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Abstract Wireless mobile devices require a sufficiently intelligent handover decision

system to achieve seamless mobility in heterogeneous wireless networking environment.

One of the intelligent techniques known as fuzzy logic is utilized to enhance the intelli-

gence of handover decision system (HDS) in such environment. Most existing fuzzy

decision engines for HDS are based on an inflexible design philosophy; using a fixed set of

decision rules and fuzzy membership functions. Such design leads to an unacceptable al-

gorithm execution time if there are a large number of decision parameters involved in a

decision making process. Additionally, the said design also gives a degraded network

selection performance when a decision engine needs to handle different traffic types. In this

work, a modular and an adaptive design philosophies are presented to address the said

issues. The proposed design yields a lower algorithm execution time and at the same time

improves the network selection capability.
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1 Introduction

A general architecture of heterogeneous wireless mobile network (HWMN) (as shown in

Fig. 1) comprises an integration of multiple wireless technologies, e.g., Cellular and

WLAN, aiming to support seamless mobility as well as seamless services. Such services
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shall support various traffic types, for example VoIP and video streaming (probably with

different video resolutions). To support seamless mobility, HWMN is required to be able to

shift mobile devices’ connections from a home network to a foreign network in HWMN

environment. The two networks may or may not have the same characteristics, but may

offer different advantages. As an example, a foreign network may offer a lower usage price

when compared to a home network. As shown in Fig. 1, if a mobile device moves across

overlapping service areas, it needs to perform a handover process which may be vertical or

horizontal handovers. In general, a horizontal handover triggering is mainly dependent on a

single decision parameter such as received signal strength (RSS). In case of a vertical

handover, a triggering may rely on a number of parameters, e.g., data rate and RSS [1].

Therefore, a vertical handover decision is far more complex when compared to a horizontal

handover decision.

Under the circumstances, an adequately intelligent handover decision mechanism

deems necessary to perform an optimal vertical handover decision procedure. Several

intelligent techniques have been proposed in the past years to enhance the intelligence of

handover decision system (HDS) [2, 3]. Fuzzy logic is among those techniques and it has

been widely utilized to strengthen the intelligence of decision mechanisms in several areas,

for example sensor networking [4], stock trading [5] and health care [6]. The relevant

vertical handover decision algorithms based on fuzzy logic were presented in the literature

[7, 8]. However, the proposed fuzzy-based HDSs are mainly based on an inflexible design

(also referred to as a monolithic design). Such design contains only one fuzzy engine and

assumes fixed FMFs as well as a single set of fuzzy decision rules. Consequently, a

monolithic design poses two critical drawbacks; (a) the algorithm execution time ðsÞ is

unacceptable when the number of decision parameters to be considered is large (a large

number of fuzzy decision rules are required), and (b) if one set of fuzzy decision rules is

utilized, a performance will degrade when different traffics are to be dealt with.

A multi-fuzzy engines design (also referred to as a modular design) philosophy [9] was

proposed to minimize s, and an adaptive behavior [10] was incorporated to enhance the

network selection capability in our previous work [also known as adaptive modular fuzzy-

based HDS (AMHDS Design I)]. In this paper, an enhanced version of AMHDS Design I

(also known as AMHDS Design II, which was originally introduced in [11]) is presented.

The Design II has been further extended with revised fuzzy decision rules (also known as

AMHDS Design II-rfr) aiming to further achieve a better performance in terms of network

selection capability. The performance evaluation of the proposed work for various traffic

types with different service options were conducted. The AMHDS Design II-rfr was

Fig. 1 An illustration of
integrated wireless technologies
in HWMN network
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developed and simulated assuming a HWMN environment and two traffic types; (1) VoIP

streaming traffic and (2) video streaming traffic with two resolutions.

AMHDS Design II-rfr has shown to improve the network selection capability by 1.84%

for VoIP traffic, and by 1.38 and 1.73% for video streaming traffics with resolutions of

360p and 720p, respectively, when compared with AMHDS Design II [11]. Additionally,

AMHDS Design II-rfr outperforms non-fuzzy-based algorithms, namely Simple Additive

Weighting (SAW) and Analytic Hierarchy Process (AHP), in terms of network selection

capability. In addition to that, s was also evaluated and the result shows that AMHDS

Design II-rfr achieves a reduction of 26.3% in the value of s when compared to AMHDS

Design I [10] due to the fact that the total number of fuzzy decision rules required is

reduced from 99 rules to just 54 rules.

The rest of the paper is organized as follows. The related handover decision techniques

are presented and discussed in Sect. 2. The design and development of AMHDS Design II

with revised fuzzy decision rules are given in Sect. 3. Section 4 presents the simulation

environment, procedure and results. Section 5 gives a conclusion and future work.

