
A Network Resource Management Framework
for Wireless Mesh Networks

Jinqiang Yu1 • Wai-Choong Wong2

Published online: 2 February 2017
� Springer Science+Business Media New York 2017

Abstract In infrastructure wireless mesh networks (WMNs), a mobile station (STA)

associates with one of the nearby mesh access points (MAPs) that are connected to a

capacity-limited wireless multi-hop backhaul. For better network resource utilization in

WMNs, it is preferred that more traffic is carried by the good-backhaul MAPs that are

closer to the portal or having better backhaul condition. In this paper, by taking the features

of WMNs and the inter-cell interference into consideration, we propose a network resource

management framework that jointly manages MAP–STA association, MAP access network

channel assignment, and user bandwidth allocation. The proposed framework is composed

of three components: an optimization-based association control algorithm that improves

the network resource utilization by associating more STAs with the good-backhaul MAPs,

an access network channel assignment algorithm that effectively increases the network

capacity by reducing the interference at the good-backhaul MAPs, and a utility-fair

bandwidth allocation algorithm that is flexible in adjusting the trade-off between network

throughput and user fairness. We demonstrate the superior performance of the proposed

algorithms through simulations with various network topologies and conditions.
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1 Introduction

In a wireless mesh network (WMN), mesh access points (MAPs) are connected to a

wireless multi-hop backhaul that carries the data traffic of mobile stations (STAs) [1]. The

wireless backhaul enables flexible and economic network deployment at the expense of

lower network capacity compared to the wired backhaul in the conventional wireless local

area networks (WLANs) [2]. To make better use of the network resource in WMNs, both

the access network condition and the backhaul network condition should be taken into

consideration when allocating network resources such as radio frequencies and transmis-

sion opportunities. Currently most of the resource management schemes designed for

WLANs consider the access network only, assuming an abundant backhaul capacity, which

is not the case in WMNs, and therefore cannot be directly applied in WMNs. In this paper,

we propose a resource management framework for WMNs that takes the features of

WMNs into consideration and achieves better network resource utilization by jointly

managing MAP channel assignment, MAP–STA association, and user bandwidth

allocation.

We consider WMNs that consist of three types of nodes: STA, MAP and portal. A STA

must associate with one of the MAPs in its vicinity to gain network connectivity and its

associated MAP forwards its packets to the portal through the wireless multi-hop backhaul.

The association between STAs and MAPs determines the logical network topology and has

significant impact on network performances such as aggregate throughput and user fairness

[3]. The default association metric adopted in the IEEE 802.11 standards is the received

signal strength indicator, i.e. a STA associates with the MAP from which the received

signal strength is the highest. This simple metric may result in congestion at the hotspot

access points (APs) when the users are not uniformly located. Association control methods

such as [4] have been proposed to balance the load among APs. However, in WMNs, it is

not always good to do load balancing. Instead, it is preferred that more STAs associate with

the MAPs that have larger backhaul capacity. The reason is that a backhaul packet

transmission from the MAPs with good backhaul condition, which could be higher

backhaul link rate or fewer number of hops away from the portal, requires less transmission

time or fewer number of relays, and therefore consumes less network resource compared to

transmitting the same packet from the poor-backhaul MAPs. On the other hand, if too

many STAs associate with the good-backhaul MAPs, the access network of these MAPs

could be over-congested. In this paper, we propose an optimization-based association

control scheme as one component of the resource management framework, based on a

realistic network model that considers both access and backhaul network transmission

constraints.

The previous works on association control in WLANs [4, 5] or WMNs [3, 6–8], ignored

the interference between neighboring AP or MAP cells by assuming perfect access network

channel assignments. However, as more and more APs are deployed to support the fast

growing Wi-Fi enabled mobile devices, the inter-cell interference becomes more and more

inevitable. In the 2.4 GHz frequency band of the IEEE 802.11 standards, there are only 3

or 4 non-overlapping 20 MHz-wide channels and the number is 12 or 13 for the 5 GHz

frequency band [9]. If considering new standard such like the 802.11ac that supports a

channel bandwidth up to 160 MHz, the number of non-overlapping channels is even

smaller. Many channel assignment schemes have been proposed for WLANs in the liter-

ature [9]. The objective of these schemes usually is to minimize the total interference

experienced by either APs or STAs. However, in WMNs, as discussed above, it is preferred
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that the good-backhaul MAPs carry more traffic. As a result, it makes sense to reduce the

interference at these MAPs with priority so that they can accommodate more STAs. In this

paper, we propose a channel assignment scheme as another component of the resource

management framework, which iteratively improves the channel assignment using a metric

of total-weighted-interference where the weight of a MAP is its traffic load.

We take the network in Fig. 1 as an example to illustrate the importance of joint

association control and channel assignment. There are 3 MAPs, 4 STAs and 1 portal. The

access link rates are labelled next to the links. STA S1, S2, and S3 are associated with MAP

M1,M2, andM3, respectively. STA S4 needs to associate with eitherM2 orM3. Suppose the

backhaul links do not interfere with the access links and have enough bandwidth to support

all the traffic of the STAs. Suppose there are a total of 2 non-overlapping channels {ch1
and ch2} to be assigned to the MAPs, and at any time, only one of the MAPs assigned with

the same channel can transmit or receive. Suppose the STAs on the same channel get equal

transmission time. To see how association control makes a difference, we first consider a

channel assignment in which M1, M2, and M3 are assigned with ch1, ch2 and ch1
respectively. If S4 is associated with M2, the aggregate throughput would be 57 Mbps (54/

2 ? 36/2 ? 18/2 ? 6/2). On the other hand, if S4 is associated with M3, the aggregate

throughput would be 62 Mbps (54/3 ? 36 ? 18/3 ? 6/3). Next we illustrate how channel

assignment makes a difference by changing the channel of M3 from ch1 to ch2. Now the

aggregate throughput is further increased to 74 Mbps (54 ? 32/3 ? 18/3 ? 6/3). Later we

will see how our proposed channel assignment algorithm gets the second channel

assignment from the first one.

The last essential component of our resource management framework is a utility-

maximization-based STA bandwidth allocation algorithm. In the previous example, we

only compare the aggregate throughput without considering user fairness. Network

aggregate throughput and user fairness in bandwidth are usually two conflicting objectives

in bandwidth allocation algorithms [10]. For example, in the example network in Fig. 1,

we can get a maximum aggregate throughput of 90 Mbps by allowing only S1 and S2 to

transmit and starving S3 and S4, which is obviously extremely unfair to S3 and S4. The

IEEE 802.11 a/b/g MAC protocols implicitly enforce max-min throughput fairness among

the users within one cell in the long term, i.e. each user gets equal transmission opportunity

and achieves equal throughput [11]. Researchers have proposed other definitions of fair-

ness such as the proportional fairness [12] and the time-based fairness [13] to make better

use of the network resource. Instead of targeting at any single type of fairness as above, our

bandwidth allocation algorithm achieves a utility-based fairness which is flexible in

adjusting the trade-off between resource utilization efficiency and user fairness.

