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Abstract In order to construct efficient public-key encryption scheme that is secure

against adaptive chosen-ciphertext attacks (CCA), an efficient signature scheme and an

identity-based encryption (IBE) scheme from the learning with errors over rings are pre-

sented firstly in this paper, whose security are reducible to the hardness of the shortest

vector problem in the worst case on ideal lattices. Secondly, a CCA-secure public key

cryptosystem is constructed on the basis of the IBE and signature proposed above. The

efficiency analysis indicates the proposed signature and encryption schemes are much more

efficient than correlative cryptosystems. The security analysis shows that the IBE

scheme is secure against chosen-plaintext attacks, and the public-key encryption scheme is

CCA-secure in the random oracle model.
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1 Introduction

Lattice-based cryptographic constructions hold a great promise for cryptography, as they

enjoy very strong security proofs, efficient implementations and great simplicity. Fur-

thermore, lattice-based cryptography is believed to be secure against quantum computers.

Ajtai and Dwork [1] constructed a public-key cryptosystem whose security is based on the

worst-case hardness of a lattice problem, which was the first of its kind admitting a proof of

security based on worst-case hardness assumptions on lattice problems, however, the

cryptosystems is quite inefficient. The first version of the cryptosystem together with a

security proof stemmed from a work of Regev [2], who proposed a very natural inter-

mediate problem called learning with errors (LWE) and proved that it is at least as hard as

worst-case hardness problems under a quantum reduction. Subsequently Peikert [3] gave a

classical reduction from variants of the shortest vector problem to corresponding versions

of the LWE problem and constructed a chosen ciphertext attack (CCA) secure public-key

encryption scheme with a much simpler description based on the LWE problem, but whose

public key size, private key size and expansion are large, which leads to its encryption

efficiency is not high.

Since the LWE problem has been put forward, it has proved to be versatile for

encryption schemes, serving as the basis for secure lattice-based encryption under various

cases. Besides its first application in a public-key cryptosystem [2], it has also been applied

to identity-based encryption [4, 5], hardness of learning results relating to half spaces [6],

and others [7–9], however, the efficiency of the above schemes are not high enough. In

order to resolve the intrinsic inefficiency, Lyubashevsky et al. [10] proposed LWE problem

over rings (R-LWE) and proved that the R-LWE distribution is pseudorandom, assuming

that the worst-case problems on ideal lattices are hard for polynomial-time quantum

algorithms.

R-LWE problem has a relatively simpler algebraic structure, which can be used to

construct many kinds of cryptographic schemes, such as digital signature [11], encryption

[12–14], etc. Literation [11] proposes an efficient signature scheme from the R-LWE

problem, which avoids sampling from discrete Gaussians and has the characteristics of the

even simpler description. Based on the R-LWE problem, [12] and [13] present a fully

homomorphic encryption scheme and a CPA-secure encryption scheme respectively, and

[14] proposes a CCA-secure public key encryption from the same difficulty assumption.

Compared to the corresponding schemes based on the LWE problem, the above

scheme has obvious improvement in efficiency. Here we mainly focuses on CCA-secure

encryption from R-LWE.

Security against adaptive chosen-ciphertext attacks (CCA) [15] is a strong and useful

notion of security for public-key encryption schemes used in practice, where adversary can

request decryption oracle under the limitation that it may not request the decryption of

challenge ciphertext itself. This security level is appropriate for encryption schemes used

in the presence of active attackers who may potentially modify messages in transit.

However, only a few approaches are known for constructing CCA-secure encryption

schemes. Naor [16] firstly achieved non-adaptive chosen-ciphertext security, later extended

to the case of adaptive chosen-ciphertext security by Dolev [15] using as building blocks

any CPA-secure encryption scheme along with any non-interactive zero-knowledge proof

system for all of NP [17]. Instead of using the approach in previous schemes, Boneh [18]

put forward a new approach for constructing CCA-secure encryption schemes, which is the

approach adopting in this paper. Later, Peikert [3] firstly constructed a very natural LWE-
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based CCA-secure cryptosystem, which not only provides a different alternative to tra-

ditional constructions but also possesses the advantages of a much simpler description,

analysis and tighter underlying approximation factors, as the scheme is designed based on

the LWE problem, its efficiency is low, and whose public key and private key size is large.

Yang et al. [14] proposed a CCA-secure public key encryption from R-LWE, which could

support public ciphertext integrity verification and block encryption, and improves the

method of generating trapdoor on ideal lattice, its efficiency has been greatly improved,

however, whose public key, private key size and expansion are still large, which leads to its

encryption efficiency is not high enough for practical applications.

