework for
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computational offloading. Data transmission in runtime component offloading for the

applications on Android platform involves application package file (.apk) and preferences

file (.xml). Application package is the complied binary file of the application whereas,

preferences file contains data saved while interrupting the running instance of the
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application. Preferences files are transmitted between mobile device and remote server

node for exchanging data. It is found that by employing runtime component offloading

13 MB data is transmitted in offloading all the three components of the application.

However while employing DEAP framework for computational offloading, 2 MB data is

transmitted over the network. It shows that by reducing the instances of runtime compo-

nents offloading the size of data transmission is reduced up to 84% in DEAP framework.

For evaluating the significance of DEAP framework, the prototype mobile application is

executed on local mobile device, traditional offloading techniques [24, 39] and DEAP

framework based computational offloading. Figure 9 compares allocation memory on

mobile device in local and remote execution of the application. It is found that 31.8 MB

RAM is allocated for the processing of application on local mobile device, 45 MB RAM is

allocated in employing runtime component offloading, and 9.1 MB RAM is allocated in

employing DEAP framework for computational offloading. It shows that by employing

DEAP framework for computational offloading memory utilization is reduced by 79.8 and

71.5% as compared to existing techniques [24, 39] and the execution of application on

local mobile device respectively.

Figure 10 shows the comparison of CPU utilization on mobile device for different

components of the prototype application in local and DEAP based remote execution. It

shows that by employing computational offloading the application processing load on the
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mobile device is decreased, which results in reduction of CPU utilization on mobile device.

In executing the prototype application on mobile device, CPU utilization for different

components of the application is found 48.7% for sort service, 45.5% for matrix multi-

plication service and 48% for power computing service. However, by deploying DEAP

framework for computational offloading CPU utilization for different components is found

as 25.5% for sort service, 35.4% for matrix multiplication service and 3% for power

computer service. It shows that in deploying DEAP for computational offloading CPU

utilization on mobile device decreases 47% for sort service, 22% for matrix multiplication

service and 93.8% for power compute service. Similarly, the duration of CPU utilization on

mobile device is decreased 55.8% for sort service, 9.95% for matrix multiplication service

and 94% for power computing service. Deploying DEAP framework based computational

offloading decreases average CPU utilization mobile by 55.5% and the duration of CPU

utilization decreases by 54% which signifies the usefulness of computational offloading for

MCC.

There are following three fold advantages of the configuration of preconfigured server

components:

1. The separation of intensive components of the mobile application (which are feasible

for cloud based execution) at design time minimizes the occurrences of runtime

application partitioning. Therefore, the overhead of additional CPU utilization in

runtime component partitioning is reduced.

2. The configuration of intensive services/component in cloud server nodes results in the

reduction of the data transmission overhead. Since, the intensive components are

preconfigured; therefore, client mobile application requires activating remote services

by using IPC mechanism instead of runtime component migration. As result, the

overhead of component migration is reduced.

3. The services of cloud server can be utilized anytime and anywhere for mobile client

applications on demand basis. Therefore, the availability of distributed services is

increased.

6 Conclusion

We have proposed a distributed and elastic mobile application as a lightweight alternative

for elastic mobile applications. DEAP framework mitigates the deficiencies of current

offloading frameworks which are elastic in nature and lack in distributed design per-

spective which makes the development and deployment of distributed platform resources

intensive on SMD. The incorporation of distributed application architecture facilitates in

the simple application developmental procedures and lightweight mechanism for accessing

the preconfigured services in cloud datacenters on demand basis. The dual operating nature

of DEAP framework contributes to the versatility and robustness of the distributed and

elastic model for intensive mobile application for MCC. DEAP implements the access of

preconfigured services in cloud datacenters as the primary operation procedure, whereas

runtime component offloading is implemented as the secondary operating procedure for

coping with the dynamic processing load on smart mobile devices. The elasticity attributes

of DEAP client enables resources constraint SMDs to cope with the challenges of dynamic

application processing loads. Further, the elastic nature of DEAP client contributes to the

objectives of offline usability, smart client and rich internet applications for MCC.
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Analysis of the DEAP framework shows that separation of intensive components of the

application at design time is significant approach for reducing additional resources uti-

lization in computational offloading for MCC. We conclude that DEAP framework is a

lightweight and optimal model for leveraging application processing services of compu-

tational clouds in MCC.