2 Related Work

Existing vertical handover decision algorithms have varying degree of complexity and

intelligence ranging from simple weighting functions to heuristic-based decision algo-

rithms. Fuzzy logic is known to have the capability to intensify intelligence in decision

processes and has been used to improve decision making procedures in many areas such as

power management [12]. For a specific research related to handover decision in HWMN,

fuzzy-based algorithms are deployed in various ways; a triggering algorithm for handover

[13] and imprecise data pre-processing for mathematical-based algorithms in [14, 15].

However, the usage of fuzzy logic in the previously cited works is only to reinforce HDSs

(not actual fuzzy-based HDSs).

With regard to the application of fuzzy logic for HDS, several researchers have pro-

posed various fuzzy-based handover decision mechanisms in recent years. In [16], a fuzzy

logic technique has been used in conjunction with one of the Multiple Attribute Decision

Making (MADM) methods called Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS) aiming to reduce the handover latency, handover blocking probability

and the number of unnecessary handovers between 4G and WiMAX networks. Four fuzzy

controllers with their associated fuzzy decision rules for RSS, QoS, battery life and mobile

velocity are developed. The outputs from individual fuzzy controllers are then fed into

TOPSIS method in order to determine the most suitable wireless network for a handover.

The results show that the proposed fuzzy-based TOPSIS method outperforms the classical

TOPSIS method. Bayrakdar et al. [17] has utilized fuzzy logic to develop fuzzy-based

spectrum handover strategy in cognitive radio networks. Three decision parameters,

namely data rate, channel usage and priority, are considered in their work. According to the

proposed strategy, the repetitive handovers for secondary users (to secondary networks) are

remarkably decreased considering different data rates and priority classes for different

traffics. In [18], a handover triggering technique based on fuzzy logic has been proposed to

trigger a handover in a timely manner (to reduce handover latency) and to reduce

unnecessary handovers in Long-Term Evolution (LTE) network. An adaptive mechanism

enabling FMFs and fuzzy decision rules to be adapted in response to the changing envi-

ronment is utilized. A training algorithm based on neural network is incorporated into
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fuzzy logic-based handover algorithm (FLHA) and is based on pattern learning. Three

parameters, namely reference signal received power (RSRP), block error rate (BLER) and

quality of service (QoS), are considered in this work. The training algorithm fine-tunes

these parameters in order to cope with the environment changes. The results show that the

proposed adaptive-FLHA minimizes the handover latency (resulting in sustainable con-

nections achieving a lower number of dropped calls) and impressively reduces the number

of unnecessary handovers while maintaining the throughput required by the application.

In another area, which requires guaranteed QoS in a network selection process, efforts

are directed towards QoS-aware fuzzy-based HDS [19] and fuzzy-related (i.e., ANFIS)

HDS [20]. However, the proposed fuzzy-based HDSs are developed based on a monolithic

design. The said design uses unchanging fuzzy membership functions (FMFs) and untai-

lored fuzzy decision rules, which contribute to two main drawbacks. The first drawback is

related to the algorithm execution time (s). The value of s becomes unacceptable when the

number of decision parameters taken into consideration is high. A high value of s is an

undesirable factor in a handover decision process as it contributes to a high handover

latency. As a result, mobiles’ connection may be terminated or data be lost during the

handover procedure. Another major drawback is that the network selection capability

degrades when dealing with different types of traffic since a monolithic design uses

untailored fuzzy decision rules. From our past experience, to achieve an optimal network

selection capability, FMFs and fuzzy decision rules need to be tailored to suit different

traffics’ requirements.

Generally, it is possible to selectively use a small number of handover decision

parameters resulting in a small number of fuzzy decision rules. For example, a fuzzy

decision engine considering three handover decision parameters (corresponds to three

fuzzy sets), each fuzzy set having three FMFs, requires as much as 27 fuzzy decision rules.

However, under certain circumstances, three handover decision parameters may not be

adequate to achieve an optimal handover decision performance. Assume that six handover

decision parameters are considered, the required number of fuzzy decision rules can be as

high as 729 rules. Consequently, the design and development of fuzzy decision engine

becomes a much more complex task, especially with a large number of fuzzy decision

rules. It has been found that a modular design philosophy is able to minimize the execution

time of fuzzy-based algorithms. In [21] two fuzzy engines are used to separately evaluate

two decision parameters groups. The output score of each engine is further calculated to

determine the final score. However, the said work only focuses on the network selection

capability. There is no reference to s. The modular design philosophy has been fully

utilized in [9] considering six handover decision parameters, and it has been shown that a

modular design (three fuzzy engines working in collaboration) gives a remarkable

reduction in the value of s due to the fact that the number of fuzzy decision rules is reduced

from 729 rules to just 99 rules.