In order to construct more efficient CCA-secure public-key encryption schemes from

R-LWE, first of all, we present an efficient signature scheme and a identity-based

encryption (IBE) scheme from the R-LWE. Analysis indicates that the efficiency of our

scheme is more eximious to the RSA signature scheme, and the IBE scheme is CPA-

secure. After that, on the basis of the signature scheme and the proposed IBE scheme,

adopting the paradigm of Boneh et al., we construct a more efficient CCA-secure public-

key encryption scheme from R-LWE, which is much better than [3, 14] in efficiency, and

has the following new features:

(1) could achieve batch encryption over rings;

(2) has a low encryption expansion factor 2 log q, and it is invariable with the increase

of the security parameter n and message size m;

(3) supports public ciphertext integrity verification;

(4) builds security on the hardness of the shortest vector problem in the worst case on

ideal lattices, and has a higher encryption/decryption speed.

The remainder of the paper is organized as follows. In Sect. 2, the preliminaries are

introduced. In Sect. 3, an efficient signature scheme from R-LWE problem along with the

analyses of the efficiency and security are given. Then the definition of IBE is introduced

firstly, and an identity-based encryption scheme is put forward along with its security

analysis in Sect. 4. In Sect. 5, a CCA-secure public key cryptosystem is constructed based

on the IBE and signature schemes proposed above, furthermore, the efficiency and security

analyses of the scheme are discussed in detail. Finally, Sect. 6 concludes the paper, and

plans the future work.

2 Preliminaries

2.1 Learning with Errors Over Rings (R-LWE)

Let f ðxÞ ¼ xn þ 1 2 Z½x�; where the security parameter n is a power of 2, making f ðxÞ
irreducible over the rationals, R ¼ Z½x�=\f ðxÞ[ be the ring of integer polynomials

modulo f ðxÞ. Let q ¼ 1 mod 2n be a sufficiently large public prime modulus (bounded by a

polynomial in n), and Rq ¼ R=\q[ ¼ Zq½x�=\f ðxÞ[ be the ring of integer polyno-

mials modulo both f ðxÞ and q. Elements of Rq are typically represented by integer poly-

nomials of degree less than n, whose coefficients are from f0; 1; . . .; q� 1g.
In the above-described ring, the R-LWE problem can be described as follows [10]. Let

s 2 Rq be a uniformly random ring element (secret), and define two distributions on

Rq � Rq: (1) ða; b ¼ a� sþ eÞ 2 Rq � Rq, where a Rq is uniformly random and e is

some ‘‘small’’ random error term chosen from a certain distribution v over Rq. (2)ða; cÞ,
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where a; c Rq are uniformly random. The goal of the R-LWE problem is to distinguish

the two distributions described above. In other words, if R-LWE is hard, then the collection

of ‘random noise equations’ ða; a� sþ eÞ is pseudorandom, and all operations are per-

formed in Rq.

Lyubashevsky et al. [10] proved the hardness of the R-LWE problem under the worst

case assumptions on ideal lattices (see Theorem 2).

Theorem 1 Suppose that it is hard for polynomial-time quantum algorithms to

approximate the shortest vector problem (SVP) in the worst case on ideal lattices in R to

within a fixed polyðnÞ factor. Then any polyðnÞ number of samples drawn from the R-LWE

distribution are pseudorandom to any polynomialtime (even quantum) attacker.

2.2 Sampling from Discrete Gaussians

Lattice has useful cryptography application because of its natural trapdoor characteristic.

Virtually, all kinds of lattice-based cryptography schemes show how to use a trapdoor in a

theoretically sound and secure way. A short basis of the lattice is a trapdoor like this.

Theorem 2 (Generating a short basis [19]). There is a fixed constant C[ 1 and a

probabilistic polynomial-time (PPT) algorithm TrapGenðq; nÞ that, for poly(n)-bounded

m�Cn lg q, outputs ðA 2 Zn�m
q ; T 2 Zm�mÞ such that:

• A is statistically close to a uniform matrix in Zn�m
q ,

• T is a basis of ^?q ðAÞ,
• The Euclidean norm of all the rows in T(jjTjj) is bounded by Oðn log nÞ.