The rest of the paper is organized as follows. Section 2 introduces the related works and

highlights the unique features of our proposed scheme. In Sect. 3, we present our network

Fig. 1 An association control and channel assignment example
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model of WMNs. In Sect. 4, we present algorithm details of our network resource man-

agement framework for WMNs. Performance evaluation via simulations is given in

Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Works

The association control methods designed for WMNs in the literature are mostly heuristic-

based, such as [3, 6], where each STA makes association decision based on the association

metric of a MAP, which is a weighted sum of the estimated packet transmission time at the

access network and the backhaul network of the MAP. There are very few optimization-

based association control methods for WMNs. In [7], an optimal joint association, routing,

and max-min bandwidth allocation problem is formulated, but the authors still adopt a

heuristic association and routing approach to overcome the NP-hard problem, which makes

the solution much less optimal. [8] has not only formulated the optimal association

problems in WMNs but also proposed approximation algorithms together with theoretical

analysis on the approximation ratio. Unlike in WMNs, there are more works on the optimal

association control in WLANs. [4] and [5, 14] propose algorithms to find approximately

optimal association achieving max-min fairness and proportional fairness, respectively.

They first relax the integral association constraint and find an optimal fractional association

where each STA is allowed to associate with multiple APs. Then the fractional association

is rounded to an integral one through a bipartite-graph-based rounding algorithm. [15]

formulates a joint association control, rate control, and contention resolution optimization

problem and provides an approximation algorithm to solve the NP-hard problem. [16]

further improves [15] by incorporating channel assignment into the problem formulation.

Most of the above mentioned association control methods, except [15, 16] for WLANs,

assume carefully planned networks such that there is no interference between adjacent

cells, which is rarely the case in reality. Our association control algorithm adopt a

relaxation-and-rounding approach similar to that in [4, 5], but we take into consideration

the WMN wireless multi-hop backhaul constraint as well as the access network interfer-

ence between cells operating on the same channel. As far as we know, we are the first to

investigate optimal association control in WMNs taking inter-MAP interference and access

network channel assignment into consideration.

To the best of our knowledge, there are no previous works on the access network

channel assignment problem in WMNs. The research works for WMNs have been focusing

on the channel and radio assignment for the backhaul links [17]. On the other hand, the

access network channel assignment problem has been well studied for WLANs [9]. Least

Congested Channel Search (LCCS) [18] is a widely used channel selection method in the

current WLANs, in which each AP autonomously searches every channel and switches to

operate on the channel with the fewest number of STAs or the least amount of traffic. In

[19], each AP locally measures the interference power experienced on every channel and

switches to operate on a random channel according to a switching probability that is

computed based on an annealed Gibbs sampler technique. Graph colouring is another

classic approach for channel assignment. In [20], a heuristic vertex colouring algorithm

using the ‘‘degree of saturation’’ is introduced, where a vertex with the largest number of

differently coloured neighbours is chosen to be coloured in each iteration. [21] is a client-

driven approach where the algorithm repeatedly assigns each AP a channel such that the

3436 J. Yu, W.-C. Wong

123



number of conflict-free clients is maximized until that number cannot be improved any

more.

Instead of using the objectives such as the interference at the APs, the number of

coloured APs, or the number of conflicting clients as above that are implicitly related to

clients’ throughput, our channel assignment algorithm repeatedly invokes an optimal

bandwidth allocation procedure to iteratively improve the utility objective function value

which explicitly counts the bandwidth of each client. In addition, in the process of finding

the best channel for each MAP, we make use of a metric named ‘‘total-weighted-inter-

ference’’ that takes into consideration the load carried by the MAP; through that, the

interference at the good-backhaul MAPs can be reduced and the network capacity of the

entire WMN can be improved.

3 Network Model

We consider an infrastructure WMN that consists of STAs, MAPs, and a portal. One MAP

has two interfaces: one is the access interface that communicates with the STAs and

performs the AP functionality; the other is the backhaul interface that participates in the

formation of the wireless multi-hop backhaul. The portal connects the WMN with other

networks. We consider Internet traffic only, i.e. the STAs send (receive) packets to (from)

the Internet through the portal, as low-cost Internet access is the most common usage of a

WMN. All backhaul links operate on the same channel to maintain connectivity, while the

MAP access interfaces operate on different channels to reduce the inter-cell interference.

We assume that the backhaul links do not interfere with the access links, which can be

realized by letting them adopt different 802.11 standards or operate on different channels.

We assume that the wireless multi-hop backhaul routing graph is a tree topology with

the root at the portal. Such routing can be done by a proactive routing protocol such as

Hybrid Wireless Mesh Protocol (HWMP) working in the proactive mode [22], in which

each MAP finds its shortest path towards the portal. We assume that we know the trans-

mission rate of the MAP–MAP backhaul links and the MAP–STA access links.

We adopt a protocol-based transmission model where each node has a fixed transmis-

sion range and a fixed interference range. To take account of both upstream and down-

stream traffic, we consider two links conflicting with each other if either end of one link is

in the interference range of either end of the other link. Then we can construct a conflict

graph for the backhaul links and conflict graphs for the access links on different channels.

We make use of the concept of ‘‘clique of links’’ to model the concurrent transmission

constraint of links. A clique is a set of links that are in mutual conflict with each other, i.e.

at any time, only a single link within a clique is allowed to transmit. With the constructed

conflict graphs, we can find all the maximal cliques in the network using algorithms such

as the Bron–Kerbosch algorithm [23]. However, finding all the maximal cliques over the

entire network is NP-hard and exponential-time algorithms are not scalable for large

networks with thousands of links. Therefore we propose an efficient and effective heuristic

clique modeling method that is able to find a set of cliques that are very close to the true set

of maximal cliques. Our method looks for cliques locally in the subsets of links that are

carefully selected. For each subset of links, we apply the Bron–Kerbosch algorithm to find

local-maximal cliques. We will see in the simulation results in Sect. 5 that the performance

of the proposed method is almost identical to that of the exponential-time algorithm.
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Our method is efficient because the size of any subset of links in our model is signif-

icantly smaller than the total number of links in the network, which is true under our

assumption that the number of links that conflict with any given link is smaller than the

total number of links in the network. The assumption is reasonable because our method

targets at WMNs that are large enough to accomodate a multi-hop backhaul and in such

network it is usually possible to have concurrent transmission and not all the backhaul links

conflicting with any given link. When a WMN is small and the total number of links is not

very large, applying exponential-time algorithms over the entire network will not consume

extremely long time and heuristic methods like ours is not necessary.