Another drawback is due to the fact that a fixed set (untailored) of FMFs used in a fuzzy

decision engine (in monolithic design) is not likely to perform well for different traffic

types and wireless technologies. This is because different traffic types have different QoS

constraints, and different wireless technologies have different characteristics. An adaptive

mechanism philosophy has been exploited within the decision process in order to address

the second drawback. In [1], different FMFs sets are developed for data rate and RSS for

different wireless technologies. As a result, the number of unnecessary handovers is

reduced. In a similar fashion, an adaptive mechanism has been exploited by developing

dedicated FMFs sets for different applications, resulting in a reduction in the number of

unnecessary handovers [22]. An alternative approach has been proposed to realize an
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adaptive behaviour in HDS [23, 24]. An adaptive and modular design philosophies have

been fully utilized in [10, 11]. Dedicated FMFs and tailored fuzzy decision rules are

developed to match with different traffic types. As a result, a promising performance in

terms of network selection capability is observed. Although the modular and adaptive

mechanisms contribute to an improvement of network selection capability and a reduction

in s. However, further minimizing s is considered a major challenge for fuzzy-based HDSs

when a large number of handover decision parameters are necessary.

3 AMHDS Design and Development

This section presents a general principle of fuzzy system and the design and development

of an enhanced AMHDS (AMHDS Design II) with revised fuzzy decision rules (AMHDS

Design II-rfr).

3.1 Fuzzy System

A fuzzy system, which comprises five components, is illustrated in Fig. 2. Fuzzifier

converts crisp inputs into fuzzified data. Fuzzy decision rules are contained in Rule Base.

The rules are used by Fuzzy Inference System (FIS). Database defines fuzzy membership

functions. FIS generates aggregated fuzzified data. Defuzzifier changes the aggregated

fuzzified data into a crisp output (score). In this work, the score is used to rank wireless

networks in the final stage of handover decision process.

Table 1 summarizes the notation used in this paper. Rule Base contains a set of fuzzy

decision rules expressing all relationships between parameters, which are handover deci-

sion parameters in this work, in a form of IF-THEN rules. The total number of fuzzy

decision rules, Tr, required for fuzzy decision engine can be determined as follows:

Each input fuzzy variable is represented by an input fuzzy set comprising a number of

membership functions, e.g.,

~A ¼ ða1; a2; a3; . . .; anÞ
~B ¼ ðb1; b2; b3; . . .; bnÞ

:

~M ¼ ðm1;m2;m3; . . .;mnÞ

Fig. 2 General architecture of a fuzzy system
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where ~A, ~B and ~M represent fuzzy sets for input variables A, B and M, respectively.

a1; a2; a3; . . .; an, b1; b2; b3; . . .; bn and m1;m2;m3; . . .;mn are fuzzy membership functions

of fuzzy sets A, B and M, respectively, each with n fuzzy membership functions.

The value of n may or may not be the same in each input fuzzy set. Assume the same n

for all fuzzy sets, the total number of decision rules, Tr, is calculated using:

Tr ¼ nu ð1Þ

where n is a number of FMFs in the input fuzzy sets and u is the total number of fuzzy sets.

Fuzzy decision rules are represented in IF-THEN form and is given as follows:

IF ap and bp and . . . and mp THEN zq

where p = 1, 2,…, n and q = 1, 2,…, i. p and q are the number of FMFs in input and output

fuzzy sets, respectively. z1; z2; z3; . . .; zi are FMFs of the output fuzzy set Z, ~Z, which is

given by:

~Z ¼ ðz1; z2; z3; . . .; ziÞ

In this study, an output decision for each individual fuzzy decision rule is obtained using

expert knowledge. Note that an alternative approach is available to obtain fuzzy decision

rules using learning mechanisms guided by numerical information. This technique is

known as fuzzy rule learning (FRL). In addition, a number of methods (e.g., ad hoc data

covering, neural networks, genetic algorithm and ant colony optimization) are proposed to

automatically generate fuzzy decision rules from numerical data. One of the major con-

straints is that these algorithms require reliable and accurate training data sets, which may

or may not be available in each and every situation. To the best of our knowledge, the

training data sets that are suited to our research work are not readily available.

For the next component, namely Database, it defines a mathematical function, f(x),

which embodies the mathematical representation of FMFs in fuzzy sets. The simplest

FMFs are formed using straight lines (e.g., triangular and trapezoidal membership func-

tions). These straight line FMFs have the advantage of computational simplicity and are

easy to fine-tune FMFs of a fuzzy system.