Acknowledgements This work is carried out as part of the Mobile Cloud Computing research project
funded by the Malaysian Ministry of Higher Education under the University of Malaya High Impact
Research Grant with reference UM.C/HIR/MOHE/FCSIT/03.

References

1. Shiraz, M., Whaiduzzaman, M., & Gani, A. (2013). A study on anatomy of smartphone. Computer
Communication & Collaboration, 1(1), 24–31.

2. Abolfazli, S., Sanaei, Z., Gani, A., Xia, F., & Yang, T. L. (2013). Rich mobile applications: Genesis,
taxonomy, and open issues. Journal of Network and Computer Applications. doi:10.1016/j.jnca.2013.
09.009. (in press).

3. Balan, K. R., Gergle, D., Satyanarayanan, M., Herbsleb, J. (2007). Simplifying cyber foraging for
mobile devices. In Proceedings of 5th USENIX International Conference on Mobile Systems, Appli-
cations and Services (MobiSys), San Juan, Puerto Rico (pp. 272–285)

4. Flinn, J., Park, S., & Satyanarayanan, M. (2002). Balancing performance energy, and quality in per-
vasive computing. In 22nd International Conference on Distributed Computing Systems (ICDCS02),
Vienna, Austria (pp. 217–226).

5. Kristensen, D.M. (2007). Enabling cyber foraging for mobile devices. In 5th MiNEMA Workshop,
Magdeburg, Germany (pp. 32–36)

6. Su, Y.Y., & Flinn, J. (2005). Slingshot: Deploying stateful services in wireless hotspots. In 3rd
International Conference on Mobile Systems, Applications, and Services, New York, NY (pp. 79–92)

7. Kristensen, D. M., & Bouvin, O.N. (2008). Developing cyber foraging applications for portable devices.
In 2nd IEEE International Interdisciplinary Conference on Portable Information Devices. Garmisch-
Partenkirchen, Germany (pp. 1–6).

8. Porras, J., Riva, O., & Kristensen, D. M. (2009). Dynamic resource management and cyber foraging
(Vol. ch. 16, pp. 349–368). Berlin and Heidelberg: Springer.

9. Chun, B., & Maniatis, P. (2009). Augmented smartphone applications through clone cloud execution. In
12th Workshop on Hot Topics in Operating Systems (HotOS), Monte Verita

10. Satyanarayanan, M., Bahl, P., Cceres, R., & Davies, N. (2009). The case for VM-based cloudlets in
mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

11. Mohsen, S., Somayeh, K., & Omid, K. (2011). A survey and taxonomy of cyber foraging of mobile
devices. Communications Surveys & Tutorials, IEEE Communications Society, 14(4), 1232–1243.

12. Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., & Buyya, R. (2013). Cloud-based augmentation for
mobile devices: Motivation, taxonomies, and open issues. IEEE Communications Surveys and Tutorials.
doi:10.1109/SURV.2013.070813.00285. (in Press).

13. Whaiduzzaman, M., Sookhak, M., Gani, A., & Buyya, R. (2013). A survey on vehicular cloud com-
puting. Journal of Network and Computer Applications.. doi:10.1016/j.jnca.2013.08.004. (in press).

14. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation
Computer Systems, 25(6), 599–616.

15. Amazon S3. http://status.aws.amazon.com/s3-20080720.html. Accessed on 20th July 2011
16. Google Docs. http://docs.google.com. Accessed on 15th July 2011
17. MobileMe. http://en.wikipedia.org/wiki/MobileMe. Accessed on 15th June 2011.
18. Dropbox. http://www.dropbox.com. Accessed on 15th July 2011.
19. Shiraz, M., & Gani, A. (2012). Mobile cloud computing: Critical analysis of application deployment in

virtual machines. In Proceedings of ICICN 2012, Singapore.
20. Shiraz, M., Gani, A., & Khokar, H.R. (2012). Towards lightweight distributed applications in mobile

cloud computing. In Proceedings of 2012 IEEE International Conference on Computer Science and
Automation Engineering (CSAE 2012), China.

4420 M. Shiraz et al.

123

http://dx.doi.org/10.1016/j.jnca.2013.09.009
http://dx.doi.org/10.1016/j.jnca.2013.09.009
http://dx.doi.org/10.1109/SURV.2013.070813.00285
http://dx.doi.org/10.1016/j.jnca.2013.08.004
http://status.aws.amazon.com/s3-20080720.html
http://docs.google.com
http://en.wikipedia.org/wiki/MobileMe
http://www.dropbox.com


21. Shiraz, M., Gani, A., Khokar, H. R., & Buyya, R. (2012). A review on distributed application processing
frameworks in smart mobile devices for mobile cloud computing. IEEE Communications Surveys &
Tutorials, 15(3), 1294–1313.