Theorem 3 (Sampling from discrete Gaussians [4]). There is a PPT algorithm

Sample ISISðA; T ; r; uÞ, given a matrix A 2 Zn�m
q , a basis T of ^?ðAÞ, a parameter

r� jjT jj � xð
ffiffiffiffiffiffiffiffiffiffi

log n
p

Þ, and a vector u 2 Zn, outputs a sample from a distribution that is

statistically close to D^uqðAÞ;r. D^uqðAÞ;r is the discrete Gaussian distribution over ^?ðAÞ with
parameter r.

Theorem 4 ([4]). The algorithm Sample ISISðA; T ; r; uÞ gives a collection of trapdoor

one-way functions with preimage sampling, if inhomogeneous smallest integer solution

(ISISq;m;r
ffiffiffi

m
p ) problem is hard on the average.

The ISISq;m;r
ffiffiffi

m
p can be described as follows: Given an integer q, a matrix A 2 Zn�m

q , a

syndrome u 2 Zn
q and a real b, find an integer vector e 2 Zm such that A � e ¼ umod q and

jjejj � b.

3 Signature Scheme

3.1 Signature Scheme

First we give the probability distribution v which will be used in the following, and v is

derived from a Gaussian. For any b[ 0, the density function of a Gaussian distribution

over the real domain is given by DbðxÞ ¼ 1=b � expð�pðx=bÞ2Þ. For an integer q� 2,

define �wbðqÞ to be the distribution on Zq obtained by drawing y Db and outputting
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q � yþ 1=2b c (modq). Let v � Rq denotes the set of polynomials whose coefficients are

chosen from �wbðqÞ.
Unlike GPV08 scheme that needs to generate a trapdoor and sample from discrete

Gaussians, using the idea from Lyubashevsky [20], an efficient signature

scheme S ¼ ðKeyGen; Sign;VerifyÞ from R-LWE problem can be constructed as follows:

Let n ¼ 2kðk 2 ZÞ, a prime number p\\q ¼ 1 mod ð2nÞ (q be a sufficiently large

public prime modulus), v � Rq be the error distribution and Rq ¼ Zq½x�=\xn þ 1[ be the

ring of integer polynomials modulo xn þ 1 and q.

• KeyGenð1nÞ: Choose s 2 Rq randomly as the private key. The public key is

(a; b ¼ a � sþ pe1), where a Rq is uniformly random and error term e1 is chosen

independently from a probability distribution v � Rq. H : f0; 1g	 ! Zn
q is a random

oracle that maps the space of message to Zn
q .

• Signðs;mÞ: Compute c ¼ HðmÞ 2 Zn
q (view it as an element of Rq by using its

coordinates as the coefficients of a polynomial), and output the signature

r ¼ s � cþ pe2, where e2 is chosen independently from a probability distribution v.
• Verifyðða; bÞ;m; rÞ: If r 2 Rq and a � r 
 b � HðmÞðmodpÞ, output 1. Else, output 0.

Polynomial addition is the usual coordinate-wise addition, and multiplication is the

usual polynomial multiplication followed by reduction modulo xn þ 1.

Claim 1 The signature scheme described above is correct.

Proof Consider a signature r ¼ s � cþ pe2 of a message m under the public key

(a; b ¼ a � sþ pe1), then the verification process can be computed as

½a � r� b � HðmÞ�mod p ¼ ½a � ðs � cþ pe2Þ � ða � sþ pe1Þ � HðmÞ�mod p

¼ ½pða � e2 � e1 � cÞ�mod p

¼ 0

3.2 Security Analysis

Claim 2 The scheme S described above is secure against chosen-plaintext attacks (CPA)

in the random oracle model, assuming that the R-LWE is hard and hash function H is

secure.

Proof Let adversary A be a probabilistic polynomial-time (PPT) adversary that makes at

most k signature queries. A works as follows:

• Setup Challenger runs KeyGenð1nÞ to get { s,(a; b ¼ a � sþ pe1)}, and sends public key

(a; b ¼ a � sþ pe1) to A.
• Queries A makes k queries to H on messages miði ¼ 1; . . .; kÞ and challenger returns

ci ¼ HðmiÞði ¼ 1; . . .; kÞ to A. Following this, A makes signature queries on

ciði ¼ 1; . . .; kÞ, the challenger chooses e1; e2; . . .; ek 2 v at random, runs Sign to get

riði ¼ 1; . . .; kÞ and sends them to A.
• Output A outputs a tuple of the public key, message and signature fða	; b	Þ;m	; r	g,

where m	 6¼ miði ¼ 1; . . .; kÞ.