We take the network in Fig. 2 as an example to illustrate how our clique modeling

method works. The set of backhaul links is fl1; l2; l3; l4g. The backhaul links have equal

length. The interference range of the MAPs, in the backhaul, is longer than the one-hop

distance and shorter than the two-hop distance. The set of all the maximal backhaul-link

cliques in the network is MCB ¼ ffl1; l2; l3g; fl2; l3; l4gg. In our modeling framework,

taking link l2 for example, we first find the set of links that are in conflict with link l2:

Lcflðl2Þ ¼ fl1; l3; l4g. Then we find cliques locally among the links in Lcflðl2Þ:
Kcflðl2Þ ¼ ffl1; l3g; fl3; l4gg. Including l2 itself, we get a set of local cliques at l2:

kðl2Þ ¼ ffl1; l2; l3g; fl2; l3; l4gg. Combining kðl2Þ with the local cliques at l1, l3, and l4, we

get a set of backhaul-link cliques KB that is identical with MCB.

The set of access links in Fig. 2 is fl11; l15; l22; l33; l44g. MAPM1,M2, andM3 operate on

ch1, while M4 operates on ch2. STA S5 is in the interference range of M3, while S1 is not.

The set of all the maximal access-link cliques in the network is

MCA ¼ ffl11; l15; l22g; fl15; l22; l33g; fl44gg. In our modeling framework, taking MAP M3

for example, we first find a set of interfering MAPs of M3: Mitf ðM3Þ ¼ fM1;M2g. Then we

find a set of MAP-cliques of M3 among the MAPs in Mitf ðM3Þ: Qitf ðM3Þ ¼ ffM1;M2gg.
For the MAP-clique q ¼ fM1;M2g; q 2 Qitf ðM3Þ, we generate an access-link clique

kðM3; qÞ ¼ fl15; l22; l33g. Combining the access-link cliques generated from the MAP-

cliques in Qitf ðM3Þ, we get a set of access-link cliques at M3: kðM3Þ ¼ ffl15; l22; l33gg.
Combining kðM3Þ with the cliques at M1, M2, and M4, we get a set of access-link cliques

KA that is identical with MCA. Next we give the details of our clique modeling method.

Backhaul-link Cliques Given the set of the backhaul links LB and the backhaul conflict

graph (BCG), we can find a set of backhaul-link cliques by finding a set of cliques locally

for each link l 2 LB. We first find the set of links that are in conflict with link l:

LcflðlÞ ¼ fl0 : l0 2 LB ^ BCGðl; l0Þ ¼ 1g;

where BCGðl; l0Þ ¼ 1 means link l and l0 are in conflict with each other. Then we can find

cliques among the links in LcflðlÞ using the Bron–Kerbosch algorithm:

Fig. 2 A clique modeling example
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KcflðlÞ ¼ fk ¼ fl0g : 8l01; l02 2 k : l01; l
0
2 2 LcflðlÞ ^ l01 6¼ l02 ^ BCGðl01; l02Þ ¼ 1g:

Including link l itself, we get a set of local cliques at l:

kðlÞ ¼ ffl [ kg : k 2 KcflðlÞg:

After combining and simplifying the local cliques of all the backhaul links, we finally get a

set of backhaul-link cliques

KB ¼ fkðlÞ : l 2 LBg:

Access-Link Cliques Given the set of MAPs M, the set of STAs S, the transmission

range TransR, the interference range IntR, and the locations of the MAPs and STAs, we

can find a set of access-link cliques by finding a set of MAP-cliques among the interfering

MAPs of each MAP i 2 M. We first find the set of MAPs that are within the interference

range of i:

MIRðiÞ ¼ fi0 : i0 2 M ^ disði0; iÞ\IntRg;

the set of STAs that are within the interference range of i:

SIRðiÞ ¼ fj : j 2 S ^ disðj; iÞ\IntRg;

and the set of STAs that are within the transmission range of i:

STRðiÞ ¼ fj : j 2 S ^ disðj; iÞ\TransRg;

where dis (,) is the distance between the two nodes. Given a channel assignment C ¼ fcig,
where ci is the channel assigned to MAP i 2 M, we can find two sets of interfering MAPs

of i. One is the set of MAPs that are within the interference range of i:

Mitf ;1ðiÞ ¼ fi0 : i0 2 M ^ ci0 ¼ ci ^ i0 2 MIRðiÞg;

the other is the set of MAPs that are outside the interference range of i, but have access

links interfering with i:

Mitf ;2ðiÞ ¼ fi0 : i0 2 MnMIRðiÞ ^ ci0 ¼ ci ^ ð9j : j 2 STRði0Þ ^ j 2 SIRðiÞÞg:

Combining the two, we get

Mitf ðiÞ ¼ Mitf ;1ðiÞ [Mitf ;2ðiÞ:

Applying the Bron–Kerbosch algorithm among the MAPs in Mitf ðiÞ, we can find a set of

MAP-cliques of i:

Qitf ðiÞ ¼ fq ¼ fi0g : 8i01; i02 2 q : i01; i
0
2 2 Mitf ðiÞ ^ i01 6¼ i02 ^ i01 2 MIRði02Þ ^ i02 2 MIRði01Þg:

For each MAP-clique q 2 Qitf ðiÞ, we generate an access-link clique:

kði; qÞ ¼ flij : j 2 Sg [ fli0j : i0 2 q \Mitf ;1ðiÞ; j 2 Sg [ fli0j : i0 2 q \Mitf ;2ðiÞ; j 2 SIRðiÞg;

where lij is the access link between MAP i and STA j. Then we can get a set of local

access-link cliques at i:
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kðiÞ ¼ fkði; qÞ : q 2 Qitf ðiÞg:

After combining and simplifying the local access-link cliques of all the MAPs, we finally

get a set of access-link cliques

KA ¼ fkðiÞ : i 2 Mg:

Table 1 summarizes some of the notations used in the paper. We use yki to indicate

whether MAP i’s backhaul path passes through the backhaul clique k, i.e. yki ¼ 1 if there

exists a link l 2 k such that l 2 pathðiÞ, where path(i) is the set of links that are on the

routing path between i and the portal. If yki ¼ 1, we use rki to denote the effective backhaul

link rate for i in k. rki is defined in (1), which represents the time consumed for transmitting

one bit of i’s traffic in k.

1

rki
¼

X

l:l2k^l2pathðiÞ

1

rl
ð1Þ

We use xij to indicate the association between MAP i and STA j. xij 2 f0; 1g for an integral
association where each STA is allowed to associate with only one MAP. xij=1 if j is

associated with i; otherwise 0. xij 2 ½0; 1� for a fractional association where each STA is

allowed to fractionally associate with multiple MAPs. In both cases, we have

8j 2 S :
P

i2M xij ¼ 1. We use bj to denote the bandwidth allocated to j, and bij to denote

the bandwidth allocated to j communicating with i in a fractional association. So we have

bj ¼
P

i2M bij and xij ¼ bij=bj. The outcome of our resource management framework is a

channel assignment vector fcig, an association matrix fxijg, and a bandwidth allocation

vector fbjg, which is denoted as (C, X, B).