22. Sanaei, Z., Abolfazli, S., Gani, A., & Buyya, R. (2013). Heterogeneity in mobile cloud computing:
Taxonomy and open challenges. IEEE Communications Surveys and Tutorials. doi:10.1109/SURV.
2013.050113.00090. (in Press).

23. Shiraz, M., Ahmed, E., Gani, A., & Han, Q. (2013). Investigation on runtime partitioning of elastic
mobile applications for mobile cloud computing. Journal of Supercomputing. doi:10.1007/s11227-013-
0988-6. (in Press).

24. Hung, H. S., Shih, S. C., Shieh, P. J., Lee, P. C., & Huang, H. Y. (2012). Executing mobile applications
on the cloud: Framework and issues. Computers & Mathematics with Applications, 63(2), 573–587.

25. Cuervo, E., Balasubramanian, A., Cho, K.D., Wolman, A., Saroiu, S., Chandra, R., & Bahlx, P. (2010).
MAUI: Making smartphones last longer with code offload. In Proceedings of MobiSys’10, San Fran-
cisco, California

26. Zhang, X., Kunjithapatham, A., Jeong, S., & Gibbs, S. (2011). Towards an elastic application model for
augmenting the computing capabilities of mobile devices with cloud computing. Mobile Networks &
Applications, 16(3), 270–285.

27. Canepa, H.G., & Lee, D. (2010). A virtual cloud computing provider for mobile devices. In ACM
Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond MCS’10, San
Francisco, California, ACM Press

28. Goyal, S., & Carter, J. (2004). A lightweight secure cyber foraging infrastructure for resource-con-
strained devices. In WMCSA 2004 Sixth IEEE Workshop, IEEE Publisher.

29. Dou, A., & Kalogeraki, V. (2010). MISCO: A MaPreduce framework for mobile systems. In PETRA’10
Greece, ACM Press

30. Chun, B. G., & Maniatis, P. (2009). Augmented smartphone applications through clone cloud execution.
Berkeley: Intel Research.

31. Satyanarayanan, M., Bahl, P., & Caceres, R. (2009). The case for VM-based cloudlets in mobile
computing. IEEE Computing Society, 8(4), 14–23.

32. Zao, B., Xu, Z., Chi, C., Zhu, S., & Cao, G. (2011). Mirroring smartphones for good: A feasiblity study.
ZTE Communications, 9(1), 13–18.

33. Chun, G.B., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). CloneCloud: Elastic execution between
mobile device and cloud. In Proceedings of EuroSys’11 Salzburg Austria ACM Press

34. Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D., Giuli, J. T., et al. (2002). Towards a
distributed platform for resource-constrained devices. Palo Alto: Hewlett-Packard Company.

35. Giurgiu, I., Riva, O., Juric, D., Krivulev, I., & Alonso, G. (2009). Calling the cloud: Enabling mobile
phones as interfaces to cloud applications. In Proceedings of Middleware’09 the ACM/IFIP/USENIX
10th International Conference on Middleware Urbana Champaign, Illinois

36. Shiraz, M., Gani, A., Khokhar, H.R., & Ahmed, E. (2012). An extendable simulation framework for
modeling application processing potentials of smart mobile devices for mobile cloud computing. In
Proceedings of Frontiers of Information Technology 2012

37. Application Fundamentals http://developer.android.com/guide/components/fundamentals.html Acces-
sed on 1st November 2013.

38. Calheiros, N. R., Ranjan, R., Beloglazov, A., Rose, D. F. A. C., & Buyya, R. (2011). CloudSim: A
toolkit for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software Practice and Experience, 41(1), 23–50.

39. Shiraz, M., & Gani, A. (2013). A lightweight active service migration framework for computational
offloading in mobile cloud computing. Journal of Supercomputing. doi:10.1007/s11227-013-1076-7. (in
Press).