If the challenger never responds signature queries on messages miði ¼ 1; . . .; kÞ, A
outputs the legal signature r	 of m	 satisfying Verify ða; bÞ;m	; r	ð Þ ¼ 1, namely,
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½a � r	 � b � Hðm	Þ�mod p ¼ ½a � r	 � ða � sþ pe1Þ � Hðm	Þ�mod p

¼ a � ½r	 � s � Hðm	Þ�mod

¼ 0

It can be seen that a ¼ 0 mod p or r	 � s � Hðm	Þ ¼ 0 mod p from the formula

described above for p is a prime number. As a is chosen from Rq randomly, the probability

of a ¼ 0 mod p is close to 1=pn, which is negligible. Hence it can be concluded that

r	 � s � Hðm	Þ ¼ 0 mod p, and the private key s can be obtained. So R-LWE problem is

solved successfully.

3.3 Efficiency Analysis

Because of the special algebraic structure of R-LWE, the signature scheme from the

R-LWE problem has the advantages of much simpler description, analysis and very high

efficiency. The efficiency analysis of the scheme is shown in Table 1.

In the following parts, the scheme from R-LWE is compared with the RSA scheme on

the same parametric conditions and operation environment. We use the same usual per-

sonal computer to evaluate the implementation performance of the two schemes: Running

them on a Microsoft Windows XP Professional 2002 System, featuring a Pentium (R) D

CPU processor, running at 3.0 GHz, with 1.0 GB of RAM. The implementation uses

Shoup’s NTL library [18] version 5.5.2 for high-level numeric algorithms, and the code is

compiled using Microsoft Visual C?? 6.0 compiler.

Tables 2 and 3 show the simulation results of the two different schemes respectively.

Each test is repeated ten times and the datum shown in the two tables are the means of

these ten different repetitions. As can be seen from Tables 2 and 3, the runtime of the

scheme from R-LWE is more efficient than the RSA scheme under the same conditions,

especially the key generation time and signature time. Regardless of the inefficiency of the

verification compared to RSA scheme, the total runtime of our scheme is much more

efficient than that of the RSA scheme with the increase of security parameter n.

Modulus q takes the minimum integer satisfying corresponding conditions in the two

schemes, and the length of messages encrypted in the two scheme is n log q bit.

A more detailed simulation result of the two above-described schemes is given in Fig. 1.

Figure 1a, b, c show the efficiency of the key generation, signature and verification in the

two schemes respectively, and the comparison of the total implementation time of the two

schemes is shown in Fig. 1d. At the same time, Fig. 1 also indicates the change tendencies

of the implementation time of the two encryption schemes along with the change of the

security parameter n.

As can be seen from Fig. 1, the efficiency of the scheme from R-LWE is more eximious

to the RSA signature scheme, and the increasing tendency of the scheme from R-LWE in

Table 1 Efficiency analysis of the scheme from R-LWE

Private key size Public key size Message length Signature length Verification computation

n log q 2n log q n log q n log q ~Oðn2Þ
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runtime is much slower than that of the RSA scheme with the increase of security

parameter n. Furthermore, the scheme from R-LWE is believed to be secure against

quantum computers.

4 Identity-Based Encryption

4.1 Definition

Definition 1 ([18]) An identity-based encryption (IBE) scheme is a tuple of PPT algo-

rithms ðIBESetup; IBEDer; IBEEnc; IBEDecÞ such that:

• IBESetupð1nÞ: Take as input a security parameter 1n. Output a master public key PK

and a master secret key msk.

• IBEDerðmsk; idÞ: Take as input the master secret key msk and an identity id. Return the

corresponding decryption key SKid, and note SKid  IBEDermskðidÞ.
• IBEEncðPK; id;MÞ: Take as input the master public key PK, an identity id and a

message M in some message space. Output a ciphertext C, and note

C  IBEEncPKðid;MÞ.
• IBEDecðSKid; id;CÞ: Take as input an identity id, an associated decryption key SKid

and a ciphertext C. Output a message M or the symbol ? (which is not in the message

space), and note M  IBEDecSKid
ðid;CÞ.

It is required that for all ðPK;mskÞ output by IBESetup, all id, all SKid output by

IBEDer, all M in the message space and all C output by IBEEnc we have

IBEDecSKid
ðid;CÞ ¼ M.