Table 1 Notations

Symbols Semantics

M The set of all MAPs fig
S The set of all STAs fjg
CH The set of all non-overlapping channels fch1; ch2; :::; chN�CHg
X A STA–MAP association matrix fxijg
B A STA bandwidth allocation vector fbjg
C A channel assignment vector fcig
KB The set of all backhaul-link cliques

yki Indicating whether clique k is on MAP i’s backhaul path

rki The effective backhaul link rate of MAP i in clique k

rij The access link rate between MAP i and STA j

bij The bandwidth allocated to STA j to communicate with MAP i

Mitf ðiÞ The set of MAPs that have access links interfering with MAP i on the same channel

Qitf ðiÞ The set of maximal MAP-cliques among the MAPs in Mitf ðiÞ
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4 A Network Resource Management Framework for WMNs

Our resource management framework consists of three components: bandwidth allocation,

channel assignment, and association control. First, we formulate the optimal utility fair

bandwidth allocation problems. Then we introduce a joint channel assignment and band-

width allocation algorithm. Finally, we present an optimization-based association control

scheme as well as the complete resource management framework.

4.1 Utility-Based Bandwidth Allocation

The objective of our bandwidth allocation algorithm is to maximize the sum of the utility

of user bandwidth. The utility function we use is given in (2) and it was proposed in [24],

where bj is the bandwidth of STA j, and a is the parameter controlling the trade-off

between resource efficiency and user fairness. When a ¼ 0, the objective is to maximize

the network throughput, with no consideration in user fairness. As a increases, the

aggregate throughput decreases and the bandwidth allocation becomes fairer and fairer.

When a ¼ 1, the objective is proportional fairness. When a approaches infinity, absolute

fairness dominates and max-min fairness is the objective.

UaðbjÞ ¼
log bj if a ¼ 1

ð1� aÞ�1
bj

1�a if a 6¼ 1

(
ð2Þ

Our bandwidth allocation algorithm is named Utility-based Bandwidth allocation (UBa)

and elaborated in Fig. 3. Given the network topology and a channel assignment C, we can

construct the set of backhaul-link cliques, KB, and the set of local maximal cliques of the

interfering MAPs, Qitf ðiÞ, for each MAP i. If we are given an integral association matrix X,

we formulate an optimization problem named Integral Problem (IntP) as in (3), where each

STA is allowed to associate with one MAP only. By solving IntP, we get an integral

bandwidth allocation vector fbjg. On the other hand, if the integral association is unknown,
we formulate another optimization problem named Fractional Problem (FracP) as in (4),

where each STA is allowed to fractionally associate with multiple MAPs. By solving

FracP, we get a fractional bandwidth allocation matrix fbijg.

IntP : Max
X

j2S
UaðbjÞ ð3aÞ

s:t: 8j 2 S :
X

i2M
xij¼ 1 ð3bÞ

8j 2 S :
X

i2M
xij

bj

rij
� 1 ð3cÞ

8k 2 KB :
X

i2M

yki

rki

X

j2S
xijbj � 1 ð3dÞ
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8q 2 Qitf ðiÞ; i 2 M :
X

j2S
xij

bj

rij
þ

X

i0:i02q^i02MIRðiÞ

X

j2S
xi0j

bj

ri0j
þ

X

i0:i02q^i0 62MIRðiÞ

X

j2SIRðiÞ
xi0j

bj

ri0j
� 1

ð3eÞ

8i 2 M; j 2 S : xij 2 f0; 1g; bj � 0 ð3fÞ

FracP : Max
X

j2S
UaðbjÞ ð4aÞ

s:t: 8j 2 S : bj ¼
X

i2M
bij ð4bÞ

8j 2 S :
X

i2M

bij

rij
� 1 ð4cÞ

8k 2 KB :
X

i2M

yki

rki

X

j2S
bij � 1 ð4dÞ

8q 2 Qitf ðiÞ; i 2 M :
X

j2S

bij

rij
þ

X

i0:i02q^i02MIRðiÞ

X

j2S

bi0j

ri0j
þ

X

i0:i02q^i0 62MIRðiÞ

X

j2SIRðiÞ

bi0j

ri0j
� 1

ð4eÞ

8i 2 M; j 2 S : bij � 0 ð4fÞ

Constraint (3b) states that each STA is associated with one MAP only. (3c) states that

the total transmission time of one STA is less than the unit time. (3d) states that the total

transmission time of the backhaul links in one backhaul clique is less than 1, where the

Algorithm UBa
Given: the network topology, the backhaul routing tree, the backhaul link set LB

Input: (C,X)

1. Construct a backhaul link conflict graph BCG
2. Find Lcfl(l) and Qcfl(l) for each link l ∈ LB

3. Find KB, {yki}, {rki}
4. for each MAP i ∈ M do

(a) Find MIR(i), SIR(i), STR(i)
(b) Find Mitf,1(i), Mitf,2(i), and Mitf (i)
(c) Construct a conflict graph for MAPs in Mitf (i)
(d) Find Qitf (i)
end for

5. if X = 0 then
Formulate and solve the problem FracP
return the fractional bandwidth allocation solution {bij}

else
Formulate and solve the problem IntP
return the integral bandwidth allocation solution {bj}

end if

Fig. 3 Algorithm UBa
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traffic load carried by the clique originates from all the STAs whose associated MAP

backhaul paths towards the portal pass through the clique. (3e) states that the total

transmission time of the access links belonging to one access clique is less than 1. By

introducing the fractional bandwidth allocation matrix fbijg, FracP is derived from IntP by

replacing bj with
P

i2M bij and replacing xij � bj with bij.

4.2 Joint Channel Assignment and Bandwidth Allocation

We propose a channel assignment scheme, named Joint Channel assignment and Band-

width allocation (JCaBa), which iteratively improves channel assignment and network

performance by invoking the bandwidth allocation algorithm UBa and making use of an

interference metric that measures the interference experienced by a MAP as well as the

interference caused by the MAP to the others. Algorithm JCaBa is given in Fig. 4.