Table 1 Table of notation

Symbol Description Symbol Description

Tr Total number of fuzzy decision rules ~A, ~B, ~M Input fuzzy sets for variables A, B, M

n Total number of FMF in input fuzzy set ~Z Output fuzzy set for variable Z

u Total number of fuzzy sets s Algorithm execution time

kAQ Total number of rules for AQ engine AQvalue The output score by AQ engine

kNQ Total number of rules for NQ engine Qvalue The output score by NQ engine

kEF Total number of rules for EF engine Evalue The output score by EF engine

kDS Total number of rules for DS engine Dvalue The output score by DS engine

l ~AðxÞ Fuzzified data of input x for ~A PS Percentage success

l ~BðxÞ Fuzzified data of input x for ~B Ns Number of successes

l ~MðxÞ Fuzzified data of input x for ~M Nf Number of failures

l ~ZðyÞ Aggregated fuzzified data of y for ~Z
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Fuzzifier converts crisp inputs into fuzzified data. In order to determine fuzzified data,

fuzzy sets (as original described in [25]) and the associated FMFs must be firstly defined.

Each fuzzy set comprises a number of states of a variable (a range such as Low, Medium,

High), and each state is represented by a function called FMF. For example, FMF (Very

Low) of fuzzy set A, ~A, maps an input value, x, to an appropriate fuzzified data, l~AðxÞ.
In fuzzification process, if crisp inputs x1, x2, …, xm are memberships of fuzzy set

~A; ~B; . . .; ~M, respectively, then the degree of membership of x1, x2, …, xm in fuzzy set
~A; ~B; . . .; ~M (fuzzified data) is given by:

l~Aðx1Þ 2 ½0; 1�

l~Bðx2Þ 2 ½0; 1�

:

l ~MðxmÞ 2 ½0; 1�

Two well-known fuzzy inference methods, namely Sugeno [26] and Mamdani [27], are

widely used in a fuzzification process of fuzzy system. Mamdani method is widely

accepted that it works well with expert knowledge, therefore enabling us to describe the

expertise in more intuitive and human-like manner. Since in this work the decision output

for each decision rule is obtained based on expert knowledge, hence Mamdani method is

utilized.

With regards to Mamdani inference method, a fuzzy system with m inputs (x1, x2, …,

xm) and one output (y) is described by a collection of IF-THEN rules in the Mamdani form.

IF x1 is ~Ak
p and x2 is ~Bk

p and xm is ~Mk
p THEN y is ~Zk

q

for kth rule, where k = 1, 2, 3,…, Tr. This IF-THEN form can be expressed by means of

membership function.

~ZkðyÞ ¼ min½l~Akðx1Þ; l~Bkðx2Þ; . . .; l ~MkðxmÞ� ð2Þ

where ~ZkðyÞ is a degree of membership of y in output fuzzy set ~Z of kth rule.

The next stage of the process is the aggregation of the fuzzified data. An aggregated

fuzzified data, l~ZðyÞ, for the total number of Tr rules is given by:

l~ZðyÞ ¼ maxk½min½l~Akðx1Þ; l~Bkðx2Þ; . . .; l ~MkðxmÞ�� ð3Þ

where l~ZðyÞ is an aggregated fuzzified data of y in output fuzzy set ~Z.
Defuzzifier converts an aggregated fuzzified data into a crisp output, which is later used

by applications. There are several defuzzification methods available as presented in [28]. In

this work, a centroid method (which is known to best capture expert knowledge [28]) is

used and is given by:

z� ¼
R
l~ZðyÞ:ydy
R
l~ZðyÞdy

ð4Þ

where z� is the defuzzified value (crisp output).
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3.2 AMHDS Design II with Revised Fuzzy Rules (AMHDS Design II-rfr)

AMHDS Design II was firstly proposed in [11]. Here, its fuzzy decision rules are revised

aiming to further improve the performance of network selection capability when HDS

needs to handle traffics with various service options.

Figure 3 illustrates AMHDS Design II architecture. It is part of the handover decision

stage of the handover decision framework [9]. As mentioned in Sect. 2, several

parameters, especially QoS-related parameters, deem necessary to be included in a

handover decision process. Therefore, six decision parameters, which include data rate

(DR), three QoS parameters [latency (LA), jitter (JI) and packet loss (PL)], battery life

(BA) and usage price (PR), are taken into consideration in this work. As opposed to the

AMHDS Design I [10], the fuzzy engine, namely NQ, is fed with two inputs only in

Design II. The two inputs are data rate (DR) and AQvalue, which is obatined from a new

fuzzy engine, namely aggregated QoS (AQ). AQ fuzzy engine turns the individual values

of three QoS parameters into an aggregated single value (AQvalue). NQ engine determines

a network quality of a wireless network by evaluating data rate and AQvalue, and cal-

culating an output score (Qvalue), which is used by another fuzzy engine, namely Degree

of Satisfaction (DS), shown in Fig. 3.