Table 2 Implementation time of the scheme from R-LWE

Security parameter n KeyGen (ms) Signature (ms) Verification (ms) Total time (ms)

128 14.1 15.3 28.7 58.6

256 37.0 34.6 68.4 140.0

512 121.8 121.8 240.4 484.0

1024 443.8 440.4 909.2 1793.4

2048 1687.2 1699.8 3531.2 6918.2

4096 6578.1 6685.9 13,252.7 26,516.7

Table 3 Implementation time of the RSA scheme

Security parameter n KeyGen (ms) Signature (ms) Verification (ms) Total time (ms)

128 14.0 10.1 5.8 29.9

256 1028.4 120.8 6.9 1156.1

512 2017.3 279.1 7.1 2303.5

1024 5973.7 2232.5 15.2 8221.4

2048 31,249.6 9539.7 47.7 40,837

4096 217,288.3 121,170.0 172.0 338,630.3
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4.2 Encryption Scheme

Let H1 : f0; 1; . . .; q� 1g	 ! Zn
q be a random oracle that maps identities to the elements of

Zn
q . Based on R-LWE problem, an efficient IBE scheme IBE can be constructed as follows.

• IBESetupð1nÞ: Take as input a security parameter 1n, m�Cn lg q (m ¼ 2d; d 2 Z and

C[ 1 is a fixed constant) and a prime modulus q ¼ 1 mod ð2mÞ. Run TrapGenðq; nÞ to
get a matrix A 2 Zn�m

q and a trapdoor T � K?q ðAÞ, where T is master secret key.

• IBEDerðT ; idÞ: (1) If the pair ðid; SKidÞ is in local storage, return SKid; (2) Otherwise,

let u ¼ H1ðidÞ and run SampleISISðA; T ; r; uÞ(r� jjTjj � xð
ffiffiffiffiffiffiffiffiffiffi

log n
p

Þ) to get a private

key SKid . Store ðid; SKidÞ locally and return SKid; (3) Let public key

PK ¼ ða; bÞ ¼ ða; a � SKid þ eÞ, where a Rq is uniformly random and e is some

‘‘small’’ random error term chosen from a probability distribution v � Rq described in

Sect. 3.

• IBEEncðPK; id;MÞ: To encrypt a message M 2 f0; 1gm � Rq (view it as an element of

Rq by using its bits as the 0–1 coefficients of a polynomial), choose a ‘‘small’’ t 2 Rq at

random (namely, the coefficient of t is small). Output the ciphertext

ðc1; c2Þ ¼ ða � t þ e1; b � t þ e2 þ ½q=2� �MÞ 2 Rq � Rq, where e1; e2 are ‘‘small’’ ran-

dom error terms chosen from the distribution v.
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Fig. 1 Efficiency comparison of the signature scheme from R-LWE and RSA scheme
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• IBEDecðSKid; id; ðc1; c2ÞÞ: Compute M0 ¼ c2 � c1 � SKid . Output 0 if the coefficient

m0iði ¼ 0; 1; � � � ;m� 1Þ of M0 is closer to 0 than to ½q=2� modulo q, otherwise output 1.

Where polynomial addition is the usual coordinate-wise addition, ‘‘�’’ denotes the usual

polynomial multiplication followed by reduction modulo xn þ 1.

Claim 3 The IBE scheme IBE is correct.

Proof Consider a ciphertext

ðc1; c2Þ ¼ ða � t þ e1; b � t þ e2 þ ½q=2� �MÞ 2 Rq � Rq

of an m-bit message M 2 f0; 1gm under the public key ða; b ¼ a � SKid þ eÞ, then the

decryption process can be computed as

M0 ¼ c2 � c1 � SKid

¼ b � t þ e2 þ ½q=2� �M � ða � t þ e1Þ � SKid

¼ ða � SKid þ eÞ � t þ e2 þM � ½q=2� � ða � t þ e1Þ � SKid

¼ M � ½q=2� þ ðe � t þ e2 � e1 � SKidÞ

Obviously the coefficient of private key SKid is small as SKid is obtained from algorithm

SampleISISðA; T ; r; uÞ, and e; e1; e2; t 2 Rq are ‘‘small’’ polynomials. Hence it outputs the

coefficient miði ¼ 0; 1; . . .;m� 1Þ of M if the coefficients of ðe � t þ e2 � e1 � SKidÞ are at

distance at most q=5 from 0 (modulo q) via choosing a big prime modulus q.

4.3 Security Analysis

Claim 4 The IBE scheme IBE is secure against chosen-plaintext attacks (denoted IND-

ID-CPA) in the random oracle model, assuming that the R-LWE is hard.