Given a channel assignment C, we can get an optimal fractional bandwidth allocation

matrix B ¼ fbijg by applying algorithm UBa with input (C, 0). Denote the utility objective

function value of B as futilityðBÞ. For each MAP i 2 M, denote the total traffic to be carried

by i for its associated STAs as loadself ðiÞ, i.e. self-load of i:

Algorithm JCaBa

C∗ ← random channel assignment; B∗ ← UBa(C∗, 0); Mallocated ← ∅; change ← 0
Load∗

self ← CalculateLs(B∗) {sort Load∗
self in non-increasing order}

n ← 1 {let i(n) represent the nth MAP in the sorted vector Load∗
self }

while n ≤ |M | do
if i(n) /∈ Mallocated then

c0 is the current channel of i(n) in C∗
for c ∈ CH\c0 do

change the channel of i(n) to c, denote the new channel assignment as Cc

loadc ← CalculateWI(Cc , B∗, i(n))
end for
loadmin ← min{loadc : c ∈ CH\c0}, denote the corresponding channel assign-
ment as C
B ← UBa(C ,0)
Loadself ← CalculateLs(B )
if futility(B ) > futility(B∗) then

{assign i(n) with the new channel}
C∗ ← C ; B∗ ← B ; Load∗

self ← Loadself ; n ← 1; change ← 1
else

n ← n+ 1 {keep the channel of i(n) unchanged}
end if
Add i(n) to Mallocated

else
n ← n+ 1 {the channel of i(n) has been assigned already}

end if
if n = |M | + 1 and change = 1 then

n ← 1; change ← 0;Mallocated ← ∅
end if

end while
return C∗ and futility(B∗)

Fig. 4 Algorithm JCaBa
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loadself ðiÞ ¼
X

j2S
bij ð5Þ

For each MAP i0 2 Mitf ðiÞ, i.e. i0 is one of the interfering MAPs of i, denote the traffic that

is carried by i0 and interferes with i as loaditf ði; i0Þ, i.e. the interference-load to i from i0:

loaditf ði; i0Þ ¼

P
j2S

bi0j if i0 2 Mitf;1ðiÞ
P

j2SIRðiÞ
bi0j if i0 2 Mitf;2ðiÞ

8
><

>:
ð6Þ

Denote the total self-load of i and its interfering MAPs in Mitf ðiÞ as loadt�self ðiÞ:

loadt�self ðiÞ ¼ loadself ðiÞ þ
X

i02Mitf ðiÞ
loadself ði0Þ ð7Þ

We define a metric of total-weighted-interference for i, denoted as loadt�w�itf ðiÞ. The
metric is formulated in (8) and consists of two parts. The first part is the total interference

experienced by i, weighted by loadself ðiÞ=loadt�self ðiÞ. The second part is the total inter-

ference to MAPs in Mitf ðiÞ caused by i, weighted by loadself ði0Þ=loadt�self ðiÞ for each

i0 2 Mitf ðiÞ. By weighting a MAP with its self-load divided by the total load, the inter-

ference experienced by the heavy-self-load MAPs contributes more to the total interfer-

ence. As introduced in Sect. 1, in WMNs, it is preferred that the good-backhaul MAPs

carries more traffic load. Therefore, by reducing the total-weighted-interference metric

defined in (8), we reduce the interference experienced by the good-backhaul MAPs and

increase the network capacity.

loadt�w�itf ðiÞ ¼
loadself ðiÞ
loadt�self ðiÞ

�
X

i02Mitf ðiÞ
loaditf ði; i0Þ þ

X

i02Mitf ðiÞ

loadself ði0Þ
loadt�self ðiÞ

� loaditf ði0; iÞ ð8Þ

In Fig. 4, the function CalculateLs(B) calculates the self-load vector Loadself ¼
floadself ðiÞg using (5). The function CalculateWI(C, B, i) calculates the total-weighted-

interference loadt�w�itf ðiÞ for MAP i using (8), when the channel assignment is C and the

bandwidth allocation is B. We sort the MAPs in decreasing order of their self-load so that

the MAPs carrying heavier load are assigned channels first. In one round of the while-loop,

the sorted MAPs, one by one from the beginning, decide to stay in the current channel or

switch to a new channel. In order to make that decision, a MAP first searches for the

channel with the least total-weighted-interference; denote the corresponding channel

assignment and bandwidth allocation as C0 and B0, respectively, while the current channel
assignment and bandwidth allocation are C� and B�. If the objective function value of the

new bandwidth allocation, futilityðB0Þ, is larger than that of B�, the MAP switches to the new

channel; otherwise, it stays with the current channel. The algorithm terminates if no MAP

switches channel in the last round of the while-loop.

As a channel change is allowed only if that change can improve the global objective

function value, the objective function value monotonically increases while the algorithm is

executed. Because the objective function value is upper bounded by the optimal solution,

the JCaBa algorithm will converge eventually. At the time of convergence, no MAP can

find a new channel assignment that can improve the network performance globally. The

convergence speed depends on the number of MAPs affected by one channel change. If the

MAP density is low or the number of orthogonal channels in the network is large, a small

number of channel changes will occur in each while-loop and the algorithm will converge
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fast. In our simulations, the algorithm always converges within few rounds of the while-

loop.

Let us revisit the network in Fig. 1. Suppose we are given a channel assignment C0 ¼
fch1; ch2; ch1g that is produced by a vertex colouring algorithm. We demonstrate how the

JCaBa algorithm improves C0 and finds a better channel assignment. With C0, the best

aggregate throughput is 62 Mbps that is obtained when S4 associates with M3, and the

corresponding self-load vector is {18, 36, 8}. In the first round of the while-loop: M2

examines fch1; ch1; ch1g, for which the aggregate throughput is 28.5 Mbps, and decides to

stay with ch2; thenM1 examines fch2; ch2; ch1g, for which the best aggregate throughput is
57 Mbps, and decides to stay with ch1; finally, M3 examines fch1; ch2; ch2g, for which the

aggregate throughput is 74 Mbps, and decides to switch to ch2. In the second round of the

while-loop, as no MAP can find a better channel assignment, the algorithm terminates and

returns the channel assignment fch1; ch2; ch2g.

4.3 The Resource Management Framework for WMNs

We name our resource management framework Joint Channel assignment, Bandwidth

allocation and Association control algorithm (JCBA), which is given in Fig. 5. It has been

shown in [25] that channel assignment should be conducted prior to association control for

better network performance. It makes sense as channel assignment determines the inter-

ference between cells at a large scale and should be performed less frequently compared to

association control. Therefore, the first step of JCBA is to determine a proper channel

assignment by applying the JCaBa algorithm a few times with different initial random

channel assignments. The reason to do that is JCaBa locally searches for better channels

and may not generate a global optimal channel assignment in a single run. The channel

assignment that achieves the largest objective function value is selected and denoted as C0.

The second step of JCBA is to generate an integral association, denoted as X̂0, by
applying an association control algorithm, named optimization-based Association Control

(oAC). The first step of oAC is to find a fractional bandwidth allocation, B0, by applying

the UBa algorithm with ðC0; 0Þ as input. Then we convert B0 to a fractional association

matrix X0 according to the equation

x0ij ¼ b0ij=
X

i2M b0ij:

Algorithm JCBA

1. Channel Assignment: Apply the JCaBa algorithm a few times and select the best
channel assignment C .

2. Association Control: Generate an integral association X̂ by applying the oAC
algorithm:
(a) Get a fractional bandwidth allocation B using the algorithm UBa(C , 0).
(b) Generate a fractional association X from B .
(c) Round X to X̂ by the randomization rounding.