The efficiency (EF) engine evaluates two inputs, namely battery life and usage price, in

order to determine the efficiency (e.g., how long the battery lasts and how low the usage

price is) of wireless networks and calculates a score (Evalue), which is also fed into the DS

fuzzy engine. By evaluating the two inputs; Qvalue and Evalue, DS calculates a final score,

Dvalue, for each individual candidate wireless network discovered by a mobile device. In

the last step, a Network Ranking and Selection (NRS) engine ranks wireless networks in

accordance with their scores. The NRS chooses a wireless network with the maximum

score as a target wireless network (a foreign network). Then a mobile device enters a

handover execution stage and executes a handover procedure to transfer its connectivity to

a foreign network.

Fig. 3 Architecture of AMHDS
Design II
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3.3 Design and Development of AQ Fuzzy Engine

An exploitation of aggregated QoS (AQ) fuzzy engine was introduced in [10]. Figure 4

illustrates a general architecture of AQ fuzzy engine. Internally, it contains two fuzzy

engines, which are AQ-CBR and AQ-VBR.

Two fuzzy engines deal with two different traffics (AQ-CBR for VoIP and AQ-VBR for

video streaming). Each engine has a tailored FMFs set to match the QoS requirements

corresponding to the traffic. Additionally, fuzzy decision rules for the two AQ fuzzy

engines in this work have been revised (AMHDS Design II-rfr) with the aim to achieve a

better network selection capability. Another important component in AQ engine is Engine

Selector (ES), which identifies active traffic types. The traffic type can be determined by

checking a flag received from applications. After the traffic type is identified, ES selects the

fuzzy engines corresponding to the traffic. As an example, AQ-CBR engine is selected if

VoIP application is active. Three QoS parameters, gathered from individual wireless

networks, are then fed into the selected fuzzy engine.

The input fuzzy sets for LA, JI and PL are denoted by fLA, eJI and fPL, respectively, each
with three FMFs (Low, Medium, High). Hence, the fuzzy decision rules required are 27

using Eq. (1). Then each rule is assigned a decision output, which is derived from an expert

knowledge. For the output fuzzy set, fAQ, it has five FMFs (Low, Medium–Low, Medium,

Medium–High, High). For the design of input fuzzy sets, trapezoidal and triangular

functions are used to develop FMFs. The triangular function is used to develop FMFs for

output fuzzy set. Figures 5 and 6 show FMFs of the two engines. A complete set of fuzzy

decision rules for the two engines is shown in Table 2.

With regard to the decision output of fuzzy rules, for AQ-VBR engine, it evaluates the

two QoS parameters (jitter is negligible for video streaming traffic), the output decision is

set to High (corresponds to high score, AQvalue) when the values of latency and packet loss

are a member of Low FMF. If the input values of latency and packet loss are ranging from

Fig. 4 Architecture of AQ engine
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moderate to high, the decision outputs are set to either Medium–High or Medium (de-

pending on input values of latency and packet loss, forcing AQ-VBR engine to generate a

lower score when compared to the previous case). If the value of either latency or packet

loss is high, the output decision is set to Very-Low, making AQ-VBR engine to generate a

very low score. In case of AQ-CBR engine, it evaluates all the three QoS parameters as

QoS requirement for VoIP traffic is more stringent than video streaming traffic. To define

decision output for individual fuzzy decision rules, the same philosophy is applied, but is

more strict than the decision output of individual fuzzy decision rules for AQ-VBR engine.

The inputs (three QoS parameter values) are fuzzified. Then FIS engine generates

aggregated fuzzified data. Mamdani FIS is used in this work. The aggregated fuzzified

data, lfAQ, is calculated using Eq. (3) and is given by:

lfAQðyÞ ¼ maxkAQ ½min½lfLAkAQðlatencyÞ; l eJIkAQðjitterÞ; lfPLkAQðpacketlossÞ�� ð5Þ

where kAQ is the total number of rules for AQ fuzzy engine and is 1, 2, …, 27.

Defuzzifier changes lfAQ into a crisp value, AQvalue, which is calculated using Eq. (4)

and is given by:

AQvalue ¼
R
lfAQðyÞ:ydy
R
lfAQðyÞdy

ð6Þ

where AQvalue is a defuzzified data generated by AQ fuzzy engine.

Fig. 5 Fuzzy membership functions for AQ-CBR
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3.4 Design and Development of NQ, EF and DS Fuzzy Engines

The three engines (NQ, EF and DS) shown in Fig. 3 work as a group to identify the final

score, Dvalue, of individual wireless networks. Data rate (DR) and AQvalue are evaluated by

NQ engine with input fuzzy sets fDR and fAQ. Usage price (PR) and battery life (BA) are

evaluated by EF engine with input fuzzy sets fPR and fBA. NQ and EF engines generate

Qvalue and Evalue, respectively. Then DS engine is fed with Qvalue and Evalue with corre-

sponding input fuzzy sets gDQ and fDE , respectively. All input fuzzy sets have three FMFs.