Proof Let A be a PPT adversary that distinguishes between encryptions of messages of

its choice on some identity with advantage e in a chosen-plaintext attack. The adversary A
works as follows:

• Setup The challenger takes a security parameter 1n and runs IBESetupð1nÞ to get a

matrix A 2 Zn�m
q and a trapdoor T � K?q ðAÞ, where T is master secret key.

• Queries1A issues private key extraction queries qidjðj ¼ 1; . . .; sÞ. If the pair ðidj; SKidjÞ
is in local storage, return SKidj and corresponding public key PKj ¼ ða; a � SKidj þ eÞ
ðj ¼ 1; . . .; sÞ to A. Otherwise, let u ¼ H1ðidjÞ and run SampleISISðA; T ; r; uÞ to get a

private key SKidj , and return SKidj and public key PKj ¼ ða; a � SKidj þ eÞ.
• Challenge After the queries, A outputs two different plaintexts M0;M1 2 f0; 1gm and a

‘‘target’’ identity ID	, where the ID	 may not be be queried before. A bit b 2 f0; 1g is
randomly chosen and the adversary is given a ‘‘challenge ciphertext’’

ða � t þ e1; b � t þ e2 þ ½q=2� �MbÞ  IBEEncðPK	; ID	;MbÞ:

• Queries2 A may continue to issue more extraction queries qidjðj ¼ sþ 1; . . .; tÞ to get

corresponding private key and public key, where the only constraint is

qidj 6¼ ID	ðj ¼ sþ 1; . . .; tÞ.
• Output A outputs a guess b0.
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To prove the security of the scheme, we construct a distinguisher D between the two

distributions

a; a � SKID	 þ eð Þ : a Rq; SKID	 2 Rq; e v
� �

and Unif Rq � Rq

� �� �

D takes as input a pair of polynomials a 2 Rq; c 2 Rq

� �

, and runs the adversary A with

ða; bÞ (b ¼ a � SKID	 þ e) as the public key. Upon receiving messages M0;M1 2 f0; 1gm
from the adversary, D chooses b 2 f0; 1g and t 2 Rq at random, returns the challenge

ciphertext a � t þ e1; c � t þ e2 þ ½q=2� �Mbð Þ, and then outputs 1 if A guesses the right b,

and 0 otherwise.

On the one hand, if c is uniformly random, then the challenge ciphertext is also random,

regardless of the multiplication and addition. Hence in this case D outputs 1 with proba-

bility at most 1/2. On the other hand, if c ¼ a � SKID	 þ e, then the challenge ciphertext is

a � t þ e1; a � SKID	 þ eð Þ � t þ e2 þ ½q=2� �Mbð Þ. This is identical to the output distribution

of IBEEncðPK	; ID	;MbÞ, by assumption A will guess the right b with probability (1 ? e)/
2, which means that D outputs 1 with the same probability, hence D has advantage at least

e/2. Therefore if A can distinguish between encryptions of messages of its choice on the

‘‘target’’ identity ID	, then D can distinguish between the two distributions ða; a � SKID	 þ
eÞ and Unif Rq � Rq

� �� �

, namely, D can solve R-LWE problem successfully.

The efficiency of the IBE scheme will be discussed in Sect. 5.

5 CCA-secure encryption from R-LWE

5.1 Definition

Definition 2 ([22]) A public-key encryption scheme is secure against adaptive chosen-

ciphertext attacks (CCA-secure) if the advantage of any PPT adversary A in the following

game is negligible in the security parameter n:

• Setup Challenger runs algorithm Setupð1nÞ and outputs ðPK; SKÞ. Adversary A is given

1n and PK.

• Queries1 The adversary may make polynomially-many queries q1; . . .; qs to a

decryption oracle DecrySKð�Þ.
• Challenge At some point, A outputs two messages M0;M1 2 f0; 1gm. A bit b 2 f0; 1g

is randomly chosen and A is given a ‘‘challenge ciphertext’’ C	  EncryPKðMbÞ.
• Queries2 A may continue to make queries qjðj ¼ sþ 1; . . .; tÞ to DecrySKð�Þ except that

it may not request the decryption of C	.
• Output A outputs a guess b0.

We say that A succeeds if b0 ¼ b, and denote the probability of this event by

PrPKEA;E ½Succ�. The adversary’s advantage is defined as AdvPKEA;E ¼ j PrPKEA;E ½Succ� � 1=2j.