3. Bandwidth Allocation: Get an integral bandwidth allocation B̂ using the algorithm
UBa(C , X̂ ).

(C , X̂ , B̂ ) is the output

Fig. 5 Algorithm JCBA
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In the third step of oAC, X0 is rounded to the integral solution X̂0, via randomization

rounding. Denote the set of MAPs that have fractional association with STA j in X0 as Mj,

i.e.Mj ¼ fi : b0ij [ 0g. By the randomization rounding, j randomly selects one of the MAPs

in Mj to associate with.

In the final step of JCBA, we get an integral bandwidth allocation, denoted as B̂0, by

applying the UBa algorithm with ðC0; X̂0Þ as input. Finally, ðC0; X̂0; B̂0Þ is the output of the
JCBA algorithm.

JCBA is a centralized optimization-based resource management framework. Centralized

algorithms generally outperform distributed algorithms as the central controller is aware of

the whole network condition and optimization algorithms can be implemented. In the

centralized algorithms, it is assumed that the central controller is aware of the entire

network topology as well as the achievable link rates. It is also assumed that these

information can be shared with the central controller by the MAPs and STAs efficiently

and reliably.

The MAPs in WMNs usually have minimal mobility and form a relatively stable multi-

hop wireless backhaul. Therefore the location information of the deployed MAPs can be

assumed to be available through site maps or site survey. When a STA joins the network, it

will first scan each channel and receive beacon messages from the MAPs in the vicinity. If

the STA reports the received signal strength of the beacons of the nearby MAPs to the

central controller, the central controller may infer the location of the STA through any

localization techniques. With the location information of the MAPs and STAs, the central

controller can construct a protocol-based network model and an interference map to model

the concurrent transmission constraints in the network.

For centralized algorithms, we would expect more overhead than in the distributed

algorithms as the MAPs and STAs need to report their link rates, received signal strength in

the vicinity, and association status to the central controller and the central controller needs

to distribute its control messages to the MAPs. There will be overhead due to control

message exchange. Depending on how fast the network condition changes, the amount of

the overhead would be different. If the network is stable, the amount of control messages

would be small.

Besides overhead, another concern with centralized algorithms is computational com-

plexity. In the JCBA algorithm, the most time consuming step is executing the channel

assignment algorithm, JCaBa. The good news is that instead of frequently conducting

JCaBa, most of the time we only need to conduct the association control algorithm (oAC)

for three reasons. Firstly, a channel switch at a MAP incurs channel switching at all of its

associated STAs, while an association change requires action at one STA only, i.e.

invoking JCaBa interrupts more users. Secondly, oAC is much more effective in improving

the network performance than JCaBa, which will be demonstrated by our simulation

results. Thirdly, oAC is more time efficient as only one convex problem needs to be solved.

Though the oAC algorithm is time efficient, it should be triggered only when it is

necessary to do so. Excessive triggering would cause unnecessary interruption to normal

communication and should be avoided. On the other hand, inadequate triggering may miss

network dynamics and result in inferior performance. oAC should be triggered when the

network condition has significantly changed, e.g. mass joining/leaving of MAPs/STAs, or

blocked/broken backhaul paths. oAC should not be triggered by minor network changes

such as a single link rate change. The triggering mechanism could be periodic-time-based

or based on real time network condition measurement.
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5 Performance Evaluation

5.1 Simulation Setting

We present simulation results for a WMN that consists of 20 MAPs, 100 STAs, and 1

portal. The MAPs are randomly placed in a square field of size 250 m � 250 m. The portal

is located at the centre of the lower-left quadrant. We simulate two user topologies:

uniform topology where the STAs are randomly placed in the field; hotspot topology where

the STAs are distributed in two randomly located hotspots of radius 50 m each. We

provide network topology examples for the two user topologies in Fig. 6, where red

diamonds, big green circles, and small yellow circles represent the portal, the MAPs, and

the STAs, respectively; the backhaul links are displayed in red lines.

Assuming a transmitter power of 17dBm, a receiver noise power of -80dBm, a Clear

Channel Access (CCA) threshold of -76dBm, and adopting a log-distance path loss

model, we simulate a protocol-based network model with a transmission range of 100 m

and an interference range of 150 m using Matlab. An access link rate model is constructed

and given in Table 2, where the required minimum Signal-to-Noise Ratio (SNR) is taken

from [26]. We simulate a WMN such that the access networks operate on 4 non-over-

lapping 20 MHz channels in the 2.4 GHz frequency band, while the backhaul network

operates on a single channel in the 5 GHz frequency band. As the wireless backhaul carries

the aggregate traffic of the entire network and the MAPs are more powerful than the STAs,

the backhaul link rates are set to be 16 times of the access link rates, which can be achieved

by applying more spatial streams and adopting a wider-bandwidth backhaul channel.

The backhaul routing tree rooted at the portal is constructed using the 802.11s HWMP

routing protocol. We model the transmission constraints at the backhaul and the access

networks using the local-clique-based modeling methods introduced in Sect. 3. We have

done simulation with other configurations, such as different MAP/portal topologies,
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Fig. 6 Network topology examples. a Uniform topology, b Hotspot topology

Table 2 Link rate model for access links

Rate (Mbps) 6 12 18 24 36 48 54 60

Min. SNR (dB) 5 7 9 13 17 20 22 23

Max. path length (m) 100 89 79 63 50 42 38 35
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different number of STAs, and different backhaul/access link rate ratios; their results are

qualitatively similar to those we are presenting.

We measure the performance of different algorithms in terms of aggregate throughput,

per-user bandwidth, and Jain’s fairness index [27]

F ¼
X

j2S bj

� �2

= Sj j �
X

j2S b
2
j

� �
:

The index measures the fairness of a bandwidth allocation fbjg and ranges from 0 to 1.

F equals 1 when all STAs have equal bandwidth and decreases as the bandwidth vector

deviates from the ideal equal-bandwidth vector.

5.2 Performance of the Local-Clique-Based Modeling Method

A backhaul clique modeling method finds the set of backhaul-link cliques, KB, which is

required for formulating the backhaul transmission constraint (3d) and (4d) in the band-

width allocation algorithm UBa. We compare the performance of the following backhaul

clique modeling methods:

• local-BC our heuristic backhaul-link clique modeling method that constructs KB by

finding a set of backhaul-link cliques locally at each link l 2 LB.

• o-BMC optimal clique modeling method that finds all the backhaul maximal cliques in

the network in exponential time.

• a-BC a heuristic clique modeling method used in [7] that approximates a backhaul

maximal clique by the set of conflicting links of a backhaul link, i.e.

KB ¼ ffLcflðlÞ [ lg : l 2 LBg:

An access clique modeling method finds a set of access-link cliques for each channel,

which is required for formulating the access network transmission constraints in UBa. We

compare the performance of the following access clique modeling methods:

• local-AC our heuristic access-link clique modeling method that constructs the access

transmission constraints (3e) and (4e) by finding a set of MAP-cliques locally at each

MAP i 2 M.