Hence, the number of fuzzy decision rules required for each engine is 9 [using Eq. (1)]. The

aggregated fuzzified data of NQ engine, lgNQðyÞ, and EF engine, lfEFðyÞ, are given by:

lgNQðyÞ ¼ maxkNQ ½min½lfDRkNQðdatarateÞ; lfAQkNQðAQvalueÞ�� ð7Þ

where kNQ is the total number rules for NQ fuzzy engine and is 1, 2, …, 9.

lfEFðyÞ ¼ maxkEF ½min½lfPRkEF ðpriceÞ; lfBAkEF ðbatteryÞ�� ð8Þ

where kEF is the total number of rules for EF fuzzy engine and is 1, 2, …, 9.

The two crisp outputs Qvalue and Evalue calculated by NQ and EF engines, respectively,

are given by:

Fig. 6 Fuzzy membership functions for AQ-VBR
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Qvalue ¼
R
lgNQðyÞ:ydy
R
lgNQðyÞdy

ð9Þ

Evalue ¼
R
lfEFðyÞ:ydy
R
lfEFðyÞdy

ð10Þ

Similarly, the aggregated fuzzified data, lfDS, associated with DS engine, is given by:

lfDSðyÞ ¼ maxkDS ½min½lgDQkDSðQvalueÞ; lfDEkDSðEvalueÞ�� ð11Þ

where kDS is the total number of rules for DS fuzzy engine and is 1, 2, …, 9.

The final score, Dvalue, for individual candidate wireless networks is given by:

Dvalue ¼
R
lfDSðyÞ:ydy
R
lfDSðyÞdy

ð12Þ

Table 2 Fuzzy decision rules for AQ-CBR and AQ-VBR engines

Rule no. LA JI PL Decision output (AQ-VBR) Decision output (AQ-CBR)

1 Low Low Low High High

2 Low Low Medium Medium–High Medium

3 Low Low High Low Low

4 Low Medium Low High Medium

5 Low Medium Medium Medium–High Medium–Low

6 Low Medium High Low Low

7 Low High Low High Medium–Low

8 Low High Medium Medium Low

9 Low High High Low Low

10 Medium Low Low Medium–High Medium–High

11 Medium Low Medium Medium Medium–Low

12 Medium Low High Low Low

13 Medium Medium Low Medium–High Medium–Low

14 Medium Medium Medium Medium Low

15 Medium Medium High Low Low

16 Medium High Low Medium Low

17 Medium High Medium Low Low

18 Medium High High Low Low

19 High Low Low Low Low

20 High Low Medium Low Low

21 High Low High Low Low

22 High Medium Low Low Low

23 High Medium Medium Low Low

24 High Medium High Low Low

25 High High Low Low Low

26 High High Medium Low Low

27 High High High Low Low
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Figure 7 presents FMFs for NQ engine. The associated FMFs for EF and DS engines are

given in Fig. 8. Fuzzy rules for NQ, EF and DS engines are provided in Tables 3, 4 and 5,

respectively.

Fuzzy rules for NQ engine is developed based on the principle that if the AQvalue value

is small (corresponds to a poor network QoS), the decision output is set to Low, regardless

Fig. 7 Fuzzy membership functions for NQ engine

Fig. 8 Fuzzy membership functions for EF and DS engines
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the value of data rate. As a result, the fuzzy-based HDS is unlikely to select that network

for a handover. On the other hand, if the values of data rate and AQvalue are high, the

decision output is set to High, resulting in a high score, Qvalue. EF engine evaluates battery

life and usage price. For these two parameters, the engine prefers a network that allows a

mobile device to stay longer, with the lowest usage price. If the value of battery life is high

and that of usage price is low, the decision output is set to High (corresponds to high score,

Evalue). In contrast, the output decision is set to Low (corresponds to low score) if the value

of battery life is low and that of usage price is high. Lastly, DS engine evaluates the two

Table 3 Fuzzy rules for NQ
engine

Rule no. DR AQvalue Output

1 Low Low Low

2 Low Medium Medium–Low

3 Low High Medium

4 Medium Low Low

5 Medium Medium Medium

6 Medium High Medium–High

7 High Low Low

8 High Medium Medium–High

9 High High High

Table 4 Fuzzy rules for EF
engine

Rule no. PR BA Output

1 Low Low Medium

2 Low Medium Medium–High

3 Low High High

4 Medium Low Medium–Low

5 Medium Medium Medium

6 Medium High Medium–High

7 High Low Low

8 High Medium Medium–Low

9 High High Medium

Table 5 Fuzzy rules for DS
engine

Rule no. Qvalue Evalue Output

1 Low Low Low

2 Low Medium Medium–Low

3 Low High Medium

4 Medium Low Medium–Low

5 Medium Medium Medium

6 Medium High Medium–High

7 High Low Medium

8 High Medium Medium–High

9 High High High
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scores; Qvalue and Evalue. It generates a final score, Dvalue. The output decision is set to High

if both scores are high. The fuzzy-based HDS is likely to select the network with high

Qvalue and Evalue for a handover. In contrast, if both scores are low, the output decision is set

to Low, resulting in a low Dvalue.