5.2 Encryption Scheme

Adopting the construction paradigm of Boneh et al., based on the IBE

scheme IBE ¼ ðIBESetup; IBEDer; IBEEnc; IBEDecÞ in Sect. 4 and the signature

scheme S ¼ ðKeyGen; Sign;VerifyÞ in Sect. 3, a CCA secure public-key encryption

scheme E ¼ ðSetup;Encry;DecryÞ is constructed as follows.
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• Setup Run IBESetupð1nÞ to get a matrix A 2 Zn�m
q and a trapdoor T � K?q ðAÞ, where T

is master secret key.

• Encry To encrypt a message M 2 f0; 1gm, the sender performs the following

operations:

1. Run KeyGenð1nÞ to obtain verification key vk and signing key sk.

2. Run IBEDerðT ; vkÞ (verification key vk is viewed as a identity) to obtain public

key ða; bÞ and encrypt M with respect to the vk: ðc1; c2Þ  IBEEncðPK; vk;MÞ,
where ðc1; c2Þ  ða � t þ e1; b � t þ e2 þ ½q=2� �MÞ.

3. Compute ðr1; r2Þ  Signðsk; ðc1; c2ÞÞ ¼ ðSignðsk; c1Þ; Signðsk; c2ÞÞ and output the

ciphertext ðvk; ðc1; c2Þ; ðr1; r2ÞÞ.

• Decry: After receiving ciphertext ðvk; ðc1; c2Þ; ðr1; r2ÞÞ, the receiver first checks

whether Verifyðvk; ðc1; c2Þ; ðr1; r2ÞÞ¼
?
1, if not, output ?. Otherwise, the receiver runs

IBEDerðT ; vkÞ to obtain private key SKvk and outputs M  IBEDecðSKvk; vk; ðc1; c2ÞÞ.

Claim 5 The public-key encryption scheme E is correct.

Proof It is clear that the encryption scheme E satisfies correctness from Claim 3.

5.3 Security Analysis

Claim 6 The public-key encryption scheme E is CCA-secure in the random oracle model.

Proof Let A be a PPT adversary attacking the encryption scheme E in an adaptive

chosen-ciphertext attack. Define a ciphertext ðvk;C; rÞ is valid if VerifyðC; rÞ ¼ 1. Let

ðvk	;C	; r	Þ be the challenge ciphertext received by A, and U denote the event that ‘‘A
submits a valid ciphertext ðvk	;C; rÞ to the decryption oracle’’, assuming vk	 is chosen at

the beginning of the game. Then the following propositions are correct.

Proposition 1 PrPKEA;E ½U� is negligible.

Proposition 2 j PrPKEA;E ½Succ ^ �U� þ 1
2
PrPKEA;E ½U� � 1

2
j is negligible.

As

Pr
PKE

A;E
½Succ� � 1=2

�

�

�

�

�

�

�

�

� Pr
PKE

A;E
½Succ ^ U� � 1

2
Pr
PKE

A;E
½U�

�

�

�

�

�

�

�

�

þ Pr
PKE

A;E
½Succ ^ �U� þ 1

2
Pr
PKE

A;E
½U� � 1

2

�

�

�

�

�

�

�

�

� 1

2
Pr
PKE

A;E
½U� þ Pr

PKE

A;E
½Succ ^ �U� þ 1

2
Pr
PKE

A;E
½U� � 1

2

�

�

�

�

�

�

�

�

Hence the adversary’s advantage is negligible if the propositions described above are

correct.

The correctness of Proposition 1 is straightforward. Let F be a PPT forger who forges a

signature with respect to the scheme S with probability exactly PrPKEA;E ½U�. Security of S
implies the Proposition 1 is correct from Claim 2 in Sect. 3.
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Proof of Proposition 2 A PPT adversary A0 attacking the IBE scheme IBE can be

constructed using A as follows:

1. Setup A0 runs KeyGen to get ðvk	 2 Rq � Rq; sk
	 2 RqÞ and outputs a ‘‘target’’ identity

ID	 ¼ vk	. A0 is given the public key PKvk	 , then A0 runs Að1n;PKvk	 Þ in turn.

2. Queries1 When A makes decryption oracle query Decryðvk; ðc1; c2Þ; ðr1; r2ÞÞ, A0
proceeds as follows:

1. If vk ¼ vk	 then A0 checks whether Verifyðvk	; ðc1; c2Þ; ðr1; r2ÞÞ ¼ 1. If so, A0
aborts and outputs a random bit. Otherwise, it outputs ?.