• o-AMC optimal clique modeling method that finds all the access maximal cliques in the

network in exponential time. Accordingly, constraints (3e) and (4e) are replaced by

(9a) and (9b), respectively, where KAðcÞ is the set of all access cliques on channel c.

• a-AC a heuristic access clique approximation method that approximates an access

clique by the links of the MAPs interfering with a MAP, i.e.

KA ¼ ffflijg [ fli0j : i0 2 MIRðiÞ ^ ci0 ¼ cigg : i 2 Mg:

Accordingly, constraints (3e) and (4e) are replaced by (10a) and (10b), respectively.

8k 2 KAðcÞ; c 2 CH :
X

lij2k
xij

bj

rij
� 1 ð9aÞ

8k 2 KAðcÞ; c 2 CH :
X

lij2k

bij

rij
� 1 ð9bÞ
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8i 2 M :
X

j2S
xij

bj

rij
þ

X

i0:i02MIRðiÞ^ci0 ¼ci

X

j2S
xi0j

bj

ri0j
� 1 ð10aÞ

8i 2 M :
X

j2S

bij

rij
þ

X

i0:i02MIRðiÞ^ci0 ¼ci

X

j2S

bi0j

ri0j
� 1 ð10bÞ

Figure 7 depicts the bandwidth allocation results of the UBa algorithm with different

transmission constraints that are obtained from the clique modeling methods. The results

presented are averaged over 50 runs. In each run, the STA location is different and we sort

the STAs in non-decreasing order of their allocated bandwidth. So the bandwidth of a STA

indexed x in the figure indicates the average bandwidth of the x-th lowest bandwidth in

each run. We compare the backhaul (access) clique modeling methods, while using o-

AMC (o-BMC) as the access (backhaul) clique modeling method. The a parameter in the

UBa algorithm is set to 5. As o-BMC and o-AMC are able to find all the maximal cliques

in the network, their performance results are the benchmark for the other two heuristic

methods. The closer a modeling method’s performance is to the benchmark, the better the

method is.

In Fig. 7a, local-BC and o-BMC have identical results, indicating that local-BC is able

to find all the backhaul maximal cliques in the simulated networks. In contrast, the results

of a-BC clearly deviate from the benchmark. This is because in a-BC, links that are in

conflict with the same link but do not interfere with each other are prohibited from

concurrent transmission, while they are able to do so actually.

In Fig. 7b, the curve of local-AC almost coincides with that of o-AMC. The reason for

the small difference is that local-AC is based on MAP-cliques and may miss few links that

should have been included in the access-link cliques, resulting in a slightly loosened access

network transmission constraint. The results of a-AC seriously deviate from the bench-

mark. a-AC prohibits MAPs that interfere with one common MAP but do not interfere with

each other from concurrent transmission, even though that would not cause any collision.

o-BMC and o-AMC search for maximal cliques over the entire network using expo-

nential time algorithms and can be very time consuming for large networks. On the other

hand, our local-clique-based methods, local-BC and local-AC, locally search for cliques

where the number of variables is limited and much smaller. In addition, as seen in Fig. 7,

our methods achieve performance that is very close to the benchmark. Therefore, we can

say that the local-clique-based modeling methods are efficient and effective.

(a) (b)

Fig. 7 Performance of the clique modeling methods. a Backhaul clique, b Access clique
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5.3 Performance of JCBA

In the JCBA algorithm, the channel assignment is done by the JCaBa algorithm and the

association control is done by the oAC algorithm. We compare the bandwidth allocation

results of the algorithms in JCBA against other state-of-the-art channel assignment and

association control schemes.

We compare the following channel assignment schemes:

• VC vertex colouring algorithm DSATUR [20] that is introduced in Sect. 2.

• LCCS least congested channel search where each MAP searches for the channel with

the fewest number of STAs. If the association is changed due to some channel changes,

repeat the process of LCCS and association control until reaching convergence.

• JCaBa joint channel assignment and bandwidth allocation algorithm that is used in the

first step of JCBA.

We compare the following association control schemes:

• SS strongest signal, i.e. a STA associates with the MAP from which the received signal

strength is the highest.

• CL cross-layer association metric [3]. The total association cost is a weighted sum of

the access cost and the backhaul cost, which reflects the estimated amount of time

consumed by a successful end-to-end packet transmission.

• oAC optimization-based association control algorithm that is used in the second step of

JCBA.

Figure 8 depicts the per-STA bandwidth performance of six combinations of channel

assignment and association control schemes under uniform user topology and hotspot user

topology; Table 3 gives the corresponding numerical results of the aggregate throughput

and Jain’s fairness index. Under the same channel assignment done by the VC algorithm,

we compare the performance of the association control schemes. The performance of CL is

slightly better than that of SS, because CL considers not only the access network condition

but also the backhaul condition. As a result, CL has more STAs associated with the good-

backhaul MAPs and makes better use of the network resource. However, due to the nature

of heuristic algorithms, CL has no optimization attempt and it has no consideration in the

utility objective when making association decision. Therefore, it is as expected that CL

significantly underperforms oAC in terms of both throughput and fairness. Under the

hotspot topology, the bandwidth allocation in SS and CL are very unfair because too many

STAs associate with the hotspot MAPs and the STAs associated with the non-hotspot

MAPs are allocated with excessive bandwidth. In contrast, oAC is able to achieve very fair

user bandwidth allocation no matter what the user topology is.

Using oAC as the association control algorithm, we compare the performance of the

channel assignment schemes. In Fig. 8 and Table 3, it is clear that JCaBa achieves the best

performance in the user bandwidth as well as the aggregate throughput. JCaBa significantly

outperforms VC. VC equally weighs each MAP regardless of the MAP load. In contrast, in

JCaBa, the interference experienced by the good-backhaul MAPs contributes more to the

total interference, and it is minimized with priority. As JCaBa increases the capacity of the

good-backhaul MAPs, more STAs can associate with these MAPs, which further improves

the network resource utilization efficiency. Like JCaBa, LCCS also outperforms VC. The

reason is that, by LCCS, the poor-backhaul MAPs will avoid the channels of the heavy-

loaded good-backhaul MAPs, resulting in less interference at the good-backhaul MAPs and

higher network capacity. JCaBa’s performance is better than LCCS’s because JCaBa uses a
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(a)

(b)

Fig. 8 Performance of the channel assignment and association control schemes. a Uniform topology,
b Hotspot topology

Table 3 Aggregate throughput and fairness index of the channel assignment and association control
schemes

VC-SS VC-CL LCCS-CL VC-oAC LCCS-oAC JCaBa-oAC

Uniform

Throughput 195.70 203.45 207.69 229.43 234.61 238.40

Fairness 0.969 0.958 0.970 0.983 0.982 0.984

Hotspot

Throughput 190.01 196.03 202.02 209.38 218.81 224.31

Fairness 0.815 0.811 0.940 0.986 0.990 0.982
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more comprehensive load-weighted interference metric and bonds with the optimal asso-

ciation control more closely.