3.5 NRS Engine

After Dvalue for individual candidate wireless networks is determined, NRS engine will

rank wireless networks based on their Dvalue. A wireless network having the highest Dvalue

is chosen for a handover and NRS engine proceeds with a handover execution process,

which is in handover execution stage as described in [9]. The actual handover execution

process is governed by the protocol shown in Fig. 9.

4 Simulation Results and Discussion

This section presents the simulation environment and procedure used in this work. The

performance evaluation of AMHDS Design II-rfr, Design II and Design I together with

non-fuzzy algorithms [i.e., Simple Additive Weighting (SAW) and Analytic Hierarchy

Process (AHP)] are presented and discussed.

4.1 Simulation Environment

To evaluate the performance of the proposed HDS in terms of network selection capability

and s, we assumed the following traffic models and network conditions in the simulation

environment:

(a) Three different wireless technologies, Cellular, WiMAX and WLAN, are assumed

in heterogeneous wireless networking environment.

(b) Five WLANs, two WiMAX and one Cellular networks to represent a more realistic

networking as a mobile device is subject to discover a number of WLAN access

Fig. 9 Execution of handover decision
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point in real life usage. Whether mobile or stationary, a mobile device is assumed to

discover eight wireless networks when it triggers a handover decision process. The

mobility model is not the focus of this paper.

(c) Two traffic types; (1) VoIP traffic with G.711 codec (64 kbps) and (2) non-real-time

video streaming traffic with bit rates of 1 and 4 Mbps for 360p and 720p resolutions,

respectively.

In the simulation, the actual value for all decision parameters, except usage price, are

randomly chosen based on the ranges given in Tables 6 and 7 for VoIP and video streaming

traffics, respectively . The randomness is a discrete uniform probability distribution. The

usage price is a fixed value. The range of values in Tables 6 and 7 are from [10]. Com-

monly used QoS recommendations (rec.) for two traffic types are also given in the Tables.

4.2 Simulation Procedure

AMHDS Design I [10], Design II [11] and a new Design II-rfr are simulated and compared.

Fuzzy engines of all AMHDS designs are developed using MATLAB Fuzzy Logic

Toolbox. Non-fuzzy HDSs using AHP and SAW techniques are developed and simulated

for comparison. In case of SAW-based HDS, uniform weight is used for individual

decision parameters. For AHP-based HDS, the preference values used for constructing a

pair-wise comparison matrix (for DR, LA, JI, PL, PR and BA) are 7, 9, 9, 9, 5 and 3,

respectively. After having been through the AHP process, the parameter weights are 0.08,

0.29, 0.29, 0.29, 0.03 and 0.02.

The evaluation criterion chosen is percentage success (PS). It is calculated using the

number of times a HDS selects a wireless network that can fully satisfy two requirements

(data rate and QoS). All HDSs (fuzzy-based and non-fuzzy-based) are simulated on

MATLAB platform with the procedure described in [11] and is briefly explained below.

(a) A number of simulation runs (1000 runs in each trial) is carried out and the average

value of several trials (10 trials) is calculated as the output score generated is

dependent on a random process. Note that input parameter values for each run are

randomly generated.

Table 6 Parameters for VoIP

Network DR (Mbps) LA (ms) JI (ms) PL (%) BA (h) PR (p/m)

WLAN 1–8 0–300 0–50 0–1.5 2.5–5 1

WiMAX 1–6 (rec. B150) (rec. B30) (rec. B1%) 0:55� ð2:5� 5Þ 2

Cellular 1–5 0:74� ð2:5� 5Þ 3

Table 7 Parameters for video streaming

Network DR (Mbps) LA (ms) JI (ms) PL (%) BA (h) PR (p/m)

WLAN 1–8 1–7 0–50 1–7 2.5–5 1

WiMAX 1–6 (rec. B4–5) (rec. none) (rec. B5%) 0:55� ð2:5� 5Þ 2

Cellular 1–5 0:74� ð2:5� 5Þ 3
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(b) Out of 1000 outcomes, the number of successes, Ns, and the number of failures, Nf ,

are determined, and the average of the 10 trials is calculated to represent the final

outcome.