A Distributed and Elastic Application Processing Model for… 4421

123

http://dx.doi.org/10.1109/SURV.2013.050113.00090
http://dx.doi.org/10.1109/SURV.2013.050113.00090
http://dx.doi.org/10.1007/s11227-013-0988-6
http://dx.doi.org/10.1007/s11227-013-0988-6
http://developer.android.com/guide/components/fundamentals.html
http://dx.doi.org/10.1007/s11227-013-1076-7


Dr. Muhammad Shiraz is an Assistant Professor at Department of
Computer Science, Federal Urdu University of Arts, Science and
Technology Islamabad, Pakistan. He has completed his Ph.D. Degree
with Distinction from University of Malaya, Malaysia in 2013. He
completed Masters in Computer Science from Allama Iqbal Open
University Islamabad, Pakistan in 2007 and under graduation from
CECOS University of Information Technology and Emerging Sciences
Peshawar, Pakistan with the distinction of Gold medal. He is an active
researcher in the Mobile Cloud Computing Research Group at Faculty
Computer Science and Information Technology University Malay
Kuala Lumpur. His areas of interest include distributed applications
design for ubiquitous networks, distributed systems, lightweight
applications, smart client applications and optimization strategies,
mobile cloud computing.

Abdullah Gani is Professor at the Department of Computer System
and Technology, Faculty of Computer Science and Information
Technology, University of Malaya, Malaysia. His academic qualifi-
cations were obtained from the University of Hull, UK for bachelor
and master degrees, and the University of Sheffield, UK for Ph.D. He
has vast teaching experience due to having worked in various educa-
tional institutions locally and abroad—schools, teaching college,
ministry of education, and universities. His interest in research started
in 1983 when he was chosen to attend the Scientific Research Course
in RECSAM by the Ministry of Education, Malaysia. More than 100
academic papers have been published in conferences and
respectable journals. He actively supervises many students at all level
of study—Bachelor, Master and Ph.D. His interest of research includes
self-organized system, reinforcement learning, wireless-related net-
works. He is now working on mobile cloud computing with High
Impact Research Grant of USD 500,000 (RM 1.5 M) for the period of

2011–2016. He is a senior member of IEEE. Currently, he is a director of the Centre for Mobile Cloud
Computing Research, which focuses on high impact research. He is also a visiting Professor at the King
Saud University, Saudi Arabia as well as serves as Adjunct Professor at the COMSATS Institute of
Information Technology, Islamabad, Pakistan. He also serves as a visiting professor at the University
Malaysia Sabah, Kota Kinabalu, Sabah. Malaysia (2015–2017). He serves as a chairman of Industry
Advisory Panel for Research Degree Program at UNITEN, Malaysia (2015–2017).

Rashid Khokhar is working as a Lecturer in School of Computing and
Mathematics at Charles Sturt University, Australia. His research
interests include mobile cloud computing, sensor networks and
vehicular networks.

4422 M. Shiraz et al.

123



Azizur Rahman is working as Senior Lecturer in School of Com-
puting and Mathematics at Charles Sturt University, Australia. His
research interests include data mining, Big-data analysis, statistical
models, mobile networks and cloud computing.

Mohsin Iftikhar got his B.Sc. in Electrical Engineering from
University of Engineering and Technology, Lahore Pakistan, Masters
of Engineering Science in Telecommunications from UNSW and
Ph.D. in Advanced Networks from University of Sydney, Australia in
1999, 2001 and 2008 respectively. He is currently working as senior
lecturer in School of Computing and Mathematics at Charles Sturt
University, Australia. His research interest include stochastic mod-
elling, queuing theory, mobile computing, polling models, cloud
computing and software defined networks.

Naveen Chilamkurti is currently Acting Head of Department, Com-
puter Science and Computer Engineering, La Trobe University, Mel-
bourne, VIC, Australia. He obtained his Ph.D. degree from La Trobe
University. He is also the Inaugural Editor-in-Chief for International
Journal of Wireless Networks and Broadband Technologies launched
in July 2011. He has published about 165 Journal and conference
papers. His current research areas include intelligent transport systems
(ITS), wireless multimedia, wireless sensor networks, and so on. He
currently serves on the editorial boards of several international jour-
nals. He is a Senior Member of IEEE. He is also an Associate editor for
Wiley IJCS, SCN, Inderscience JETWI, and IJIPT.

A Distributed and Elastic Application Processing Model for… 4423

123


	A Distributed and Elastic Application Processing Model for Mobile Cloud Computing
	Abstract
	Introduction
	Related Work
	Proposed Distributed and Elastic Application Processing (DEAP) Model
	Analytical Model to Evaluate DEAP Model
	DEAP Model Based Mobile Application
	Modeling Profiler Overhead
	Modeling Application Partitioning Overhead

	Evaluation and Validation
	Conclusion
	Acknowledgements
	References