Comparing the channel assignment and association control schemes in Fig. 8, it is

noticed that the performance improvement of oAC over SS/CL is much more significant

than that of JCaBa over VC/LCCS. In other words, the performance improvement of the

JCBA algorithm is mainly contributed by the association control algorithm, rather than the

channel assignment algorithm. This finding is consistent with that in [16] for WLANs. That

is one of the reasons why oAC should be conducted more frequently than JCaBa, which is

discussed in Sect. 4.3.

As it is NP-hard to find the optimal channel assignment for comparison, we measure the

performance improvement of JCaBa by varying the number of the non-overlapping

channels available in the access networks, and the results are given in Table 4. It is

interesting to notice that, when the number of channels is 4 or 5, the throughput increment

of JCaBa over VC almost equals the throughput increment that would be gained by adding

one more channel to VC, i.e. JCaBa-4CH : VC-5CH = 238.4 : 239.7 and JCaBa-5CH : VC-

6CH = 249.1 : 249.7. In other words, the channel utilization efficiency of JCaBa is about

20–25% higher than that of VC.

In Fig. 9, we compare the aggregate throughput of the 4 channel assignment algorithms

as the number of non-overlapping channels increases from 3 to 10. In the Random scheme,

we select the best channel assignment out of 10 random channel assignments. We can see

that the performance improvement of our JCaBa algorithm over the Random scheme en-

larges as the number of channels increases, which demonstrates the effectiveness of our

method in reducing the interference at the good-backhaul MAPs with priority. The per-

formance advantage of the JCaBa algorithm over the VC algorithm shrinks as the number

of channels increases. That is because when the number of non-overlapping channels is

large enough, the VC algorithm will be able to find channel assignments such that all

adjacent MAPs are assigned with different channels and inter-cell interference can be

eliminated. However, in reality, as the channel bandwidth becomes larger and larger, and

more and more APs/MAPs are deployed, it is harder and harder to find so many non-

overlapping channels. The advantage of JCaBa over LCCS is quite consistent as both of

them take the MAP load into consideration.

The JCaBa results presented are based on the best of 10 runs of the JCaBa algorithm

with different random initial channel assignments. In each run, when the number of

channels is 4, 3.97 while-loops are conducted on average, with a standard deviation of

1.22. In each while-loop, Mj j, which is 20 in our simulation, FracP convex problems are

solved. So the JCaBa algorithm terminates within a few rounds of convex problem solving.

Fig. 10 depicts the average number of while-loops conducted in the JCaBa algorithm

versus the number of non-overlapping channels in the network. It is clear that when there

are more non-overlapping channels, a fewer number of while-loops are conducted before

Table 4 Throughput performance of the channel assignment schemes

3-CH 4-CH 5-CH 6-CH

VC 214.20 229.43 239.76 249.76

LCCS 216.88 234.39 245.23 252.77

JCaBa 221.81 238.40 249.12 258.59
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convergence. That demonstrates that the JCaBa algorithm converges faster in a network

where a MAP’s channel change has less impact on the other MAPs as we have discussed in

Sect. 4.2.

Besides the simulation results for the networks of 20 MAPs and 100 STAs presented

above, we have also conducted simulation for networks of higher node density, where 40

MAPs and 200 STAs are randomly located in a square field of the same size as above. The

numerical results are given in Table 5. In the higher density networks, all the schemes

achieve better performance, and JCBA outperforms the other schemes more significantly.

That can be explained from two aspects. Firstly, the link rates are higher due to shorter

inter-node distances. The second is more important that with more MAPs available in the

Fig. 9 Performance of the channel assignment algorithms

Fig. 10 Number of while-loops conducted
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vicinity, a STA has more opportunities to associate with a good-backhaul MAP, which can

be better utilized by oAC to find a better association. However, the performance

improvement of JCaBa over VC/LCCS is not as significant as before, which can also be

explained from two aspects. Firstly, due to the high node density, the interference at the

good-backhaul MAPs cannot be eliminated or significantly reduced no matter how

effective a channel assignment scheme is. Secondly, by oAC, a lot of STAs are already

associated with the good-backhaul MAPs; so even though JCaBa can reduce the inter-

ference at the good-backhaul MAPs, there would not be many more STAs switching to

associate with these MAPs.

Finally, we take a look at the performance of the utility-fair bandwidth allocation

algorithm UBa. Figure 11a shows the aggregate throughput and Jain’s fairness index

results when the fairness control parameter a is varied from 0.5 to 4. It is clear that as a
increases, the aggregate throughput deceases and the fairness index increases. Figure 11b

depicts the per-STA bandwidth results. It is obvious that with a larger a, the line is flatter,
which indicates a fairer bandwidth allocation. With a smaller a, the line is steeper and the

area below the line is larger, which indicates a less fair bandwidth allocation and higher

aggregate throughput.

Note that the fairness index here reflects the fairness in terms of user bandwidth. There

are also other definitions of fairness, such as the fairness in user transmission time. A

proper a value should be determined by the network designer/operator, so that the desired

fairness can be enforced. As a becomes larger and larger, we get better and better fairness

in user bandwidth at the expense of lower and lower network resource utilization

Table 5 Performance for the networks of higher node density

VC-SS VC-CL LCCS-CL VC-oAC LCCS-oAC JCaBa-oAC

Uniform

Throughput 225.09 244.64 245.38 288.40 291.68 295.64

Fairness 0.983 0.981 0.981 0.988 0.986 0.985

Hotspot

Throughput 232.80 239.21 247.98 270.20 277.04 282.02

Fairness 0.923 0.837 0.975 0.992 0.991 0.991

(a) (b)

Fig. 11 Performance of UBa with different a value. a Aggregate throughput and fairness index, b Per-STA
bandwidth
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efficiency. It is interesting to notice that in Fig. 11b, as a increases, the bandwidth of the

low-bandwidth STAs on the left, which is about 60% of the entire STAs, slightly

decreases, while the bandwidth of the high-bandwidth STAs on the right, which is the rest

40% of the STAs, dramatically increases. So it might be a good idea to select a smaller a.

6 Conclusion

In this paper, we have proposed a network resource management framework, named

JCBA, for WMNs, which jointly considers channel assignment, association control, and

bandwidth allocation. The JCBA framework is composed of three components: a utility-

based bandwidth allocation algorithm that is flexible in adjusting the trade-off between

resource utilization efficiency and user fairness in bandwidth; a channel assignment

algorithm that can effectively increase the network capacity by reducing the interference at

the good-backhaul MAPs; and an optimization-based association control algorithm that

finds approximately optimal association solutions such that the network capacity can be

further improved by letting more STAs associate with the good-backhaul MAPs. We have

demonstrated the superior performance of the proposed algorithms through simulations

with various network topologies and conditions.
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