2. If vk 6¼ vk	 and Verifyðvk; ðc1; c2Þ; ðr1; r2ÞÞ ¼ 0, A0 outputs ?.
3. If vk 6¼ vk	 and Verifyðvk; ðc1; c2Þ; ðr1; r2ÞÞ ¼ 1, A0 makes the private key

extraction query IBEDerðT ; vkÞ to get SKvk. It then computes m 
IBEDecðSKvk; vk; ðc1; c2ÞÞ and returns m to A.

3. Challenge At some point, A outputs two messages M0;M1 2 f0; 1gm. After A0 sends
M0;M1 to challenger, A bit b 2 f0; 1g is randomly chosen and A0 is given a

‘‘challenge ciphertext’’ c	1; c
	
2

� �

 IBEEnc PKvk	 ; vk
	;Mbð Þ, A0 then computes

r	1; r
	
2

� �

 Sign sk	; c	1; c
	
2

� �� �

and returns vk	; c	1; c
	
2

� �

; r	1; r
	
2

� �� �

to A.
4. Queries2 A may continue to make queries to DecrySKð�Þ except that it may not request

the decryption of vk	; c	1; c
	
2

� �

; r	1; r
	
2

� �� �

, and A0 answers them as before.

5. Output A outputs a guess b0, and A0 outputs the same guess b0.

As A0 never requests the secret key corresponding to the ‘‘target’’ identity vk	, A0 is a
legal PPT adversary. When A can not submit a valid ciphertext ðvk	;C; rÞ, A0 provides a
perfect simulation for A. It is easy to see that:

Pr
IBE

A0;E0
½Succ� � 1

2

�

�

�

�

�

�

�

�

¼ Pr
IBE

A0;E0
½ �U ^ Succ� þ Pr

IBE

A0;E0
½U ^ Succ� � 1

2

�

�

�

�

�

�

�

�

¼ Pr
PKE

A;E
½Succ ^ �U� þ Pr

IBE

A0;E0
½Succ� � Pr

PKE

A;E
½U� � 1

2

�

�

�

�

�

�

�

�

¼ Pr
PKE

A;E
½Succ ^ �U� þ 1

2
Pr
PKE

A;E
½U� � 1

2

�

�

�

�

�

�

�

�

Obviously PrIBEA0;E0 ½Succ� �
1
2

�

�

�

�

�

�
is negligible from Claim 4 in Sect. 4, hence Proposition 2

is correct.

5.4 Efficiency Analysis

It is easy to see that the efficiency of the CCA-secure scheme E is decided by the efficiency
of the the IBE scheme IBE and the signature scheme S from its encryption process.

Because of the special algebraic structure of R-LWE and the method of contribution, the

schemes IBE and S from the R-LWE problem have the advantages of much simpler

description, analysis and high efficiency.

Compared to the CCA-secure encryption schemes presented in [3] and [14], the effi-

ciency improvement of the scheme E� is shown in Table 4. Where m denotes the message

size in our scheme, and it denotes the number of the samples in [3] and [14]. q is a prime

modulus and k is a security parameter.
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The datum in Table 4 shows that the encryption scheme E is more efficient than other

two cryptosystems, especially its expansion, private key, public key and ciphertext size are

incomparable to the Peikert’s and Yang’s CCA-secure scheme. The expansion of our

scheme is invariable with the increase of the security parameter n and message size m

while other two schemes don’t have the property, and this property make it’s advantage is

more obvious when security parameter is large.

6 Conclusion

Owing to the flexible structure and implementation simplicity of lattice cryptography, an

efficient identity-based encryption (IBE) scheme from R-LWE are proposed, whose

security is reducible to the hardness of the shortest vector problem (SVP) in the worst case

on ideal lattices. Then we construct a CCA-secure public key cryptosystem based on the

IBE scheme adopting the construction paradigm of Boneh et al. The scheme mainly uses

modular addition and modular multiplication operations in the ring of integer polynomials,

and which based on the special algebraic structure of R-LWE, hence it is more efficient

than previous interrelated cryptosystems, and analysis also indicates the efficiency of the

CCA-secure E is more efficient.

Future work mainly includes optimization of the construction of the CCA-secure public

key cryptosystem, in order to test the feasibility of the system in the practical application

environment, further simulation and analysis of the system running efficiency will be

implemented. We also plan to study the latticed-based signature and encryption schemes in

the standard model.
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