Ns is counted when HDSs select a wireless network that satisfies the two requirements

(data rate and QoS). Nf is counted when HDSs select a wireless network that is not fully

satisfied. Each trial of 1000 runs generates a value for PS, which is calculated using:

PS ¼ Ns

Ns þ Nf

� 100 ð13Þ

For the said simulation procedure, a total of 10,000 runs were attempted to evaluate the

network selection capability of the proposed HDS. Since the values for individual input

parameter values are randomly generated with discrete uniform probability distribution,

various network conditions with varying data rate and QoS values ranging from low to

high are emulated. This partially reflects the network conditions with different traffic loads

in the networking environment.

4.3 Simulation Results

The network selection capability of AMHDS Design II-rfr is compared with Design II,

Design I, AHP and SAW for VoIP and video streaming traffics. In case of video streaming

traffic, two service options (360p and 720p resolutions) are tested. For VoIP traffic (in

Fig. 10), the results show that the performance of Design II [11] is 10.99% better than

Design I, and is 37.97% and 49.1% better than AHP and SAW, respectively. A significant

improvement has been observed between fuzzy-based and non-fuzzy-based techniques. As

mentioned earlier, fuzzy decision rules of Design II have been revised aiming to achieve a
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Fig. 10 Network selection performance—VoIP traffic
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better performance. With AMHDS Design II-rfr, the network selection capability is

marginally 1.84% better than Design II.

For video streaming traffic with 360p resolution, in Fig. 11, the improvement of 2.7% is

observed when compared Design II with Design I. Comparing with SAW and AHP, Design

II performance is 33.67 and 21.87% better than SAW and AHP, respectively. Consistent

result is observed when compared Design II with Design II-rfr. The result shows that

Design II-rfr achieves a slight improvement of 1.38%.

It is interesting to understand whether the three AMHDS designs are able handle a video

streaming traffic with high resolution option (720p). Figure 12 shows that AMHDS Design

II-rfr still achieves a better performance when compared with AMHDS Design II and

Design I. Note that the performance of SAW and AHP are not presented since it has been

shown that the AMHDS designs outperforms both techniques as shown in Fig. 11. It is also

observed that AMHDS Design I suffers a significant degradation in network selection

capability as the fuzzy decision rules for AMHDS Design I are not developed to support a

video streaming traffic with high resolution (high data rate required).

The performance improvement achieved when compared AMHDS Design II-rfr with

Design I is from the fact that, in Design II-rfr (also Design II), three QoS parameters are

evaluated to generate an aggregated QoS value (by AQ fuzzy engine). The influence of

data rate is independent in the evaluation process of QoS parameters. Note that, in Design

I, three QoS parameters and data rate are evaluated together by NQ fuzzy engine.

The s for Design II-rfr and Design I is also compared using MATLAB platform. The

results show that the values of s are 562 ms and 414 ms for Design I and Design II-rfr,

respectively. A reduction of 26.3% in the value of s is achieved. Note that s for Design II

and Design II-rfr is identical as both designs have exactly the same total number of fuzzy

decision rules. For a reduction in the value of s, it is clearly see that AMHDS Design II-rfr
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Fig. 11 Network selection performance—video streaming traffic (320p resolution)
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(also Design II) requires just 54 fuzzy whereas 99 rules is needed in Design I. Furthermore,

It is likely that in real life a mobile device may use a dedicated/embedded hardware instead

of software. Hence, a further reduction in s can be realized. It is discovered that s for AHP
and SAW techniques is significantly lower than fuzzy-based techniques, however the

performance of fuzzy-based techniques is more superior to AHP and SAW techniques. The

results suggest that adaptive and modular design approaches have the potential to enhance

the intelligence of HDS for HWMN.

5 Conclusion and Future Work

Adaptive and modular design philosophies for fuzzy-based HDS were exploited in our

previous work. It has been shown that an integration of two design philosophies shows a

promising performance improvement in network selection capability and a reduction in s.
In this paper, AMHDS Design II is presented introducing a new fuzzy engine together with

revised fuzzy decision rules (Design II-rfr). The network selection capability of AMHDS

Design II-rfr is slightly better than Design II, but significantly better than non-fuzzy-based

techniques (i.e., AHP and SAW). The consistent achievements are observed for both VoIP

and video streaming traffics. A promising reduction in the value of s is also observed.

As seamless mobility is among major goals in a future heterogeneous wireless mobile

network, it becomes interesting and challenging to include mobility-related parameters (for

example velocity, movement pattern, etc.) to order to further enhance the intelligence of

HDS. Considering too many decision parameters could result in an unacceptable algorithm

execution time. Hence, an adaptive approach to choosing a relevant number of decision

parameters to be included in a handover decision process is on the focus. Additionally, it is
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Fig. 12 Network selection performance—video streaming traffic (720p resolution)
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observed that a certain number of fuzzy decision rules can be removed as some fuzzy

decision rules may contribute to the same decision output, leading to a further reduction in

the value of s.
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